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Abstract 

The potential application of some ionic liquids and of binary mixtures of them as 

absorbents for CO2 has been investigated. 

 The CO2 absorption capacity of these solvents has been experimentally 

determined in the low pressure range.  Several mixtures of two CO2-physisorbing ionic 

liquids, and of a CO2-physisorbing ionic liquid with a CO2-chemisorbing ionic liquid, 

have been analysed.  Although their absorption capacities generally lie within those of 

the corresponding pure ionic liquids, different synergistic effects have been found.  

These effects are accompanied by the tuning of thermal behaviour and physical 

properties with variation of the composition of the mixtures.  The results are 

discussed in terms of the mechanisms of absorption and the influence of the structural 

features of the ionic liquids.  Suitable correlations of the experimental data for both 

the CO2 absorption isotherms and the physical properties investigated (density, 

viscosity, and surface tension) have been carried out. 

In a further aspect, the CO2 absorption capacity of a highly viscous amino acid 

ionic liquid has been substantially improved, along with its thermal stability, by 

supporting it onto mesoporous silica. 
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1. INTRODUCTION 

1.1 The problem of carbon dioxide emissions 

The increase in emissions of greenhouse gases resulting from anthropogenic activities 

has become a global environmental concern in the last decades (Metz et al., 2005). 

After the discovery of the ozone hole in Antarctica in late 1985, numerous 

treaties, conventions and institutions arose in order to curb the greenhouse gas 

emissions.  That same year, 28 countries signed the "Vienna Convention" (United 

Nations Enviroment Programme, 1985).  This was the first international treaty 

seeking protection of the ozone layer to avoid adverse effects on the health of people 

and the environment.  This treaty laid the foundations for the "Montreal Protocol", 

signed two years later by 46 countries, and seeking a reduction in the consumption 

and production of chlorofluorocarbons according to the level of development of the 

economies of the countries (United Nations Enviroment Programme, 1987).  The 

following year, at the request of the World Meteorological Organization and the 

United Nations Environment Programme, the Intergovernmental Panel on Climate 

Change (IPCC) was created.  This group analyses the scientific, technical and 

socioeconomic information relevant to the risk of climate change caused by human 

activity, and it looks for ways of mitigating such change.  In 1990 they presented their 

first report, which stated that the land atmospheric warming was real, so that the 

international community asked them to take effective measures to prevent it.  This led 

governments to create, in 1992, the United Nations Framework Convention on Climate 

Change (UNFCCC), trying to stabilise the concentration of greenhouse gases and 

prevent climate change.  From the second IPCC report (1995), UNFCCC began to 

develop the "Kyoto Protocol on climate change".  This protocol was signed in 1997, 

but did not come into force until 2005, when it was ratified by 187 countries.  Its main 

objective was to reduce, at least by 5 % (below the levels in 1990), the emissions of six 

greenhouse gases that cause global warming (namely carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and 
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sulfur hexafluoride (SF6)) before the end of 2012 (Figure 1.1) (United Nations 

Framework Convention on Climate Change, 1997). 

 

Figure 1.1: Proportional emissions of greenhouse gases to the atmosphere.  Source: European 

environmental agency, web reference. 

The European Union, as part of the UNFCCC, takes inventory of its emissions 

every year.  In Figure 1.2 the latest data are shown.  The decrease in total emissions 

between 1990 and 2011 was 18 %, of which 3 % was obtained in the last year 

(European Enviromental Agency, 2013).  Undoubtedly, and as it can be seen in Figures 

1.1 and 1.2, carbon dioxide is the main contributing gas to the total emissions. 

 

Figure 1.2: Evolution of greenhouse gas emissions in the European Union: carbon dioxide emissions 

(blue), and total greenhouse gas emissions (red).  Source: European environmental agency, web 

reference. 
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Carbon dioxide (CO2) is the main greenhouse gas, and its most important 

origin in anthropogenic activities is the combustion of fossil fuels for power 

generation (Figure 1.3) (Metz et al., 2005).  A possible way to reduce its emissions is 

therefore the use of renewable energies.  Although the latter are increasingly used, 

they are still far from being able to meet the whole world energy demand (Wall, 

2007).  It is known that none of the existing technologies, on their own, can reduce the 

emissions to the desired level.  Thus, the development of new technologies, more 

economical and efficient, has become a focus of worldwide interest (Hasib-ur-Rahman 

et al., 2010).  Among the alternatives to reduce the emission produced by fossil fuels, 

the following can be cited: improvement of the efficiency of the production plants, 

replacement of coal with gas, and improvement of the mechanisms for capture and 

storage of CO2 (Metz et al., 2005; Wall, 2007).  The increase of the process efficiency is 

certainly an inescapable target, but it is also true that good processes for CO2 capture 

and storage are absolutely necessary in the present context.  

 

Figure 1.3: Distribution of annual CO2 emissions from industrial activities with CO2 production over 

0.1 Mt/year (adapted from Metz et al., 2005). 

1.2. Carbon dioxide absorption technologies 

When developing a CO2 capture process, several aspects must be taken into account: 

the possibility of using renewable chemicals, reliability of supply to avoid stockouts, 

and the increasing cost of raw materials (D’Alessandro et al., 2010).  Furthermore, 

some physicochemical properties of CO2 can help simplify the conception and design 

of the process (Freeman and Rhudy, 2007): 
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 It is a weak acid that can be absorbed by alkaline solvents. 

 It can be adsorbed onto microporous structures and physical adsorbents. 

 It may react with simple plants and be fixed as biomass. 

 It can be removed via a freezing procedure.  

The CO2 produced in power generation plants is captured mainly through 

three different types of processes (Figueroa et al., 2008): oxy-combustion, pre-

combustion, and post-combustion (Figure 1.4). 

 

 

Figure 1.4: Carbon dioxide capture technologies (adapted from Figueroa et al., 2008). 
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Oxy-combustion is the most widely used process in the glass industry. In this 

strategy, the fuel is burned with purified oxygen (O2) mixed with recycled CO2, coming 

from previous combustion (Wall, 2007).  The flue gas (water and CO2) is then cooled 

to condense and remove water, and to get the CO2, that will be partially recycled 

(Ciferno et al., 2011). 

Pre-combustion is a method applied in natural gas plants, where capture 

occurs at high pressures.  The CO2 is recovered from a stream before burning the fuel.  

In this process, the fuel is gasified in the presence of O2 and water vapour to produce 

synthesis gas.  This is a mixture of carbon monoxide and hydrogen (H2), which is fed 

into a reactor where it is mixed with steam to produce H2 and CO2.  The latter is 

recovered, and the H2 is burned in a gas turbine to produce electricity and heat 

(Figueroa et al., 2008). 

The post-combustion process is mainly applied to CO2 produced in power 

stations from coal (Figueroa et al., 2008).  Usually the flue gas is at atmospheric 

pressure, at high temperature, saturated with water vapour, and containing 15 % of 

CO2, along with other gases (Table 1.1) (Freeman and Rhudy, 2007; D’Alessandro et 

al., 2010).  Thus, a post-combustion process must be highly selective for CO2 and 

should be able to perform at low pressures (Ramdin et al., 2012). 

Table 1.1: Typical gas composition (in a mass basis) for post-combustion processes at 313-348 K 

and atmospheric pressure. 

Compound Composition 

CO2 10-15 % 

H2O 5-10 % 

O2 3-4 % 

CO 20 ppm 

N2 70-75 % 

NOx <800 ppm 

SOx <500 ppm 

 

The most commonly used post-combustion process is the absorption with 

aqueous amines.  At industrial level, the most used amines for CO2 removal are the 

primary amines monoethanolamina (MEA) and diglycolamine (DGA), the secondary 
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amines diethanolamine (DEA) and diisopropanolamine (DIPA), and the tertiary 

amines methyldiethanolamine (MDEA) and triethanolamine (TEA) (Kohl and Nielsen, 

1997).  The absorption is achieved by forcing the gas stream with the CO2 to flow in 

countercurrent through the aqueous solution of amine, at about 40 °C (Huttenhuis et 

al., 2007).  Primary and secondary amines react rapidly, with a 1:2 stoichiometry, 

through a zwitterion mechanism to form the corresponding carbamate (Figure 1.5).  

However, the high amount of energy required to revert the carbamate formation and 

recover the gas increases substantially the cost of the process (Vaidya and Kenig, 

2007; D’Alessandro et al., 2010). 

 

Figure 1.5: Reaction scheme for primary and secondary amines with CO2. 

In contrast to the above, tertiary amines have no hydrogen attached to their 

central nitrogen atom, so the reaction for formation of the carbamate cannot be 

carried out.  The actual reaction occurring in this case is described as a base-catalysed 

hydration of CO2, and consists of a hydrolysis reaction to form bicarbonate (Figure 

1.6).  It is known that these tertiary amines are less reactive towards CO2 than the 

primary and secondary amines, but in turn they result in a better reaction 

stoichiometry (1:1).  The energy required to break the bicarbonate bonds is less than 

that required for the carbamate, and therefore the costs associated with the 

regeneration step are also lower (Vaidya and Kenig, 2007; D’Alessandro et al., 2010). 
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Figure 1.6:  Reaction scheme for tertiary amines with CO2. 

In spite of representing the main state of the art, the use of these amine-based 

processes involves several important drawbacks: 

 High operating costs due to the energy requirements of the desorption step 

(Rolker and Arlt, 2006). 

 Amines are highly corrosive; so, their concentration in the aqueous solution 

has to be kept low.  In addition, corrosion inhibitors must be used (Chinn et 

al., 2005; D’Alessandro et al., 2010). 

 Amines are susceptible of undergoing thermal and chemical degradation. 

 Due to their volatility, amines are partially lost during the process by 

evaporation, affecting the costs of the process and having a strong 

environmental impact assessment (Forsyth et al., 2004). 

An emerging technology for post-combustion processes is based on the use of 

ionic liquids as absorbents (Figueroa et al., 2008).  Ionic liquids are a family of 

substances that do typically have a good affinity for CO2, and their appealing 

properties have made them a good alternative to replace volatile organic compounds 

used in some existing technologies (Seddon and Stark, 2007). 

1.3. Ionic liquids 

1.3.1. Context and definition 

The growing concern about the impact of industrial processes on the environment has 

led scientists to seek, reduce or eliminate the use or generation of hazardous 

substances to human health and the environment.  This involves a significant 

investment of time, money and effort, as well as a need to look for new products and 

processes more environmentally friendly.  In this context, ionic liquids have attracted 



 ABSORPTION OF CARBON DIOXIDE IN IONIC LIQUIDS AND THEIR MIXTURES 

10  

 

great interest as a result of their characteristic set of properties and of the numerous 

choices that they offer. 

Ionic liquids are generally formed by an inorganic or organic anion (Welton, 

2004), and an organic, bulky, usually asymmetric cation, which may or may not have a 

cyclic structure to which alkyl chains of different lengths may be appended (Cadena et 

al., 2004) (Figure 1.7).  Strictly speaking from a lexical point of view, ionic liquid 

would be any substance formed by ions and in the liquid state.  However, the current 

utilisation of the ‘ionic liquid’ term restricts its definition, with a quite general 

consensus, to organic salts or eutectic mixtures between organic and inorganic salts 

with a melting point lower than 373 K (Freemantle, 2010). 

 

Figure 1.7: Some representative constituent cations and anions of ionic liquids ("R1", "R2", "R3" 

and "R4" represent linear or substituted alkyl chains, with our without functional groups).  Cations: 

a) 1,3-dialkylimidazolium, b) 1-alkylpyridinium, c) tetraalkylphosphonium, d) tetraalkylammonium.  

Anions: e) bis(trifluoromethylsulfonyl)amide, f) ethylsulfate; g) tetrafluoroborate. 

A ‘first generation’ of ionic liquids consisted of bulky cations (1,3-

dialkylimidazolium, 1-alkylpyridinium...) and anions mainly based on haloaluminates.  

These ionic liquids have an easily tunable Lewis acidity, but they are highly sensitive 

to water or even environmental humidity (Seddon and Stark, 2007), which is a killing 

flaw for many purposes.  This issue was overcome by the development, in the last 

decade of the 20th century, of a ‘second generation’ of ionic liquids, more stable to air 

and water (Wilkes and Zaworotko, 1992).  At the same time, these ionic liquids have 

provided a basis for the further development of ionic liquids functionalised for use in 

specific applications, constituting a ‘third generation’ of ionic liquids (Seddon and 

Stark, 2007). 

a) b) c) d)

e) f) g)
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1.3.2. Features and properties 

The properties of ionic liquids are obviously dependent on their constitutive ions.  The 

wide variety of possible cation-anion combinations enables the ‘tailoring’ of ionic 

liquids for a specific application purpose.  Together with a series of appealing 

properties for their use as solvents, this has led to the coinage of the term “designer 

solvents” (Freemantle, 1998).  In fact, Holbrey and Seddon (1999) estimated that 

about one million combinations of cation and anion could give rise to an ionic liquid. 

As a result of this tunability, there exists a wide variation of properties in 

ionic liquids.  For example, they may be acidic, basic or neutral; they can be 

hydrophilic or hydrophobic; they have different degrees of toxicity and stability; etc. 

(Freemantle, 2010).  The most attractive single property is probably their extremely 

low volatility under normal operation conditions.  Thus, the ionic liquid can be easily 

recovered by evaporation of the volatile substances mixed with it; it increases the 

safety of the working environment due to the absence of flammable vapours; and it 

can also improve the environmental friendliness of a process by avoiding the release 

of vapours to the atmosphere. 

Regarding thermophysical properties, density is the most investigated one in 

ionic liquids, and is a critical piece of information for the appropriate design of most 

processes.  In the literature, most of the data available correspond to ionic liquids 

containing an imidazolium cation, reporting values generally in the range 1.0-

1.6 g·cm-3 (Marsh et al., 2004; Freemantle, 2010).  Nevertheless, there are denser and 

less dense ionic liquids; for example, some phosphonium ionic liquids have been 

reported with a density lower than that of water (Kilaru et al., 2007). 

Other important property is the viscosity.  In general, the viscosity of ionic 

liquids depends on Van der Waals forces and hydrogen bonds present in the ionic 

liquid (Bônhote et al., 1996), and is typically higher (even by some order of 

magnitude) than in molecular solvents (Mantz and Trulove, 2008; Marsh et al., 2004).  

Although many of them behave as Newtonian fluids, ionic liquids with long alkyl 

chains tend to behave as non-Newtonian (Huddleston et al., 2001; Jacquemin et al., 

2006; Seddon and Stark, 2007). 

The surface tension is a property scarcely investigated in ionic liquids, but 

critical in the design of many operation units.  In general, the surface tension of ionic 
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liquids is lower than for water and other inorganic salt melts, but higher or close to 

the values of other organic liquids (Martino et al., 2006; Freemantle, 2010).  Its 

magnitude is governed by interactions between the ions present (Freire et al., 2007). 

Thermal stability conditions the applicability of an ionic liquid to a process 

(Freemantle, 2010).  The maximum temperature limit which can be used, as a result of 

the practically negligible vapour pressure of ionic liquids, is given by their 

decomposition temperature (Huddleston et al., 2001; Holbrey and Rogers, 2008).  The 

thermal stability of ionic liquids is limited by the strength of their heteroatom-carbon 

and heteroatom-hydrogen bond (Wassercheid and Keim, 2000).  At the other end of 

the commonly wide liquid range of ionic liquids is the melting (or crystallisation) 

temperature (Seddon and Stark, 2007), which is the minimum recommended for 

operation in a process if solidification of the ionic liquid is to be avoided.  The thermal 

behaviour of ionic liquids in this regard is complex: solidification kinetics is slow, and 

the ionic liquid can crystallise or can form a glass (below its glass transition 

temperature) (Easteal and Angell, 1970; Seddon and Stark, 2007). 

1.3.3. Mixtures of ionic liquids 

The ability to ‘design’ an ionic liquid for a specific application is a great advantage for 

application at industrial level.  However, sometimes an ion pair will not be sufficient 

to obtain the optimal fluid properties for the target application.  In this case, an 

alternative to expand the range of property sets achievable is the use of mixtures of 

ionic liquids (Canongia Lopes et al., 2005; Navia et al., 2007; Niedermeyer et al., 2012).  

Mixtures of two ‘pure’ ionic liquids, for example, can have up to four different ions, or 

can be made with two ionic liquids with common cation or with common anion.  In 

any of the cases, there will be extra interactions among the ions, as compared to the 

case of a ‘pure’ ionic liquid with just a single type of cation and a single type of anion; 

and this will result in new properties for the mixture, that are not observable when 

using any of the ‘pure’ ionic liquids that constitute it (Aparicio and Antilhan, 2012).   

The available literature on mixtures of ionic liquids focuses mainly on the 

study of their properties, in particular as a function of the composition of the mixtures, 

to see if these are behaving or not as an ideal solution.  In properties such as molar 

volume, which is related to the chemical potential, this ideal behaviour would 
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correspond to a linear variation with composition (Niedermeyer et al., 2012).  In 

mixtures of ionic liquids with common or similar ions, a behaviour close to ideal could 

be observed (Aparicio and Antilhan, 2012; Niedermeyer et al., 2012).  However, more 

complex behaviours are also possible, with important deviations from the ideal one.  

Nonetheless, studies are inconclusive as to the magnitude and direction to which the 

deviations are produced (Canongia Lopes et al., 2005; Navia et al., 2007).  In those 

cases with behaviour close to ideal, properties such as density and viscosity of the 

mixtures of ionic liquids have been fairly well predicted through mixing rules as a first 

approximation (Canongia Lopes et al., 2005; Niedermeyer et al., 2012).  On the 

contrary, prediction of the properties of the mixture from the properties of the 

constituent ‘pure’ ionic liquids becomes more challenging in the case of mixtures with 

large difference in ion sizes (and less ideal behaviour) (Canongia Lopes et al., 2005), 

With the increase of studies performed on the behaviour of the mixtures, 

there is also a growing number of applications for which they are proposed.  Most 

uses correspond to their utilisation as improved solvents for chemical synthesis, as in 

the improved DifasolTM process (Chauvin et al., 1995; Niedermeyer et al., 2012), in the 

production of highly valuable chemicals from cellulose (Long et al., 2011), or in the 

esterification catalysed by glucose lipase (Lee et al., 2008).  However, mixtures of ionic 

liquids have also been proposed for other potential applications; for example as 

electrolytes in batteries (Sugimoto et al., 2008, 2009), as stationary phase in gas 

chromatography (Baltazar et al., 2008), or as heat transfer and energy storage fluids in 

solar energy applications (Raade and Padowitz, 2011). 

1.3.4. Supported ionic liquid phases (SILPs) 

A supported ionic liquid phase (SILP) consists of an ionic liquid immobilised on a solid 

support with high surface area (Figure 1.8).  In this way, a combination of advantages 

of ionic liquids and of heterogeneous support materials is possible (Valkenberg et al., 

2002).  The immobilisation can be carried out via either the cation or the anion of the 

ionic liquid, and the SILP may be prepared by different procedures according to the 

interaction intended to occur between the ionic liquid and the support (Valkenberg et 

al., 2002; Mehnert, 2005).  Two main general strategies have been described 

(Mehnert, 2005; Riisager et al., 2006): a first one in which the ionic liquid is covalently 

bound to the support; and a second one in which the ionic liquid is just deposited on 
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the support.  Some of the supports used are: zirconium dioxide (ZrO2), titanium oxide 

(TiO2), silica (SiO2), alumina (Al2O3), etc., which will have different ability to act as 

supports depending on the specific characteristics of the ionic liquid (Menhert, 2005). 

 

Figure 1.8: Scheme of a SILP (adapted from Riisager et al., 2006). 

An example that can be taken as a precursor of the concept of SILP was 

reported by Rao and Datta (1988).  This was a eutectic mixture of palladium chloride 

with copper chloride supported on silica, to investigate its application in the partial 

oxidation of olefin.  Although the result was not as expected, it was the basis for 

further research.  The SILP term was coined 15 years later, derived from studies by 

Riisager et al. (2003) on the application of ionic liquids in catalysis.  Indeed, the main 

application investigated to date for SILPs has been catalysis in chemical reactions 

(Riisager et al., 2003, 2005, 2006; Menhert et al., 2005; Virtanen et al., 2009; Werner 

et al., 2010), in particular with regard to the possibility of utilising fixed bed reactors 

(Mehnert, 2005; Riisager et al., 2005; Haumann and Riisager, 2008).  Other potential 

applications of SILPs relate to separations (Riisager et al., 2006).  Although an 

important body of research has been carried out, some issues still remain; for 

example, their long-term stability and their recyclability (Selvam et al., 2012).   

1.4. Carbon dioxide solubility in ionic liquids 

The first studies involving ionic liquids and carbon dioxide were conducted by 

Blanchard et al. (1999), who used supercritical CO2 to extract non-volatile organic 

compounds dissolved in an ionic liquid, without cross-contamination due to the non-

solubilisation of the ionic liquid in the CO2.  Furthermore, the absorbed gas could be 
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fully recovered by simply lowering the pressure.  Following this seminal paper, an 

increasing interest evolved on the connection between CO2 and ionic liquids, giving 

rise to many studies on solubility, selectivity, interactions, etc. 

It has been shown that the CO2 absorption capacity of ionic liquids is superior 

to that of other organic compounds, although it typically remains below those 

obtained with solvents such as amines (Wilhelm and Battino, 1973; Bermejo and 

Martin, 2011).  Interestingly, the solubility of CO2 in ionic liquids is much higher than 

that of other gases such as ethylene, ethane, methane, oxygen, etc. (Anthony et al., 

2002, 2005).  The variation of the solubility with temperature is also different: 

whereas it increases for gases such as N2 or H2 with increasing temperature, it 

decreases for CO2 (Finotello et al., 2008a). 

The CO2 absorption capacity of ionic liquids, like many of their properties, is 

substantially sensitive to their water content (Seddon et al., 2000; Huddleston et al., 

2001; Blanchard et al., 2001).  This is not a problem circumscribed to hydrophilic 

ionic liquids.  In hydrophobic ionic liquids, huge differences in absorption capacity 

have been observed between ‘dry’ and water-saturated samples (Blanchard et al., 

2001; Husson et al., 2010).  The presence of water can even produce chemical 

instability of the ionic liquid, causing it to decompose (Swatloski et al., 2003; Van 

Valkenburg et al., 2005; Ficke et al., 2008).  However, there are cases where the mixing 

of the ionic liquid with water improves the level of absorption, in particular in some 

ionic liquids with a too high viscosity in dry state (Feng et al., 2010; Zhang et al., 

2013).  This absorption capacity can even be boosted when combining some specific 

ionic liquids with water in a certain proportion (Atkins et al., 2011) 

The following list summarises the main advantages that have been identified 

for ionic liquids as absorbents in CO2 capture processing: 

 The amount of energy needed is lower than that required when using 

amines (particularly in the CO2 recovery stage), in those cases in which the 

absorption of CO2 in the ionic liquid is of physical type (Huang and Rüther, 

2009). 

 Due to sufficient chemical and thermal stability, they can be typically used 

in a wide temperature range (Forsyth et al., 2004). 
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 They have a practically negligible vapour pressure, which prevents loss of 

the absorbent or contamination of the gaseous effluent (Anthony et al., 

2002). 

 Since its physicochemical properties are dependent on the chemical 

structure, the ionic liquid can be conveniently designed for the specific 

process (Freemantle, 2010). 

The latter is a key aspect in the development of ionic liquids for CO2 capture: 

their tunability.  The mechanism by which an ionic liquid will absorb the gas, and the 

extent of such absorption, will be modified with variation of the chemical structure of 

the constituent ions of the ionic liquid.   

1.4.1. Physical absorption  

Physical absorption, or physisorption, is the mechanism by which most ionic liquids 

investigated to date do absorb CO2 (Ramdin et al., 2012).  This mechanism is 

dominated by entropic effects (Carvalho and Coutinho, 2010), and is based on weak 

links between CO2 and the ionic liquid (Kolding et al., 2012).  No chemical reaction 

occurs. 

In a typical physisorption isotherm, the amount of CO2 absorbed increases 

with the system pressure.  The gas fills the free spaces in the ionic liquid, interacting 

with its ions (Cadena et al., 2004), without significantly affecting the structure of the 

ionic liquid (Jutz et al., 2011).  

The main advantage of the physical absorption is the low enthalpy of 

sorption, which implies a low energy requirement to recover the absorbed gas.  For 

this desorption, either a moderate increase in temperature or a decrease of pressure 

would suffice (Yu et al., 2012).  This method would be economically competitive with 

high concentrations of CO2 in the stream to be treated (Kolh and Nielsen, 1997), even 

when the maximum absorption capacity is not competitive with the processes 

currently applied (Anderson et al., 2007; Huang and Rüther, 2009). 

In physical absorption of CO2 in ionic liquids, the anion typically has a 

stronger influence.  Spectroscopic data (Cadena et al., 2004) and ab initio calculations 

(Raveendran and Wallen, 2002) have indicated that the anion and CO2 interact as a 
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Lewis acid-base pair, with the anion giving electrons and the oxygen atom of CO2 

receiving them (Raveendran and Wallen, 2003).  However, Van der Waals interactions 

(Anthony et al., 2005), electrostatic interactions (Raveendran and Wallen, 2002; 

Supasitmongkol and Styring, 2010) and, to a lesser degree, the contribution of 

hydrogen bonds (Palomar et al., 2011), have also been identified. 

Ionic liquids with a fluorinated anion have been usually found to lead to 

greater CO2 absorption capacities (Aki et al., 2004; Muldoon et al., 2007; Jalili et al., 

2010; Manic et al., 2012a; Yim and Lim, 2013).  The electronegativity of the fluorine 

atoms is much higher than that of the hydrogen atoms, and therefore the C-F bond can 

interact with the carbon atom of the CO2 much better than the C-H bond (Raveendran 

and Wallen, 2003; Kolding et al., 2012).  However, it must be noted that these 

fluorinated ionic liquids present the drawback, at least, of a higher cost. 

A simple variation of the nature of the core of the cation does not produce a 

significant variation in the solubility of CO2 (Muldoon et al., 2007; Scovazzo et al., 

2004; Anthony  et al., 2005).  However, this should not be generalised, since some 

cations with the capacity to establish hydrogen bonding with the anion can lead to a 

decrease of the solubility (Muldoon et al., 2007).  The most widely studied ionic 

liquids for absorption of CO2 to date have been those with an imidazolium cation 

(Blanchard et al., 2001; Anthony et al., 2005; Hong et al., 2007; Muldoon et al., 2007; 

Supasitmongkol and Styring, 2010; Chen et al., 2011), most specifically those with a 

1,3-dialkylimidazolium cation.  The latter type has a quite acidic hydrogen on the C2 

ring position, which has been seen as a potential additional mechanism to interact 

with CO2, through hydrogen bonding (Cadena et al., 2004; Ramdin et al., 2012).  The 

experimental results demonstrate that the substitution of this hydrogen with a methyl 

group causes just a slight decrease in solubility at low pressures, with the difference 

being greater at higher pressures (Aki et al., 2004; Cadena et al., 2004). 

In view of the good results obtained with fluorinated anions, some cations 

with fluorinated alkyl substituent chains were also studied, but the improvement 

achieved was lower than expected (Muldoon et al., 2007).  Another alternative tested 

for improvement of the absorption capacity was the introduction of functional groups 

in the alkyl substituent chains, for instance ether groups (Aki et al., 2004; Muldoon et 
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al., 2007).  This led to varied degrees of success, with an important influence of the 

cation core on the efficacy of the functional group substitution. 

The solubility of CO2 in ionic liquids can be associated with their free volume 

(Blanchard et al., 2001; Aki et al., 2004; Carvalho and Coutinho, 2010).  An increase in 

the absorption capacity can be achieved by increasing the free volume of the ionic 

liquid.  A common way of doing this is by adding alkyl substituent chains (optionally 

fluorinated), or increasing their length, in any of the constitutive ions (Kazarian et al., 

1996; Beckman, 2004; Shariati and Peters, 2005; Hong et al., 2007; Muldoon et al., 

2007; Manic et al., 2012a).  An optimum length of the chains was found, regardless of 

being attached to the anion  or to the cation (Raveendran and Wallen, 2003; Chen et 

al., 2011). 

Interestingly, as opposed to organic compounds, the volume expansion of 

ionic liquids upon gas absorption is low due to the coulombic interactions present 

(Cadena et al., 2004; Huang and Rüther, 2009). 

1.4.2. Chemical absorption 

Chemical absorption, or chemisorption, is the mechanism typically present in capture 

of CO2 by functionalised ionic liquids.  A chemical bond is established between the CO2 

and the functional groups incorporated in the ionic liquid structure, forming a 

chemical complex (Yokozeki et al., 2008; Huang and Rüther, 2009; Shunmugavel et al., 

2010).  The energy required to recover the CO2 has to be enough to break the chemical 

bonds previously formed, thus requiring higher process temperatures than in the case 

of physical absorption (Bates et al., 2002; Shiflett et al., 2008; Yu et al., 2012). 

The first studies of functionalised ionic liquids applied to CO2 absorption were 

performed by Bates et al. (2002).  They functionalised an imidazolium cation with a 

primary amine in one of its alkyl substituents.  The absorption achieved was similar to 

the theoretical maximum obtained with amines through a reversible reaction.  

Thereafter, numerous researchers have studied these new ionic liquids.  Galán 

Sánchez et al. (2007) functionalised another imidazolium cation with primary or 

tertiary amines, or a hydroxyl group, and observed that the primary amine 

functionalisation improves the absorption capacity more than the tertiary amine.  

Other chemical moieties used in the functionalisation of ionic liquids for absorption of 
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CO2 were amino acids, which can act as anion, as cation, or as a substituent in any of 

them (Ohno and Fukumoto, 2007).  The amino acid ionic liquids have a high 

absorption capacity, and are inexpensive and biodegradable, although they also 

present a very high viscosity. 

New structures have been recently sought to improve the stoichiometry of the 

reaction, in order to make it more competitive.  With the above mentioned ionic 

liquids, with amino group functionalisation in the substituent chains of the cation, the 

stoichiometry achieved is 1:2, like the one corresponding to the process based on 

amine solutions (Bates et al., 2002).  The mechanism established is similar to aqueous 

solutions of amines to capture CO2 (section 1.2): 

  
2 2 2

NH +CO NHCO H  

 
    
2 32 2

NHCO H+ NH NHCO NH  

Gurkan et al. (2010a) introduced the functionalisation in the anion.  They 

used the ionic liquids trihexyl(tetradecyl)phosphonium prolinate and 

trihexyl(tetradecyl)phosphonium methioninate, with which a stoichiometry of 1:1 

could be achieved as a result of only undergoing the first of the two indicated 

reactions.  Previous studies by the same research team had previously established the 

relationship between the position of the amino group and the relative energies of the 

two chemical reactions through ab initio calculations.  Their results showed that, 

when the amine is attached to the cation, the carbamate formation (second reaction) 

is favoured; whereas when bound to the anion, the formation of carbamic acid (first 

reaction) is the favoured one.  The proposed mechanism was confirmed for the anion-

functionalised ionic liquids by Fourier transform infrared (FTIR) spectroscopy. 

Besides functionalisation via appendage of specific groups to the cation or the 

anion, some ‘conventional’ ionic liquids can also lead to chemical absorption of CO2.  

This is the case, for example, or ionic liquids with an amino acid anion (Zhang et al., 

2006), or of some ionic liquids with a sufficiently basic anion (Gurau et al., 2011).  A 

paradigmatic case in the latter group is the one of 1,3-dialkylimidazolium acetates.  

The analysis of the behaviour of these ionic liquids in absorption of CO2 has led to the 

proposal of different mechanisms.  The first one was raised by Maginn (2005), after 

his study of the absorption of CO2 in 1-butyl-3-methylimidazolium acetate 
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([C4C1im][OAc]) (Figure 1.7).  This suggested mechanism consisted on the 

deprotonation of the imidazolium cation by the action of the acetate anion, thus 

enabling the CO2 to easily bind to the carbene generated (Maginn, 2005).  Although 

simple, this mechanism involved some aspects incompatible with experimental 

evidence, which could not be backed by any reasonable explanation.   

 

Figure 1.7: Mechanism of chemical absorption of CO2 in [C4C1im][OAc] proposed by Maginn (2005). 

Yokozeki et al. (2008) proposed a new mechanism where there were two 

types of chemical complexes, AB and AB2, from the binary mixture A + B (A = CO2; 

B = ionic liquid); however it was found that only the AB2 complex is dominant in 

solution.  Gurau et al. (2011) have later verified experimentally the presence of 

complex systems AB2 in mixtures 1-ethyl-3-methylimidazolium acetate 

([C2C1im][OAc]) + CO2, and they have proposed a more solid mechanism involving the 

formation of a complex acetic acid-acetate ion (Figure 1.8). 

For the above mechanism to take place, the existence of a sufficiently acidic 

proton in the cation is required.  This is available in 1,3-dialkylimidazolium cations, 

but for example it is not in pyridinium cations, leading to substantial differences in 

absorption capacity of acetate ionic liquids (Chen et al., 2011). 

Contrary to physical absorption, in a typical chemisorption isotherm two 

stages can be identified: at low pressures there is a rapid increase of the gas absorbed, 

due to the chemical absorption; subsequently there is a more gradual increase in the 
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amount absorbed with increasing pressure, where physical absorption becomes the 

predominant mechanism (Shiflett et al., 2008; Gurkan et al., 2010b). 

 

Figure 1.8: Mechanism of chemical absorption of CO2 in [C2mim][OAc] proposed by Gurau et al. 
(2011). 

1.4.3. Alternative strategies for improvement of the 
 capacity of ionic liquids to absorb CO2 

Works in the literature have mainly focused, to date, on modification of chemical 

structures of ionic liquids in order to improve their absorption capacity for CO2.  

Besides this procedure, inherent to the characteristic tunability of ionic liquids, and in 

combination with it, other alternatives may be considered. 

One option is the use of mixtures of ionic liquids.  Studies on the CO2 

absorption capacity in mixtures of ionic liquids is rather limited, and basically 

circumscribed to mixtures of imidazolium ionic liquids (Finotello et al., 2008b; 

Shifflett and Yokozeki, 2009; Lei et al., 2012).  Promising results were observed in the 

limited literature available, improving the absorption capacity of the ionic liquid with 

less capacity (Shifflett and Yokozeki, 2009; Lei et al., 2012) and even outperforming 

the capacity of the pure ionic liquid with higher absorption capacity (Finotello et al., 

2008b). 

Another alternative is the use of supported ionic liquids.  Compared to pure 

ionic liquids in their bulk liquid state, immobilised ionic liquids may improve the 

kinetics of absorption.  This aspect can be of particular importance in ionic liquids 

with relatively unfavourable transport properties.  Some studies have been carried 
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out, to date, on the use of SILPs for absorption of gases, especially supporting amino 

acid ionic liquids on silica (Zhang et al., 2006, 2009; Shunmugavel et al., 2010; Kolding 

et al., 2012).  In general, it was observed that the absorption was fast and reversible, 

with no significant loss of the absorption capacity after several absorption/desorption 

cycles.  As a favourable side effect, an improved thermal stability was observed, 

enabling the utilisation of higher temperatures to achieve complete desorption. 
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2. OBJECTIVES 

The overall objective of this Thesis is the generation of deeper knowledge on the 

possibilities of ionic liquids as the basis for improved technologies for carbon dioxide 

capture.  The accomplishment of such objective will be accompanied by the set up of 

apparatus and the development of methods for the experimental determination of gas 

absorption in ionic liquid samples and their thermal behaviour.  

Ionic liquids will be prepared and characterised, and their ability to absorb 

(and desorb) CO2 will be analysed at different pressures and, in some cases, at 

different temperatures.  Identification of the absorption mechanisms will be carried 

out.  A relationship between the structural features of the constituent ions of the 

tested ionic liquids and their absorption capacity will be also sought. 

With information available for the CO2 absorption by individual ionic liquids, 

the possibility of obtaining synergistic effects by utilising mixtures of ionic liquids will 

be explored.  Typically, an ionic liquid with a known good capacity for CO2 absorption, 

but with some issues for its individual use (such as high cost, toxicity...), will be 

combined with an ionic liquid with a lower CO2 absorption capacity, but with more 

favourable attributes from other perspectives.  This investigation will emphasise both 

the absorption capacity and the thermal (liquid range, thermal stability) and physical 

(density, viscosity, surface tension) characteristics of the liquid absorbent formed by 

the mixed ionic liquids.  A rigorous analysis of the latter, with the corresponding 

thermodynamic treatment, will allow a deeper insight on the interactions occurring in 

the mixture, and how they might affect the absorption capacity.  Knowledge of the 

properties selected is needed for a suitable design of a real process for CO2 capture 

with ionic liquids at an industrial level. 

Attempts to model the CO2 absorption isotherms by means of classical models 

of thermodynamic basis will also be carried out, for the case of single ionic liquids and 

for the mixed ionic liquid absorbents. 
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In a further approach, the option of utilising a porous support to deposit the 

ionic liquid on it as active absorbing agent will be also investigated, in particular with 

an ionic liquid presenting problems from the standpoint of transport properties. 
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3. THEORETICAL FUNDAMENTALS 

3.1. Absorption of gases 

The absorption of gases in liquids depends on multiple variables, such as the nature of 

the components, the process conditions, the absorption mechanisms, etc.  In the case 

of physisorption in non-volatile liquid sorbents, valuable information for the 

comparison of performances can be obtained via analysis of the Henry constants, 

which emanate from the so-called Henry’s law. 

 The usefulness of the experimental pressure-composition data in absorption 

isotherms is enriched if they can be continuously described by a mathematical 

expression, which would allow reliable interpolation of data and a simplified 

computerised treatment.  Among various models available in the literature, the one 

selected herein for data reduction was the Non-Random Two-Liquid (NRTL) model 

(Renon and Prausnitz, 1968). 

 Both Henry’s law and the NRTL correlation derive from the fundamentals of 

thermodynamic equilibrium in physical systems.  Thus, a brief introductory 

subsection to its basic aspects becomes necessary. 

3.1.1. Fundamentals of physical thermodynamic 
equilibrium 

A system in thermodynamic equilibrium is one in which no change, or 

tendency to change state, occurs.  In a closed system at given temperature (T) and 

pressure (P) conditions, the equilibrium state will be the state in which the total Gibbs 

free energy (G) be a minimum with respect to all possible changes in the conditions 

(Smith et al., 2005). 

In an open system with a single fluid phase, G can be written in terms of 

intensive properties: 
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       i i
i

dG V dP S dT ( dn )  (3.1) 

where V and S are the volume and the entropy of the system, and ni and μi are the 

numbers of moles and the chemical potential of component i, respectively.  The 

chemical potential of component i can be defined as: 

 
 

   
 

j

i

i P ,T ,n

dG

dn
 (3.2) 

with subscript j indicating all the species in the system but the i-th. 

In a closed system with multiple fluid phases, each of these phases can be 

considered as an open system that can transfer mass to the other(s).  Therefore, 

equation 3.1 will be applicable to each phase.  The sum of all of them determines the 

total variation of Gibbs free energy in the system (equation 3.3): 

        ( k ) ( k )

i i
k i

dG V dP S dT dn  (3.3) 

where superscript k in parentheses denotes a generic phase.  In a multiphasic system 

in equilibrium, both P and T will be uniform.  From this, and taking into account that G 

has to be a minimum, it can be mathematically deduced that the chemical potential of 

each species has to be also uniform throughout the phases of the system: 

      
i i i

... i , , ...,m(1) (2) ( )  ,   1 2  (3.4) 

with  and m being respectively the total number of phases and total number of 

components in the system.  This expression constitutes a general criterion for phase 

equilibrium at constant pressure and temperature. 

However the chemical potential does not have a direct ‘physical’ equivalent, 

and therefore it is preferred to express it in terms of another function with a clearer 

physical connection.  To this aim, the concept of fugacity (f) is defined, for any 

isothermal change in any system, so that the following expression is met for each 

component i: 

      i
i i

i

R T0

0
ln

f

f
 (3.5) 
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where superscript 0 indicates the standard state condition and R is the universal 

constant of gases.  This equation can be applied to each phase in a multiphasic system.  

From this, it can be derived that, if the system is in equilibrium, the fugacities of each 

component in all the phases of the system have to be the same: 

    
i i i

... i , , ...,m(1) (2) ( )  ,   1 2f f f  (3.6) 

In equation 3.5, the ratio of the fugacity to the standard state fugacity (fi/fi
0) is 

used.  This term is known, by definition, as the activity of the component (ai).  It 

provides an idea of how ‘active’ a substance is in relation to its standard potential at 

the state of interest and that at its standard state (Prausnitz et al., 1999).  If the 

standard state for all phases is the same, and taking into account equation 3.6, it is 

easily inferred that the activity of a component has to be the same in all phases in the 

system if such system is at equilibrium: 

    
i i i

... i , , ...,m(1) (2) ( )  ,   1 2a a a  (3.7) 

The activity coefficient for a substance i (γi) is defined as the ratio of its 

activity to its concentration (usually in molar fraction, xi): 

 
i

i
i

x

a
  (3.8) 

By combining equations 3.7 and 3.8, a practical expression for the equilibrium 

criterion in a multiphasic system can be obtained: 

         
i i i i i i

( x ) ( x ) ... ( x ) i , , ..., m1 2(1) (2) ( )  ,   (3.9) 

Besides fugacity, in the description of the equilibrium in fluid systems the 

fugacity coefficients (φi) are also frequently utilised: 

  


L
L i
i

i

f

x P
  (3.10) 
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where superscripts L and V refer to the liquid and vapour phases respectively, and the 

molar fractions of component i in the liquid phase and the vapour phase are 

respectively represented by xi and yi. 

3.1.2. Gas-liquid equilibrium.  Henry’s law 

The determination of the solubility of a gas in a solvent, as a function of the 

temperature and pressure, is of particular importance for the design of gas separation 

processes.  When the absorption process occurs via a physical mechanism, knowledge 

about the phase equilibrium behaviour is required.  From equation 3.6, for a system 

composed of a liquid phase and a vapour phase, the steady state can be expressed as: 

 L V

i i

( ) ( )f f  (3.12) 

For non-ideal systems, there exist basically two methods for the 

characterisation of this equivalence of fugacities.  In a first one, known as the phi-phi 

method (-), both phases are described by means of equations of state, and the 

fugacity coefficients are utilised: 

    L V

i i i i
x y   (3.13) 

with all symbols having been previously defined.  In the second method, known as the 

gamma-phi method (γ-), a model is used to describe the non-ideal liquid phase and 

an equation of state is used for the vapour phase, and the mathematical expression is 

as follows: 

      V

i i i i i
x f y P0   (3.14) 

The first model is interesting when suitable equations of state and reliable 

mixing rules are available for the reliable calculation of the fugacity coefficients.  The 

second model is a versatile approach that, however, presents a problem linked to the 

standard fugacity in the left hand side of equation 3.14.  Usually, in vapour-liquid 

equilibrium, the fugacity of the pure liquid at the temperature and pressure of the 

system is used as standard fugacity.  However, for solubilities of supercritical 

compounds, this standard cannot be used anymore.  Henry constants are typically 

used instead, as standard fugacities (Gmehling et al., 2012). 
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In 1803, William Henry formulated a gas law which states that, at constant 

temperature, the amount of a given gas that dissolves in a particular type and volume 

of liquid is directly proportional to the partial pressure of this gas in equilibrium with 

the liquid (Smith et al., 2005).  This law, known as Henry’s law, is often used to 

describe the solubility of a gas solute i at low pressure, and is expressed as: 

 



i

L

i
i x

i

f
H (T ,P ) lim

x0
 (3.15) 

where Hi(T,P) is the Henry constant, xi is the mole fraction of gas dissolved, and fi
L is 

the fugacity of the gas dissolved (Smith and Harvey, 2007).  

Henry’s law may be applied to a variety of gases until equilibrium pressures 

of about 5 to 10 bar, as long as the solubility of the gas does not exceed a molar 

fraction of 0.3 (Prausnitz et al., 1999).  If the solubility of the gas is notably lower, 

however, the validity of Henry’s law may expand until pressures as high as 25 bar 

(Pray et al., 1952). 

In the case of a gas absorbed in an ionic liquid, no ionic liquid will be present 

in the gas phase under usual pressure and temperature conditions, as a result of its 

negligible vapour pressure.  Thus, it may be reasonable to assume that the behaviour 

of the gas phase is nearly ideal (i.e. the fugacity coefficient of the gas is close to the 

unity), and then the fugacity is practically equal to the gas pressure (P) above the ionic 

liquid sample with absorbed gas (Anderson et al., 2008).  Therefore, Henry's law could 

be rewritten as follows: 

 



i

i x
i

P
H (T ) lim

x0
 (3.16) 

which, for low solubilities, can be rearranged as: 

  
i i

P H (T ) x  (3.17) 

This expression establishes a linear dependency of the molar fraction of gas 

solubilised with the total pressure of the system.  It can be used in the case of 

absorption of a gas into non-volatile compounds, such as ionic liquids, and at low 

pressures (Anderson, 2008), as long as the solute be not dissociated, ionised or react 

with the solvent (Felder and Rousseau, 2005).  Please note that equation 3.17 is a 
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particular case of equation 3.14 applied to the gas, with the assumption of i and i
V 

being the unity, and with yi = 1 (the ionic liquid is non-volatile and does not enter the 

gas phase), in addition to the above mentioned replacement of fi
0 with Hi(T). 

3.1.3. Correlation of equilibrium data.  The Non-Random, 
Two-Liquid (NRTL) model 

For application of the equilibrium data experimentally obtained, it is generally 

necessary to describe the behaviour of the system by means of a suitable correlation 

of the experimental data.  Among the possible correlations to be used, we can 

distinguish between those correlating directly the experimental data measured (not 

allowing extrapolation of their parameters to other multicomponent mixtures), and 

those which, in principle, can extend their applicability to multicomponent mixtures 

through the use of just binary parameters.  The latter group includes equations used 

for the correlation of the excess Gibbs energy (GE), which is related to the activity 

coefficient as follows: 

 
  

        
j

E

i

i T ,P ,n

G
ln

n R T
 (3.18) 

where subscript j refers to all the species in the system but the ith, and all other 

symbols have been defined previously.  A suitable model for GE can be combined with 

equations 3.8 and 3.18 to yield models for the correlation of equilibrium experimental 

data.  One of the most versatile and widely used models in this regard is the Non-

Random, Two-Liquid (NRTL) model. 

The NRTL model, developed by Renon and Prausnitz (1968), is a classical 

model for the correlation of equilibrium data.  It has a semi-empirical nature and can 

be applied to completely or partially miscible systems.  The NRTL model arises from 

the combination of a previous model for GE (Wilson, 1964), which had introduced the 

concept of local composition, with the two-liquid theory by Scott (1956).  An original 

innovation in the model is the introduction of an adjustable parameter characteristic 

of the non-randomness of the mixture.  This non-randomness parameter, denoted as 

αij, represents the tendency of the molecules of components i and j to not mix in a 

random fashion.  It can be interpreted as the inverse of the number of nearest 
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neighbours of a molecule in the mixture, and usually its value is in the range 0.1-0.3 

(Newsham, 1992).  Although a set of rules was devised by the authors of the model for 

theoretical estimation of the non-randomness parameter depending on the nature of 

the substances in the mixture, it is common practice to assign an empirical value to it, 

based on previous experiences in the correlation of experimental data of similar 

systems. 

The NRTL model is applicable to multicomponent systems, using only binary 

interaction parameters as adjustable parameters.  For a solution of n components, the 

NRTL equation for GE is: 
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 (3.19) 

where: 

       
ji ji ji ji ij

G exp( ),      (3.20) 
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




ji ij

ji

g g

R T
 (3.21) 

with (gji – gij) = gji being the binary interaction parameters.  These parameters have 

the same meaning as in the model by Wilson (1964); but in the NRTL model the αji 

parameter is added, complicating the calculations. 

The following is the expression for the activity coefficient of component i in a 

mixture of n components for the NRTL model: 
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 (3.22) 

The NRTL model was originally developed for systems with non-electrolyte 

components.  Different modifications were developed later to make it suitable for 

systems containing electrolytes (for instance: Cruz and Renon (1978); Chen and Evans 

(1986)).  However, in the case of systems involving ionic liquids, which are 

electrolytes by nature, the original NRTL model was found to provide suitable 

correlation of equilibrium data (particularly liquid-liquid equilibrium data) in 
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numerous occasions and for miscellaneous systems over the last decade (for instance: 

Crosthwaite et al., 2006; Chen et al., 2008; Simoni et al., 2008; García et al., 2011; and 

references therein).  In this Thesis, the original NRTL model was used for correlation 

of gas-liquid systems composed on an ionic liquid and carbon dioxide.  In particular, it 

was used to carry out the correlation of the experimental pressure-temperature-

composition data.  The correlation parameters are obtained using a computer 

program by Sørensen and Arlt (1980).  This program optimises an objective function, 

defined in terms of the pressure variable, by means of a non-linear regression method 

based on the maximum likelihood principle.  The ternary mixtures composed of CO2 

plus two ionic liquids were treated as a pseudo-binary system (i.e. with the mixture of 

ionic liquids taken as a single component), and given that no evaporation of the ionic 

liquid(s) occurs, the gas phase was assumed to have an ideal behaviour.  In the 

correlation process, the saturation pressures Psat for each i-th compound are 

calculated with Antoine’s equation (Smith et al., 2005): 

 CT

B
AP sat

i


ln
 (3.23) 

where T is the absolute temperature, and A, B, and C are empirical parameters specific 

to each substance.  In the case of CO2, the values can be found in the literature (Shiflett 

and Yokozeki, 2006); however, for the ionic liquids these values are not easy to find, 

so fictional values are arbitrarily set to lead to negligible vapour pressures. 

The non-randomness parameter of the model, , is set beforehand to typical 

values 0.1, 0.2 and 0.3, and the interaction parameters, g12 and g21 are obtained for 

each system.  These parameters are used to calculate the correlated pressures, and the 

root mean square deviations are determined from the data sets of experimental 

pressures and their corresponding correlated pressures. 

3.2. Thermophysical properties 

Knowledge and understanding of relevant thermophysical properties of a system are 

necessary for a suitable design of the corresponding process or operation unit.  The 

influence of temperature on these properties responds to different patterns, and must 

be taken into account in process design.  If working with mixtures, a further influence 
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to be analysed is that of composition.  In both cases, the development of simple 

correlations for the continuous description of discrete experimental values with a 

small number of adjustable parameters is of high interest.  In addition, a deeper 

insight on the interactions occurring in the system at a molecular level can be 

obtained.  Ideally, an expression for prediction (with sufficient accuracy) of the 

properties of a mixture from properties of its pure components would be preferred, 

but this is only possible in a limited number of occasions. 

3.2.1. Density, viscosity and surface tension 

Density, viscosity and surface tension are among the properties of greatest 

importance in the design of processes involving fluid streams.  In particular they are 

among the key properties for the design of critical parameters in absorption units, 

such as tray diameter, pressure drop, or pumping requirements. 

Density () is probably the most useful physical property, including its 

utilisation in the calculation of many other properties (Riddick et al., 1986).  It is 

defined as the mass of a substance per unit volume.  The molar volume (V) of a pure 

compound is related to its density, as follows: 

 



MW

V  (3.24) 

where MW stands for the molecular weight of the compound.  For a mixture, a 

weighted average (in a molar basis) of the molecular weights of the compounds 

involved is used in the numerator of equation 3.24. 

Dynamic viscosity (), or simply viscosity, is a measurement of the resistance 

of a fluid to flow.  Specifically, it corresponds to the force per unit area necessary to 

maintain a unit velocity gradient between two parallel planes a unit distance apart 

(Riddick et al., 1986).  It is defined via Newton’s law of viscosity: 

  


  


x
yx

v

y
 (3.25) 

where yx is the force in the x direction on a unit area perpendicular to the y direction, 

vx is the component in the x direction of the velocity vector of the fluid, and  acts as 
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the proportionality constant.  Those fluids whose resistance to flow is well described 

by equation 3.25 are referred to as Newtonian fluids. 

Surface tension () is defined as the force exerted in the plane of the surface 

of a liquid per unit length.  It is a result of the unequal forces acting upon the 

molecules at the boundary between a liquid phase and a gas phase (Poling et al., 2001; 

Freire et al., 2007). 

3.2.2. Excess and deviation properties 

Excess and deviation properties derived from thermophysical properties can provide 

valuable information on the behaviour of real mixtures. 

For any property M, the property of change of mixing M, or deviation 

property, in a solution is defined as: 

     i i
i

M M x M   (3.26) 

where M is the property of the solution, xi is the molar fraction of the i-th component, 

and Mi is the property of the i-th component.  For the particular cases of molar volume, 

viscosity and surface tension, the corresponding deviation properties can be written 

as: 

     i i
i

V V x V   (3.27) 

       i i
i

x   (3.28) 

       i i
i

x   (3.29) 

If M represents the molar (or specific) value of an extensive thermodynamic 

property (e.g. volume, internal energy, enthalpy, entropy, etc.), then the excess 

property ME is defined as the difference between the real value of the property and the 

value that it would have if it behaved as an ideal solution at the same temperature, 

pressure and composition (Smith et al., 2005): 

  E idM M M  (3.30) 
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where the superscript id indicates the value corresponding to the ideal solution 

behaviour.  In the case of molar volume, the ideal solution molar volume is given by 

(Smith et al., 2005): 

  id

i i
i

V x V  (3.31) 

where xi and Vi correspond to the molar fraction and the molar volume of the i-th 

substance.  By combination of equations 3.30 and 3.31, an expression for the excess 

molar volume VE is obtained: 

   E

i i
i

V V x V  (3.32) 

The right-hand terms in equations 3.27 and 3.32 are the same, and therefore 

VE is equal to V. 

Developing the summations in equations 3.28, 3.29 and 3.32 for the case of 

binary mixtures, the excess molar volume VE, the viscosity deviation η, and the 

surface tension deviation  can be expressed as:  

     EV V ( x V x V )
1 1 2 2

 (3.33) 

         ( x x )
1 1 2 2

 (3.34) 

         ( x x )
1 1 2 2

 (3.35) 

3.2.3. Data correlation: influence of the temperature 

In general, properties of liquids such as density, viscosity, or surface tension tend to 

decrease with increasing temperature.  However, the way in which temperature 

influences this decrement may be starkly different. 

For many liquids, the variation of density with temperature can be described, 

over a relatively broad range of temperatures, and with a reasonably good degree of 

accuracy, by means of a linear correlation.  In some other situations, the fit to a 

polynomial expression of higher order may be preferred.  For the density ρ of pure 

ionic liquids, either a linear fit (Gu and Brennecke, 2002; Jacquemin et al., 2008; Deng 

et al., 2011) or a second order polynomial fit (Gomes de Azevedo et al., 2005; 
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Jacquemin et al., 2007; Hasse et al., 2009) are the solutions typically adopted for its 

correlation with temperature: 

    a b T  (3.36) 

      a b T c T 2  (3.37) 

where T is the temperature, and a, b and c are fit parameters.  In evaluating the quality 

of the fits provided by each of the equations, the standard deviation is a valuable 

comparative parameter, defined as follows: 
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where the subscripts exp and calc indicates experimental and calculated values 

obtained for the density, m represent the number of experimental data points, and  

the number of adjustable parameters.  

The effect of temperature on the viscosity of liquids follows a clearly distinct 

pattern.  The following Arrhenius-type equation (Andrade, 1930) does often 

constitute a good approximation for the viscosity of many liquids: 

   
B

ln  A
T

 (3.39) 

where  is the liquid viscosity, T the absolute temperature, and A and B the fit 

parameters.  Rewriting this expression in a more conventional Arrhenius-like style, 

we get: 

  


 
     

a
E

exp
R T

 (3.40) 

where ∞ is the viscosity at infinite temperature, and Ea is an energy term (‘activation 

energy’).  This simple, 2-parameter approach fits acceptably well the viscosity of some 

ionic liquids.  Nevertheless, for most ionic liquids, equation 3.40 does not provide an 

accurate description of the evolution of their viscosity with temperature (Seddon et 

al., 2002; Okoturo and VanderNoot, 2004; Wilkes, 2004), and a significantly improved 

fit is obtained with a 3-parameter equation known as the Vogel-Fulcher-Tammann 
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equation (Vogel, 1921; Fulcher, 1925; Tammann and Hesse, 1926).  This equation, 

traditionally used for glass-forming liquids, is expressed as follows in its modified 

version by Cohen and Turnbull (1959): 

 
 

      

. k
A T exp

T T
0 5

0

 (3.41) 

where A, k and T0 are fitting parameters.  As originally conceived, the equation was 

totally empirical, but the development of the free volume theory (Cohen and Turnbull, 

1959) and the configurational entropy approach (Adam and Gibbs, 1965) provided it 

with some theoretical significance.  In particular, in this semi-theoretical framework, 

T0 is presented as the ‘ideal glass transition temperature’, below which the fluid 

behaves as an equilibrium glass where there is no mass transport (Angell and 

Moynihan, 1969).  Due to kinetic limitation, this ‘ideal glass transition temperature’ 

can not be reached in a finite time scale experiment; instead, the experimental glass 

transition Tg is obtained, and should have a somewhat greater value (Gibbs and 

DiMarzio, 1958). No other theoretical meaning could be clearly inferred for the other 

two parameters A and k in equation 3.41, although it is known that their values are 

strongly dependent on the choice of the value of T0 (Angell and Moynihan, 1969). 

 In a similar manner to what was mentioned above for density, the standard 

deviation would be an interesting parameter to establish a comparison of the quality 

of different fitting equations.  Nevertheless, given that the viscosity values for a liquid 

can expand over one or several orders of magnitude in moderate temperature ranges, 

a relative standard deviation is preferred: 

 

 








 
 
 
 





exp calc

calc

m
i i

i i

r m

2

1

 (3.42) 

where the subscripts exp and calc indicates experimental and calculated values 

obtained for the viscosity, m represent the number of experimental data points, and  

the number of adjustable parameters. 
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3.2.4. Data correlation: influence of the composition 

In the work with mixtures, the influence of the composition on the physical properties 

is typically studied via analysis of their excess and deviation properties rather than 

directly on the physical properties.  If the excess and deviation properties can be 

adequately correlated by any mathematical equation, the physical properties will be 

automatically correlated by means of the defining equations of excess and deviation 

properties. 

One of the most commonly used equations for correlation of excess and 

deviation properties is the polynomial expansion proposed by Redlich and Kister 

(1948).  This is an empirical algebraic expansion, fairly straightforward because it 

consists of polynomial terms of the molar fractions.  For a binary system, the Redlich-

Kister polynomial adopts the following form: 

 


    
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i
i

Q x x A ( x x )
1 2 1 2

0

 (3.43) 

where Q is the excess or deviation property, x1 and x2 are the molar fractions of 

component 1 and component 2 respectively, n is the degree of the polynomial 

expresion, and Ai are the fit coefficients of the polynomial. 

The number of parameters needed in equation 3.43 to obtain a good 

correlation of the experimental data varies according to the complexity of the mixture, 

the number of experimental points, and the quality of these data (Prausnitz et al., 

1999).  The F-test is often used to determine the appropriate number of these 

parameters.  The quality of the fitting obtained in each case can be evaluated by means 

of the root mean square deviation (rmsd), which is defined as: 

 
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( Q Q )
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2

1  (3.44) 

where subscripts exp and calc denote experimental and correlated values obtained for 

the property Q, and m represents the number of experimental data points. 
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3.2.5. Prediction of properties in binary mixtures 

Beyond correlation, the possibility of predicting the properties of mixtures from 

information on the properties of the pure components is desirable. 

Molar volume and density 

From a volumetric property perspective, mixtures with an ‘ideal behaviour’ 

would be those with a molar volume corresponding to the weighted average of the 

molar volumes of the constituent compounds; i.e., with an excess molar volume equal 

to zero.  In practice, this does not occur.  However, the magnitude of the excess molar 

volume is very much smaller than the molar volume itself.  In such cases, although 

neglecting the excess molar volume implies the loss of important information that it 

provides of the liquid medium at a molecular level, quantitatively reasonable 

estimates of the molar volume could be obtained by direct weighted average of the 

molar volumes of the pure components.  This rationale can be extended to the 

particular case of mixtures of ionic liquids (Canongia Lopes et al., 2005).  After 

estimation of the molar volume of the mixture, an approximated density is 

immediately calculable by means of equation 3.24. 

Viscosity 

For the viscosity of a mixture, estimation via a linearly weighted average of 

the viscosities of the pure components is not appropriate, since viscosity is a dynamic, 

non-molar property (Navia et al., 2008).  Current predictive estimation of the viscosity 

of mixtures is essentially based on mixing rules relating pure component viscosities to 

composition, where little theory is applicable (Poling et al., 2001).  One of the simplest 

equations used, for binary mixtures, is the so-called Arrhenius relation (Arrhenius, 

1887): 

      x x
1 1 2 2

ln ln ln  (3.45) 

where  is the viscosity of the mixture, 1 and 2 are the viscosities of the pure 

components 1 and 2 respectively, and x1 and x2 are the corresponding molar fractions.  

Grunberg and Nissan (1949) found that a better fit of experimental data could be 

achieved by introducing a binary interaction parameter.  For a binary mixture, their 

equation adopts the form: 
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         x x x x G
1 1 2 2 1 2 12

ln ln ln  (3.46) 

with G12 being the interaction parameter for species 1 and 2.  This is currently one of 

the methods of reference for estimation of the viscosity of liquid mixtures (Poling et 

al., 2001).  One of its handicaps is the need to calculate G12.  Tabulated data have been 

generated for a series of functional groups, allowing easy calculation of G12; however, 

this is more complicated for compounds containing groups not included in the tables.  

If the substances mixed are of similar nature, it may be assumed that G12 is going to be 

small.  This can be the case of mixtures of similar ionic liquids.  Taking G12 as zero, 

equation 3.46 transforms into equation 3.45. 

There are also expressions with some theoretical basis for the prediction of 

viscosity of liquid mixtures.  This is the case of the equation due to Katti and Chaudhri 

(1964), who introduced in its development the theoretical model by Eyring and co-

workers for the viscosity of a pure liquid (Powell et al., 1941).  Its ‘ideal’ version 

(assuming that the molar free energy of flow is a linear function of the molar free 

energies of the pure components of the mixture) is independent of any parameter and 

takes the form: 

         ( V ) x ( V ) x ( V )
1 1 1 2 2 2

ln ln ln  (3.47) 

where , V and x represent viscosity, molar volume and molar fraction, respectively, 

either for the mixture (if no subscript) or for any of the pure components (subscripts 

1 and 2). 

Surface tension 

 A series of methods have been proposed for the prediction of surface 

tension in mixtures.  The Macleod-Sugden method (Poling et al., 2001), one of the 

most popular methods, does also require, however, knowledge of the density for the 

specific mixture.  The method proposed by Suárez et al. (1989) requires, for non-

aqueous mixtures, knowledge of critical values.  In the case of ionic liquids, these 

critical values are difficult to determine experimentally, and very limited information 

is available at present.  Other methods are exclusively applicable to aqueous mixtures.  

Therefore, for mixtures of ionic liquids, and relying exclusively on properties of pure 

components, a possibility is to adapt equations 3.45 and 3.47, in a totally empirical 
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approach, to the case of surface tension instead of viscosity.  This adaption yields the 

following expressions: 

      x x
1 1 2 2

ln ln ln  (3.48) 

         ( V ) x ( V ) x ( V )
1 1 1 2 2 2

ln ln ln  (3.49) 

Often, a general form like the following can also be chosen: 

   
n

r r

i i
i

x  (3.50) 

where, in mixtures with a non-linear behaviour, the exponent r does typically range 

between -1 and -3 (Poling et al., 2001).  Taking r = -1, for a binary mixture, equation 

3.50 becomes: 

 
  
 

x x
1 2

1 2

1
 (3.51) 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.EXPERIMENTAL 

  PROCEDURE





4. EXPERIMENTAL PROCEDURE 

 

 49 

 

4. EXPERIMENTAL PROCEDURE 

4.1 Chemicals 

4.1.1. Carbon dioxide 

Pure carbon dioxide with a nominal purity of 99.99 %, was supplied by Praxair as a 

liquefied gas cylinder at a pressure of 200 bar.  A pressure regulator was coupled to 

this cylinder, to supply the gas at a moderate pressure to the experimental device (see 

section 4.2.1.1). 

4.1.2. Ionic liquids 

Most ionic liquids used in the experiments were synthesised and purified in-house.  

The only exception was 1-ethyl-3-methylimidazolium acetate ([C2C1im][OAc]), which 

was purchased from Iolitec, GmbH (Heilbronn, Germany), with a nominal purity 

greater than 95 %, and purified under high vacuum prior to use, as described below 

for the other ionic liquids.  The chemical structures of all the ionic liquids involved in 

this work are shown in Figure 4.1.   

4.1.2.1. Synthesis 

1-Ethyl-3-methylimidazolium ethylsulfate ([C2C1im][EtSO4]): 

 This ionic liquid was synthesised by direct alkylation of 1-methylimidazole 

(Aldrich, 99 %) with diethylsulfate (Fluka, ≥99 %) in absence of solvent, following the 

procedure reported by Ficke et al. (2008).  A three-necked round-bottomed flask with 

1-methylimidazole was placed in an ice bath, with magnetic stirring and a reflux 

condenser attached, under argon atmosphere (Praxair, 99.999 %).  The experimental 

setup is shown in Figure 4.2.  An equimolar amount of diethylsulfate was added into 

the flask slowly, to avoid a drastic increase in the system temperature due to the high 

exothermic character of the alkylation reaction.  The mixture was stirred while 
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allowing the ice in the bath to melt and to reach room temperature.  After that, the 

water bath was replaced with a silicon oil bath, and the temperature was gradually 

increased to 343 K.  The mixture was kept at these conditions for 12 h, to ensure 

completion of the reaction. 

 

 

Figure 4.1: Chemical structures of ionic liquids: a)  1-butyl-3-ethylimidazolium ethylsulfate 

([C4C2im][EtSO4]); b)  1-ethyl-3-methylimidazolium ethylsulfate ([C2C1im][EtSO4]); c)  1-

ethylpyridinium ethylsulfate ([C2py][EtSO4]); d)  1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)amide ([C2C1im][NTf2]); e) tetrahexylammonium isoleucine ([N6666][Ile]); 

f)  1-ethyl-3-methylimidazolium acetate ([C2C1im][OAc]). 

a)

c) d)

e) f)

b)
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Figure 4.2: Typical experimental setup for in-house synthesis of ionic liquids. 

The resulting liquid was subjected to soft vacuum distillation in a Büchi R-200 

rotary evaporator (Figure 4.3a) for 4 h at 343 K, for preliminary elimination of 

residual volatile compounds.  Then, it was placed in a high vacuum setup (Figure 

4.3b), attached to an Edwards RV3 vacuum pump, for ca. 48 h while being stirred and 

heated at ca. 343 K, to complete the removal of unreacted starting materials and other 

volatile impurities that might be present.  The vacuum pump provided a nominal 

vacuum of 10-3 mbar, but due to small losses throughout the setup, the vacuum to 

which the ionic liquid sample was exposed is estimated to be lower than 0.05 mbar (as 

verified with a portable Vacuubrand DCP 3000 vacuum meter).   

 

Figure 4.3: Devices for the purification stages in the synthesis of ionic liquids: a) Büchi R-200 rotary 

evaporator; b) high vacuum purification setup. 

a) b)
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1-Butyl-3-ethylimidazolium ethylsulfate ([C4C2im][EtSO4]): 

 Its synthesis was completely analogous to that described above for 

[C2C1im][EtSO4], but in this case alkylating 1-butylimidazole (Aldrich, 98 %) with 

diethylsulfate (Fluka, ≥99 %). 

1-Ethylpyridinium ethylsulfate ([C2py][EtSO4]): 

 Its synthesis was completely analogous to that described above for 

[C2C1im][EtSO4], but in this case alkylating pyridine (Riedel-de Haën, >99.5 %) with 

diethylsulfate (Fluka, ≥99 %). 

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2C1im][NTf2]): 

 The synthesis of [C2C1im][NTf2] was performed in two steps.  The first one 

consisted of the alkylation of 1-methylimidazole (Aldrich, 99 %) with an excess of 

bromoethane (Sigma-Aldrich, 98 %), in the absence of any external solvent, using the 

same procedure as in the synthesis of the ionic liquids previously described.   In a 

second step, the 1-ethyl-3-methylimidazolium bromide thus formed was dissolved in 

water, and a metathetic reaction was carried out by mixing it with an aqueous solution 

of lithium bis(trifluoromethylsulfonyl)amide (Solvionic, +99 %) in a slight 

stoichiometric excess  of ca. 5 %, at room temperature.  The mixture was left to stir for 

up to 4 h, although formation of the desired hydrophobic ionic liquid was immediately 

noticeable upon mixing of the aqueous solutions.  Dichloromethane (Fluka, 99.9 %) 

was added to facilitate the separation of [C2C1im][NTf2] (in the organic phase) from 

the spectator ions Li+ and Br- (in the aqueous phase).  The organic phase was washed 

with fresh water several times, until no precipitation was observed upon addition of 

some drops of aqueous solution of AgNO3 (Fluka, 99.0 %) to the discarded washings.  

This guaranteed the absence of spectator ions in relevant concentrations in the final 

ionic liquid sample. 

The washed organic phase was placed in a rotary evaporator for removal of 

the dichloromethane, and the purification was completed by connecting the ionic 

liquid under high vacuum, as previously described for [C2C1im][EtSO4]. 
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Tetrahexylammonium isoleucine ([N6666][Ile]): 

 The synthesis of [N6666][Ile] was carried out following the method described 

by Jiang et al. (2008).  A ca. 40 % solution of tetrahexylammonium hydroxyde 

(Aldrich) was mixed at room temperature with a slight excess of the amino acid 

L-isoleucine (Sigma-Aldrich, ≥98 %) dissolved in water, to obtain the desired ionic 

liquid via a neutralisation reaction.  The mixture was stirred for 4 h, and subsequently 

the water was removed first by rotary evaporation at 333 K and later under high 

vacuum (<0.05 mbar) for ca. 48 h while stirred and heated at ca. 333 K.  The resulting 

liquid was dissolved in ethanol (Panreac, ≥99.8 %) to precipitate the amino acid in 

excess, which was filtered off.  Finally, the ethanol was removed by rotary 

evaporation, and the purification was completed under high vacuum, as with the 

above ionic liquids. 

4.1.2.2. Characterisation 

The chemical identity and absence of relevant levels of impurities in the synthesised 

ionic liquids were confirmed by 1H and 13C nuclear magnetic resonance (NMR) 

spectroscopy (Figure 4.4a).  The corresponding spectra are presented in Appendix A. 

Water is a ubiquitous impurity in ionic liquids, which are inherently 

hygroscopic.  The water content of an ionic liquid can critically affect its properties 

and performance (Seddon et al., 2000; Anthony et al., 2001; Blanchard et al., 2001; 

Cammarata et al., 2001; Menjoge et al., 2009; Husson et al., 2010; Zhao et al., 2010; 

Stevanovic et al., 2012).  Therefore, it is important to work with ionic liquid samples 

with their water content well characterised and kept to a low level.  The water content 

of the samples herein synthesised was measured by means of the Karl-Fischer 

titration method in a Metrohm 737 KF coulometer (Figure 4.4b).  The values obtained 

were below in masss fraction of 0.04 in all cases, except for [C2C1im][OAc] and 

[N6666][Ile], for which it was 0.09 (Table 4.1). 

The ionic liquids were stored in desiccators under soft vacuum until use, to 

avoid moisture uptake from the ambient air.  For further verification of the batches 

prepared, selected physical properties of the synthesised ionic liquids were 

experimentally measured at 298.15 K, as described in section 4.2.3, and compared 
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with selected values taken from the literature.  The comparative values are reported 

in Table 4.1.  A good match between the experimental and literature data sets is 

observed. 

 

Figure 4.4: Equipment for the characterisation of ionic liquids: a) Varian Mercury 300 NMR 

spectrometer; b) Metrohm 737 KF coulometer. 

Table 4.1: Water mass fraction (ωH2O) and experimental density (), viscosity (), and surface tension 

() for the ionic liquids used.  A comparison of the experimental values of physical properties with 

literature data is provided. 

Ionic liquid ωH2O 
 / g·cm-3  / mPa·s  / mN·m-1 

Exp. Lit. Exp. Lit. Exp. Lit. 
[C2C1im][EtSO4] 0.01 1.23893 1.2392a,* 

1.2411b 
1.23763c 
1.2383d 

100.6 101.4a,* 
97.58c 

48.6 45.43b 
46.967c 

[C4C2im][EtSO4] 0.03 1.15188 --- 255.2 --- 38.8 --- 
[C2py][EtSO4] 0.02 1.26277 1.252e 

 
143.0 126.3f 

137g 
50.0 --- 

[C2C1im][NTf2] 0.01 1.51887 1.5178a,* 
1.5187b 
1.5193h 

32.55 34.24a,* 
32.46h 

36.6 35.71b 
36.68i,** 

[C2C1im][OAc] 0.09 1.09904 1.09968j 
1.0993k 
1.100l,* 

138.4 143.6k 
144.4l,* 

40.6 42.9m 

[N6666][Ile] 0.09 0.90623 --- --- --- --- --- 
a Jacquemin et al., 2006; b Wandschneider et al., 2008; c Gómez et al., 2006; d Rilo et al., 2012; 
e Gómez et al., 2010; f González et al., 2009; g Crosthwaite et al., 2005; h Schreiner et al., 2010; 
i Carvalho et al., 2008; j Fröba et al., 2010; k Freire et al., 2011; l Stevanovic et al., 2012; 
m Quijada-Maldonado et al., 2012. 
* Value calculated by means of a correlation equation presented in the referenced article. 
** Value calculated by linear interpolation from the experimental data reported in the referenced 
article. 

a) b)
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4.1.3. Supported ionic liquids phase (SILP) 

A solid-supported ionic liquid, or supported ionic liquid phase (SILP), was prepared 

with a 40 % load of the ionic liquid [N6666][Ile], using mesoporous silica gel (Fluka, 

pore size 60 Å) as a solid support.  The silica was previously calcined in a vacuum 

furnace at 873 K for 6 h. 

The ionic liquid was placed in a round-bottomed flask and dissolved in 

acetonitrile (Sigma-Aldrich, 99.8 %), with constant stirring at room temperature.  The 

silica was then added, and the heterogeneous mixture was thoroughly stirred for 24 h 

at room temperature.  Subsequently, the solvent was primarily removed in a rotary 

evaporator, and purification was completed by eliminating residual volatile species 

under high vacuum (<0.05 mbar) for ca. 24 h at room temperature. 

4.2. Equipment and procedure 

4.2.1. Absorption of carbon dioxide 

4.2.1.1. Magnetic suspension balance  

The solubility of carbon dioxide was measured using a Rubotherm magnetic 

suspension balance, Metal model (Figure 4.5), which allows the determination of 

absorption-desorption isotherms of gases with continuous monitoring of the weight, 

pressure, and temperature of the system. 

The fundamental part of this apparatus is a microbalance with an accuracy of 

±10 μg.  Its operation is based on having the sample hung from a permanent magnet, 

which is suspended by the action of another fixed electromagnet attached to the 

balance.  Thus, the weight of the sample can be transmitted without mechanical 

contact between the measuring chamber (pressurised and/or at a specific set 

temperature) and the microbalance (at ambient pressure and temperature).  A 

functioning scheme of the magnetic suspension balance, with particular attention to 

the microbalance and the measuring chamber, is shown in Figure 4.6. 
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Figure 4.5: Rubotherm magnetic suspension balance, Metal model, installed in place for operation. 

 

 

 

Figure 4.6: Functional diagram of the magnetic suspension balance. 
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The measuring chamber has a pressure-resistant jacketed metal cover which 

permits the maintenance of isothermal conditions during the solubility 

measurements.  This was achieved by circulation, through the jacket, of water from a 

Huber Ministat 230 thermostat with heating and cooling capacity for a more efficient 

temperature control. 

For determination of absorption/desorption isotherms with the magnetic 

suspension balance, the mass and volume of the small bucket where the sample is 

placed must be known.  These values were obtained via a pseudo-absorption 

experiment, using the empty bucket, with no sample.  Starting from vacuum, pressure 

was increased stepwise using an inert gas: nitrogen (Praxair, 99.995 %).  At each step, 

and at a constant temperature of 298.20.3 K, the pressure and the mass measured by 

the balance at equilibrium (mbal) were recorded.  The equilibrium criterion used was a 

variation lower than 10 g over a period of 10 min.  The mass read by the balance is 

the difference between the real mass of the empty bucket (mr) and the buoyancy 

acting on it.  Since the buoyancy is the product of the bucket volume (Vr) and the 

density of the gaseous phase (ρgas), then the following expression can be written: 

   
bal r gas r

m m V  (4.1) 

Therefore, the mass and volume of the sample bucket can be obtained by 

means of a linear fit of the plot of mbal values against gas values.  The density of the gas 

phase at each pressure-temperature conditions was obtained from the NIST 

Chemistry WebBook (web reference).  Plotting the mbal values against the density of 

nitrogen, the expected straight line with a negative slope was obtained (the mass read 

by the balance decreases with increasing gas pressure –or density– due to the 

buoyancy that acts on the sample bucket).  By means of a least-squares linear 

regression, both mr and Vr were obtained (from the intercept and from the slope of the 

linear fit, respectively). 

To carry out the measurement of samples, a pre-conditioning was required.  

This consisted of flushing the measuring chamber with inert gas (nitrogen) once the 

sample was loaded.  Then, the chamber was vacuumed and heated to 333 K for at least 

4 h, to help in further removing any residual volatiles and stabilising the weight of the 
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sample.  After this step, the chamber was cooled or heated to the temperature set for 

the experiment. 

Following pre-treatment of each sample in the chamber, the absorption curve 

was determined.  CO2 was added stepwise, at constant temperature, gradually 

increasing the pressure of the chamber until reaching a maximum pressure of ca. 

16 bar.  At each step, time was allowed for the sample to absorb gas until reaching the 

equilibrium.  The equipment monitors continuously (a reading every 20 s) the 

temperature and pressure of the system, as well as the mass in the balance.  As in the 

case of the blank test with inert gas, the equilibrium criterion was taken as a variation 

lower than 10 g in the recorded mass of the balance over a period of 10 min.  It is 

important to correct the value of the mass of sample at equilibrium for the effect of 

buoyancy: 

 


  
corr bal CO r s

m m V
2

 (4.2) 

where mcorr represents the corrected sample mass, mbal is the mass read by the 

balance, Vr+s corresponds to the volume of the sample and the bucket together, and 

CO2 is the density of the gaseous CO2.  With the corrected value of the mass, the mass 

of the sample (i.e., the ionic liquid, or SILP, plus the absorbed gas) can be calculated by 

simple subtraction of the mass of the empty bucket (mr): 

  
corr r

m m m  (4.3) 

where m is the mass of ionic liquid (or SILP) with absorbed gas.  To obtain the mass of 

the absorbed gas at each step, the mass of the starting sample (pure ionic liquid or 

SILP) must be subtracted.  By combination of equations 4.2 and 4.3, and taking into 

account that the mass of the starting sample used for calculations is measured by the 

equipment at time zero, the following expression is obtained after algebraic 

operations: 

 






  




bal CO r r

CO

s

m V m
m 0 2

2

0

1

 (4.4) 
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where m0 is the initial mass of the ionic liquid (or SILP), mbal0 is the mass given  by the 

equipment at time zero, and CO2 and s correspond to the densities of gaseous CO2 

and of the sample (ionic liquid or SILP), respectively. 

To determine the desorption curves, the temperature was kept constant and 

the pressure was decreased stepwise, in a similar fashion to the procedure for the 

determination of the absorption isotherm, allowing the absorbed gas to gradually 

desorb.  The same equilibrium criterion was maintained. 

Since it was not possible to monitor the variation of the volume of the sample 

with absorbed gas during the absorption experiments, it had to necessarily be 

assumed that no significant variation of the volume of the sample occurred upon 

absorption of the gas.  Although not strictly true, this assumption is supported by 

previous works in the literature (Blanchard et al., 2001; Cadena et al., 2004; Huang et 

al., 2005), which found that the variation caused by absorbed gas in ionic liquids was 

typically much lower than that occurring in other liquid absorbents. 

4.2.1.2. Thermogravimetric analyser 

In addition to the magnetic suspension balance, a thermogravimetric analyser was 

also used in the case of the SILP to determine its CO2 absorption capacity, specifically 

at atmospheric pressure.  A Mettler Toledo TGA/DSC 1 STARe System 

thermogravimetric analyser (TGA) was utilised (Figure 4.7), with a weight precision 

of 1 μg, and with a GC 100 gas controller coupled.  Approximately 15 mg of sample 

was placed in an alumina crucible for each run. 

 

Figure 4.7: Mettler Toledo TGA/DSC 1 STARe System thermogravimetric analyser. 
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The measurement procedure comprised three stages: drying, absorption and 

desorption.  In the first one, the samples were dried at 373.2 K in a nitrogen gas 

atmosphere for 4 h, verifying that no mass change was observed in the sample mass 

by the end of that period.  Subsequently, the absorption cycle was carried out in a CO2 

atmosphere at 298.2 K and atmospheric pressure for 200 min, enough for the sample 

to reach the equilibrium.  Total desorption for each sample was achieved by raising 

the system temperature to 353.2 K for 200 min in a nitrogen gas atmosphere.  The 

Stare software, version 11, was used for treatment of the generated data. 

4.2.2. Thermal properties 

4.2.2.1. Thermal stability 

Decomposition temperatures of the ionic liquids and SILP were measured with a TA 

Instruments Q500 thermogravimetric analyser (TGA) with a weight precision of 

±0.01 % (Figure 4.8).  All runs were carried out under an inert atmosphere of 

nitrogen.  Approximately 20 μg of sample was placed in an aluminium pan, and it was 

initially heated at a rate of 10 K/min from room temperature to 373 K, holding it at 

this temperature for 40 min to help in removing water and other volatile compounds 

that might be present.  After that, the decomposition curve was performed by heating 

the sample at a rate of 5 K/min up to 823 K. 

 

Figure 4.8: TA Instruments Q500 thermogravimetric analyser. 
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The TA Universal Analysis 2000 software, version 4.5A, was used for 

treatment of the generated thermograms.  In plots of percent of sample mass versus 

temperature, the 5 % onset decomposition temperature was calculated (Figure 4.9) as 

the temperature at the intersection of the extrapolation of the original base line (after 

the isotherm at 373 K) and a tangent line to the point where a 5 % loss of the initial 

mass occurred (considering as initial mass the one right after the isothermal step at 

373 K). 

  

Figure 4.9:  Schematic representation of the calculation of the 5% onset decomposition temperature 

on a TGA thermogram. 

4.2.2.2. Phase transitions 

Phase transitions in condensed phase were determined in a TA Instruments Q2000 

differential scanning calorimeter (DSC), equipped with a TA Refrigerated Cooling 

System 90 unit, and with a temperature accuracy of ±1 K (Figure 4.10).  A nitrogen 

atmosphere was used in all runs.  Approximately 15 μg of sample was encapsulated in 

aluminium hermetic pans with lids of the same material, and loaded into the 

measuring chamber by means of an autosampler.  Heating and cooling rates of 

2 K/min were used, completing two full cycles, in the temperature range 183-293 K.  

Although the lower temperature limit in the ramps was 183 K, the baseline was 

observed to lose its stability below ca. 200 K, due to cooling limitations of the 

apparatus.  Therefore, the portion of the thermograms below 200 K was 
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systematically disregarded in the identification of possible thermal events of the 

samples.   

 

Figure 4.10: TA Instruments Q2000 differential scanning calorimeter. 

 The same software than for the TGA curves (see section 4.2.2.1) was used in 

evaluating the DSC curves.  Due to the peculiar behaviour of ionic liquids, often 

showing widely spread peaks in the thermograms without a well defined onset, the 

reported melting and crystallisation temperatures were considered at the maxima of 

the peaks.  A schematic representation of a typical DSC thermogram is presented in 

Figure 4.11. 

 

Figure 4.11: Schematic representation of a typical DSC curve (one cooling-heating complete cycle).  

Tc: crystallisation temperature; Tm: melting temperature. 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

180 200 220 240 260 280 300 320 340 360

H
e

a
t

F
lo

w
/ 

(W
/g

)

Temperature / K

Tc

Tm



4. EXPERIMENTAL PROCEDURE 

 63 

 

4.2.3. Physical properties 

4.2.3.1. Density 

Density measurements were made in an Anton Paar DMA 5000 oscillating U-tube 

density meter, with an uncertainty of ±3  10-5 g·cm-3, and with automatic correction 

for the viscosity of the sample (Figure 4.12).  The temperature was controlled 

internally with high precision (±0.001 K), assisted by two integrated Pt 100 platinum 

thermometers.  For calibration of the apparatus, air and degassed bidistilled water 

were used.  To obtain each value, two measurements were performed with different 

samples, at atmospheric pressure.  If the results did not agree within the uncertainty, 

new samples were prepared and measured. 

 

Figure 4.12: Anton Paar DMA 5000 density meter. 

4.2.3.2. Viscosity 

Kinematic viscosities were determined using micro-Ubbelohde capillary viscometers 

manufactured by Schott (Figure 4.13).  Depending on the viscosity of the sample, 

capillaries of different diameters (from type I to type III according to the classification 

by the manufacturer) were used, in order to provide flow times of the samples in the 

specified range for each capillary.  All capillaries were calibrated and certified by the 

manufacturer.  Flow times were measured with a resolution of 0.01 s in a Lauda PVS1 

Processor Viscosity system, which incorporates a photoelectric cell.  The temperature 
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was kept constant during the measurements by means of a Lauda D20 KP clear view 

thermostat with a Lauda DLK 10 through-flow cooler attached (Figure 4.13). 

 

Figure 4.13: Example of micro-Ubbelohde capillary viscometer (left), and PVS1 systems partially 

immersed in a Lauda D20 KP clear view thermostat with a Lauda DLK 10 through-flow cooler 

attached (right). 

Measurements were repeated at least three times for each sample; or a fourth 

time if a standard deviation greater than 0.1 s was achieved, discarding the outlier 

value.  An average flow time was concluded in each case, and the kinematic viscosity 

was obtained multiplying this value by the calibration constant of the capillary 

viscometer used.  Dynamic viscosities () were finally calculated as: 

      (4.5) 

where  is the density, and  is the kinematic viscosity.  An uncertainty of ±0.5 % is 

estimated for the values of .  The viscosity of two different samples was determined, 

and the results were checked to meet the reported uncertainty; otherwise, new 

samples were prepared for additional measurements. 

4.2.3.3. Surface tension 

Surface tensions were measured in a Krüss K11 tensiometer by means of the 

Wilhelmy plate method (Figure 4.14).  A platinum ‘plate’ folded in a cylindrical shape 

(Krüss accessory reference PL22), especially adapted to perform measurements with 

small amounts of sample, was used (Figure 4.14).  The dimensions of the plate were 
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2.0 mm long  1.0 mm height  0.1 mm width.  The sample containers were of 

cylindrical form, made of glass, with a diameter of 30 mm, sufficient to avoid influence 

of wall effects in the measurements.  The temperature of the samples, monitored by a 

built-in thermometer with a resolution of 0.1 K, was kept constant by means of an oil 

bath controlled by circulating water from a Selecta Frigiterm cryogenic thermostat.  

The surface tension measurements were made for two different samples, and an 

uncertainty of 0.3 mN·m-1 was typically obtained. 

 

Figure 4.14: Krüss K11 tensiometer (left) and platinum ‘plate’ folded in a cylindrical shape to perform 

measurements with smaller amounts of sample (right). 
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5. RESULTS AND DISCUSSION 

An important number of ionic liquids have been tested to date for their capacity to 

absorb carbon dioxide.  Most studies on the matter have focused on individual ionic 

liquids in pure liquid state, establishing connections and trends between their 

constitutive ions (and associated structural features) and the mechanism and extent 

to which they can absorb CO2.  Still, there is substantial room for improvement of the 

knowledge on the tailoring of the structures of the constitutive ions of the ionic liquids 

to get enhanced absorbance of CO2.  Thus, in this Chapter, a first session is devoted to 

individual ionic liquids and the measurement of their CO2 absorbance capacity. 

Beyond the use of individual ionic liquids, alternative strategies are explored 

here.  The second section in this Chapter is devoted to the use of mixtures of ionic 

liquids.  Their absorption capacity as well as their thermal and physical properties are 

characterised as a function of composition, and in some case as a function of 

temperature.  A final section investigates a preliminary attempt to use an amino acid-

based ionic liquid supported on a mesoporous material to capture CO2. 

5.1. Pure ionic liquids 

The absorption of carbon dioxide with ionic liquids has received significant attention 

from researchers over the last decade.  Inherent advantages associated with the 

common characteristics of ionic liquids would be obvious for a gas absorption process 

in which they were used as absorbents, and they have been found to favourably 

absorb CO2.  Although many different ionic liquids have been tested so far, there is still 

an important lack of knowledge in this regard.  In this Thesis, some ionic liquids were 

re-tested, in order to validate the technologies and experimental setups implemented; 

and additional ionic liquids were investigated, to expand knowledge on their 

behaviour and potentialities for CO2 capture processes.  The set of ionic liquids used 

herein comprises: [C2C1im][NTf2], [C2C1im][EtSO4], [C4C2im][EtSO4], [C2py][EtSO4], and 
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[C2C1im][OAc].  This set allows analysis of the variation of the cation, of the anion, and 

of the absorption mechanism. 

Absorption of CO2 in all pure ionic liquids, at 298.2 K and as a function of 

pressure, is plotted in Figure 5.1 (the corresponding numerical data, in a molar basis, 

are listed in Table 5.1, and in a mass basis in Table B.1 in Appendix B).  Two types of 

isotherm shapes are observed, as a result of the different mechanisms involved for the 

absorption of CO2.  For [C2C1im][OAc] a typical curve of chemical absorption is 

observed, with a rapid increase in the absorbed fraction of CO2 at the initial pressures 

due to chemical absorption, followed by a strong decrease in the slope when physical 

absorption starts to prevail (Shiflett and Yokozeki, 2009; Stevanovic et al., 2012).  In 

the case of the other ionic liquids investigated, typical curves of physical absorption 

are observed, with an approximately steady increment of the absorbed CO2 with 

increasing pressure (Blanchard et al., 2001; Jalili et al., 2010).   

 

Figure 5.1: Molar fraction solubility of CO2 (xCO2 ), as a function of pressure (P ), in pure ionic liquids at 

298.2 K.  Ionic liquid: , [C2C1im][OAc], this work; ◊, [C2C1im][OAc] (Yokozeki et al., 2008);▼, 

[C2C1im][NTf2], this work; ▽,[C2C1im][NTf2], (Yokozeki et al., 2008); ■, [C4C2im][EtSO4], this work; 

▲,[C2C1im][EtSO4], this work; , [C2C1im][EtSO4], (Jalili et al., 2010) (at 303 K); ●, [C2py][EtSO4], 

this work. 

Among the ionic liquids that absorb CO2 exclusively via a physical mechanism, 

the absorption values in the ionic liquids containing the [EtSO4]- anion are notably 

lower than for [C2C1im][NTf2].  The latter is a widely studied ionic liquid with a high 
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absorption capacity, which was chosen as a sort of benchmark ionic liquid in the 

construction of the mixtures of ionic liquids (see section 5.2 below).  Its absorption 

capacity is higher as a result of having a fluorinated anion.  However, it must be noted 

that, due to its higher molecular weight when compared to the [EtSO4]-based ionic 

liquids, the difference in CO2 solubility in a mass basis is not as large as it is in a molar 

basis. 

Table 5.1: Numerical values for the absorption/desorption of CO2 (in molar fraction, xCO2 ) for pure 

ionic liquids, at 298.2 K. 

[C2C1im][OAc] [C2C1im][NTf2] [C4C2im][EtSO4] [C2C1im][EtSO4] [C2py][EtSO4] 
P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 

Absorption process 
0.94 0.2606 1.06 0.0174 0.91 0.0035 1.00 0.0034 1.09 0.0019 
2.00 0.2916 2.08 0.0538 2.03 0.0147 2.00 0.0182 1.99 0.0082 
2.96 0.3075 3.00 0.0717 3.05 0.0214 3.10 0.0231 3.04 0.0113 
4.00 0.3213 3.98 0.1043 4.00 0.0322 3.99 0.0358 4.04 0.0215 
5.00 0.3284 5.05 0.1359 5.00 0.0475 5.05 0.0409 4.97 0.0268 
6.04 0.3255 6.07 0.1609 6.00 0.0557 6.04 0.0486 5.95 0.0324 
7.02 0.3273 7.45 0.1944 6.97 0.0723 6.98 0.0561 7.05 0.0432 
9.04 0.3308 8.84 0.2282 8.99 0.1014 9.03 0.0737 8.84 0.0549 

11.04 0.3347 10.65 0.2681 10.96 0.1284 10.98 0.0903 10.91 0.0732 
12.89 0.3391 12.72 0.3044 13.01 0.1441 13.04 0.1152 12.02 0.0886 
14.86 0.3432 15.52 0.3554 14.92 0.1806 14.87 0.1382 13.65 0.1059 
16.39 0.3396   16.43 0.1917 16.46 0.1460 14.66 0.1174 

Desorption process 
14.03 0.3468 13.89 0.3314 14.01 0.1889 14.05 0.1447 13.26 0.1086 
12.00 0.3433 11.81 0.2962 12.12 0.1813 12.02 0.1396 11.68 0.1047 
10.03 0.3397 9.87 0.2595 10.03 0.1566 9.82 0.1182 10.01 0.0964 
8.01 0.3362 7.90 0.2191 8.02 0.1409 8.03 0.1019 8.02 0.0818 
6.00 0.3324 6.00 0.1754 5.99 0.1116 6.08 0.0839 6.06 0.0662 
4.98 0.3303 5.00 0.1514 5.00 0.1035 5.00 0.0757 4.96 0.0546 
4.00 0.3281 4.01 0.1254 4.02 0.0913 4.00 0.0662 4.04 0.0474 
2.99 0.3258 2.99 0.0978 3.02 0.0768 3.00 0.0546 3.00 0.0364 
2.03 0.3228 2.00 0.0681 1.97 0.0666 2.01 0.0415 2.02 0.0265 
1.02 0.3184 1.04 0.0383 1.02 0.0569 1.02 0.0359 1.02 0.0167 

 

Regarding the comparative performance of the three [EtSO4]-based ionic 

liquids, it can be seen that the ionic liquid with longer alkyl substituent chains in the 

cation, [C4C2im][EtSO4], presents the highest absorption capacity.  This result is in 

agreement with multiple studies which concluded that, for analogous ion cores, an 

increase in the length of the alkyl substituent leads to an increase in the CO2 

absorption capacity of the ionic liquid (Anderson et al., 2007; Jacquemin et al., 2007; 

Raeissi and Peters, 2009; Manic et al., 2012a).  The absorption capacity of 

[C2py][EtSO4] is just a little lower than that of [C2C1im][EtSO4], and this small 
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difference is in agreement with the findings by other authors (Anderson et al., 2007; 

Muldoon et al., 2007; Supasitmongkol and Styring, 2010; Yunus et al., 2012).  The 

slightly favourable capacity of [C2C1im][EtSO4] is possibly related to its greater steric 

effects with generation of a greater free volume, as a result of having two short alkyl 

substituents in the cation instead of the only cationic substituent of [C2py][EtSO4].  On 

the other hand, it must be noted that [C2py][EtSO4] would be cheaper and more 

biodegradable than [C2C1im][EtSO4] (Docherty et al., 2007; Ramdin et al., 2012), which 

might compensate the difference in absorption capacity when implemented in a real, 

scaled-up CO2 absorption process. 

Figure 5.1 also shows comparative data from the literature for [C2C1im][OAc], 

[C2C1im][NTf2] and [C2C1im][EtSO4] (Yokozeki et al., 2008; Jalili et al., 2010).  There is 

a relatively good agreement between the data series in this work and the 

corresponding ones in the literature.  The slight deviations observed in the case of 

[C2C1im][NTf2] and [C2C1im][EtSO4] can be attributed to different water content of the 

ionic liquid samples, or also different (although similar) temperature of the 

absorption experiment.  However, in the case of [C2C1im][OAc], the behaviour 

observed in this work is different than that described in the literature at the highest 

pressures.  While in the work by Yokozeki et al. (2008) the CO2 absorbed keeps 

growing with increasing pressure, in the experimental data corresponding to this 

Thesis, the CO2 solubility reaches a plateau and no further increase is observed with 

increasing pressure.  This characteristic behaviour is likely due to the formation of the 

solid product resulting from the chemical reaction between the gaseous CO2 and the 

liquid [C2C1im][OAc] (Figure 1.8 in section 1.4.2), which may hinder the ability to 

physically absorb CO2 once the chemical reaction is nearly completed.  This was 

previously reported by Gurau et al. (2011), who showed that the solidification of the 

product of reaction between [C2C1im][OAc] and CO2 depends on the water content 

present in the system (Figure 5.2).  For the reaction at 20 bar, the resulting product 

was totally solidified up to water contents of 3 %.  In the conditions of the 

experimental work carried out herein (at lower pressures of CO2, but also at notably 

lower water contents below 0.2 %), probably a total solidification occurs, thus 

explaining the hindering of the absorption capacity above mentioned. 
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No previous data were found in the literature for comparison with 

[C2py][EtSO4] and [C4C2im][EtSO4].  The absorption of CO2 in these ionic liquids is 

herein reported for the first time. 

 

Figure 5.2: Resulting products from the reaction between [C2C1im][OAc] and CO2 at 20 bar, for 

various initial water contents (Gurau et al., 2011).  The numbers written in the vials indicate the 

corresponding water contents, in mass percentage. 

5.2. Mixtures of ionic liquids 

The CO2 absorption capacity of the single ionic liquids investigated differs 

significantly.  The acetate ionic liquid and the one with the fluorinated anion exhibit a 

good absorption capacity, whereas those based on the ethylsulfate anion have a 

poorer capacity.  However, the latter present other advantages over the former, for 

example in terms of cost, toxicity, or prevention of solidification upon absorption of 

CO2.  Given this dichotomy, it was decided to explore combinations of ionic liquids, 

hoping to find some synergies from the two constitutive single ionic liquids of the 

mixtures.  Mixtures of ionic liquids exhibiting only physical absorption of CO2 were 

explored, as well as mixtures in which physical and chemical absorption of the gas are 

combined.  

5.2.1. Mixtures with physical absorption of CO2 

The ionic liquid [C2C1im][NTf2] has a good absorption capacity for CO2 among ionic 

liquids.  Also, it presents some favourable thermal and physical properties, such as 

good thermal stability and relatively low viscosity.  However, it also possesses a 

relatively high toxicity, and its cost is (and will likely remain) too high for practical 

application in a process at an industrial scale. 
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 In searching for possible synergies to minimise its downsides, the 

investigation of the performance of mixtures of [C2C1im][NTf2] with different 

ethylsulfate ionic liquids (which do also absorb CO2 physically) has been carried out.  

Ethylsulfate ionic liquids are much cheaper and less toxic (Holbrey et al., 2002).  In 

particular, the following three mixtures have been explored: [C2C1im][NTf2] + 

[C2C1im][EtSO4], [C2C1im][NTf2] + [C4C2im][EtSO4], and [C2C1im][NTf2] + [C2py][EtSO4].  

The performance of the mixtures has been evaluated both from the perspective of CO2 

absorption capacity and from the point of view of thermal and physical properties.  

5.2.1.1. Analysis of the CO2 absorption capacity 

The absorption/desorption of CO2 was investigated in the pure ionic liquids and in 

their mixtures at molar fractions (in a CO2-free basis) of approximately 0.25, 0.50, and 

0.75, at 298.2 K.  The results obtained are shown in Figures 5.3 to 5.5, and the 

corresponding numerical data, in a molar basis, are listed in Tables 5.2 to 5.4 (the 

results in mass fraction are reported in Tables B.2 to B.4 in Appendix B). 

 

 

Figure 5.3: Carbon dioxide absorption (in molar fraction, xCO2 ), at 298.2 K, in the mixture 

[C2C1im][NTf2] + [C2C1im][EtSO4] as a function of pressure, at different molar ratios: ▼, 100:0 (pure 

[C2C1im][NTf2]); , 75:25; , 49:51; +, 25:75; ▲, 0:100 (pure [C2C1im][EtSO4]).  Solid lines 

correspond to the NRTL correlation for each series. 
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Table 5.2: Numerical values for the absorption/desorption of CO2 (in molar fraction, xCO2 ) in the 

mixture [C2C1im][NTf2] + [C2C1im][EtSO4], at 298.2 K and as a function of the composition ratio (x’1 

stands for the molar fraction of [C2C1im][NTf2] in a CO2-free basis). 

[C2C1im][NTf2] (1) + [C2C1im][EtSO4] (2) + CO2 

x’1 = 0.0000 x’1 = 0.2526 x’1 = 0.4918 x’1 = 0.7452 x’1 = 1.0000 
P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 

Absorption 
1.00 0.0034 1.00 0.0112 1.01 0.0162 1.01 0.0206 1.06 0.0174 
2.00 0.0182 2.02 0.0190 2.03 0.0302 2.07 0.0474 2.08 0.0538 
3.10 0.0231 3.00 0.0312 3.01 0.0533 3.00 0.0670 3.00 0.0717 
3.99 0.0358 3.99 0.0511 4.00 0.0720 4.01 0.0901 3.98 0.1043 
5.05 0.0409 5.02 0.0614 5.01 0.0960 5.01 0.1187 5.05 0.1359 
6.04 0.0486 6.02 0.0692 6.03 0.1142 6.01 0.1385 6.07 0.1609 
6.98 0.0561 6.98 0.0861 7.96 0.1526 7.03 0.1613 7.45 0.1944 
9.03 0.0737 8.93 0.1183 9.97 0.1851 8.92 0.2014 8.84 0.2282 

10.98 0.0903 10.95 0.1449 11.94 0.2200 10.99 0.2387 10.65 0.2681 
13.04 0.1152 12.91 0.1682 13.97 0.2488 12.92 0.2740 12.72 0.3044 
14.87 0.1382 14.92 0.1895 16.39 0.2872 15.04 0.3010 15.52 0.3554 
16.46 0.1460 16.34 0.2042   16.24 0.3243   

Desorption 
14.05 0.1447 14.13 0.1929 13.02 0.2495 14.08 0.3003 13.89 0.3314 
12.02 0.1396 12.02 0.1700 10.91 0.2214 12.07 0.2691 11.81 0.2962 
9.82 0.1182 10.07 0.1485 9.05 0.1920 10.01 0.2355 9.87 0.2595 
8.03 0.1019 8.09 0.1272 7.03 0.1611 7.99 0.1989 7.90 0.2191 
6.08 0.0839 6.09 0.1023 6.01 0.1414 6.06 0.1603 6.00 0.1754 
5.00 0.0757 5.01 0.0958 4.92 0.1220 5.01 0.1392 5.00 0.1514 
4.00 0.0662 3.94 0.0753 4.00 0.1047 4.02 0.1168 4.01 0.1254 
3.00 0.0546 3.03 0.0623 2.99 0.0852 3.00 0.0924 2.99 0.0978 
2.01 0.0415 1.99 0.0487 2.01 0.0657 1.87 0.0654 2.00 0.0681 
1.02 0.0359 1.04 0.0331 1.02 0.0460 1.04 0.0448 1.04 0.0383 

 

 

Figure 5.4: Carbon dioxide absorption (in molar fraction, xCO2 ), at 298.2 K, in the mixture 

[C2C1im][NTf2] + [C4C2im][EtSO4] as a function of pressure, at different molar ratios: ▼, 100:0 (pure 

[C2C1im][NTf2]); , 74:26; , 49:51; +, 24:76; ■, 0:100 (pure [C4C2im][EtSO4]).  Solid lines 

correspond to the NRTL correlation for each series. 
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Table 5.3: Numerical values for the absorption/desorption of CO2 (in molar fraction, xCO2 ) in the 

mixture [C2C1im][NTf2] + [C4C2im][EtSO4], at 298.2 K and as a function of the composition ratio (x’1 

stands for the molar fraction of [C2C1im][NTf2] in a CO2-free basis). 

[C2C1im][NTf2] (1) + [C4C2im][EtSO4] (2) + CO2 

x’1 = 0.0000 x’1 = 0.2361 x’1 = 0.4885 x’1 = 0.7434 x’1 = 1.0000 
P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 

Absorption 
0.91 0.0035 1.04 0.0085 0.92 0.0076 1.00 0.0209 1.06 0.0174 
2.03 0.0147 2.02 0.0144 2.01 0.0264 2.08 0.0403 2.08 0.0538 
3.05 0.0214 2.99 0.0316 3.07 0.0434 2.99 0.0657 3.00 0.0717 
4.00 0.0322 3.99 0.0528 4.02 0.0707 4.02 0.0905 3.98 0.1043 
5.00 0.0475 5.02 0.0693 5.10 0.0967 5.00 0.1141 5.05 0.1359 
6.00 0.0557 7.02 0.1041 5.99 0.1063 5.99 0.1328 6.07 0.1609 
6.97 0.0723 8.88 0.1260 7.07 0.1308 7.04 0.1566 7.45 0.1944 
8.99 0.1014 10.99 0.1610 9.01 0.1636 8.98 0.1963 8.84 0.2282 

10.96 0.1284 12.92 0.1837 10.85 0.2009 10.96 0.2294 10.65 0.2681 
13.01 0.1441 14.97 0.2163 13.09 0.2344 12.98 0.2667 12.72 0.3044 
14.92 0.1806 16.23 0.2266 15.03 0.2556 15.02 0.2967 15.52 0.3554 
16.43 0.1917   16.31 0.2796 16.21 0.3165   

Desorption 
14.01 0.1889 14.07 0.2228 14.13 0.2626 14.14 0.2921 13.89 0.3314 
12.12 0.1813 12.06 0.2001 12.29 0.2350 12.08 0.2616 11.81 0.2962 
10.03 0.1566 10.04 0.1746 9.99 0.2004 10.08 0.2282 9.87 0.2595 
8.02 0.1409 8.03 0.1512 8.15 0.1716 8.08 0.1925 7.90 0.2191 
5.99 0.1116 6.05 0.1170 6.02 0.1331 6.06 0.1578 6.00 0.1754 
5.00 0.1035 5.01 0.1012 4.96 0.1164 5.03 0.1330 5.00 0.1514 
4.02 0.0913 3.99 0.0872 4.00 0.1004 4.04 0.1115 4.01 0.1254 
3.02 0.0768 3.01 0.0688 2.98 0.0773 3.00 0.0882 2.99 0.0978 
1.97 0.0666 2.01 0.0499 2.01 0.0574 2.00 0.0632 2.00 0.0681 
1.02 0.0569 1.04 0.0325 1.03 0.0384 1.05 0.0418 1.04 0.0383 

 

 

Figure 5.5: Carbon dioxide absorption (in molar fraction, xCO2 ), at 298.2 K, in the mixture 

[C2C1im][NTf2] + [C2py][EtSO4] as a function of pressure, at different molar ratios: ▼, 100:0 (pure 

[C2C1im][NTf2]); , 74:26; , 49:51; +, 25:75; ●, 0:100 (pure [C2py][EtSO4]).  Solid lines correspond 

to the NRTL correlation for each series. 
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Table 5.4: Numerical values for the absorption/desorption of CO2 (in molar fraction, xCO2 ) in the 

mixture [C2C1im][NTf2] + [C2py][EtSO4], at 298.2 K and as a function of the composition ratio (x’1 

stands for the molar fraction of [C2C1im][NTf2] in a CO2-free basis). 

[C2C1im][NTf2] (1) + [C2py][EtSO4] (2) + CO2 

x’1 = 0.0000 x’1 = 0.2505 x’1 = 0.4894 x’1 = 0.7441 x’1 = 1.0000 
P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 

Absorption 
1.09 0.0019 1.01 0.0081 1.53 0.0160 1.00 0.0163 1.06 0.0174 
1.99 0.0082 2.01 0.0165 2.56 0.0343 2.04 0.0407 2.08 0.0538 
3.04 0.0113 3.02 0.0291 3.10 0.0450 3.02 0.0650 3.00 0.0717 
4.04 0.0215 3.95 0.0417 4.09 0.0646 3.99 0.0861 3.98 0.1043 
4.97 0.0268 5.00 0.0536 5.09 0.0780 4.99 0.1068 5.05 0.1359 
5.95 0.0324 6.02 0.0632 6.01 0.0921 5.97 0.1293 6.07 0.1609 
7.05 0.0432 6.95 0.0733 6.99 0.1052 6.97 0.1486 7.45 0.1944 
8.84 0.0549 8.79 0.1062 9.00 0.1357 8.95 0.1848 8.84 0.2282 

10.91 0.0732 10.88 0.1202 10.95 0.1670 10.95 0.2230 10.65 0.2681 
12.02 0.0886 12.58 0.1535 13.15 0.2021 12.88 0.2550 12.72 0.3044 
13.65 0.1059 14.38 0.1737 15.08 0.2212 14.89 0.2875 15.52 0.3554 
14.66 0.1174 16.17 0.1882 16.34 0.2354 16.51 0.3049   

Desorption 
13.26 0.1086 13.92 0.1801 15.31 0.2350 14.10 0.2821 13.89 0.3314 
11.68 0.1047 12.01 0.1575 13.57 0.2218 12.2 0.2528 11.81 0.2962 
10.01 0.0964 10.00 0.1415 11.62 0.1960 9.15 0.2045 9.87 0.2595 
8.02 0.0818 7.94 0.1144 9.53 0.1676 7.96 0.1833 7.90 0.2191 
6.06 0.0662 5.95 0.0889 7.55 0.1397 6.10 0.1479 6.00 0.1754 
4.96 0.0546 4.99 0.0845 6.52 0.1240 5.00 0.1267 5.00 0.1514 
4.04 0.0474 4.02 0.0657 5.51 0.1094 4.01 0.1052 4.01 0.1254 
3.00 0.0364 3.00 0.0524 4.52 0.0928 3.00 0.0826 2.99 0.0978 
2.02 0.0265 2.02 0.0376 2.48 0.0578 1.99 0.0586 2.00 0.0681 
1.02 0.0167 1.02 0.0316 0.98 0.0319 1.04 0.0346 1.04 0.0383 

 

In all three studied mixtures, an increase of the concentration of 

[C2C1im][NTf2] in the ionic liquid mixture causes an increase of its absorption capacity.  

Also, this capacity is increased with increasing pressure.  In any case, none of the 

mixtures investigated exhibits a higher absorption capacity than pure [C2C1im][NTf2]. 

A quantitative analysis and useful insight for comparison is possible by means 

of the corresponding Henry constants (H) from the absorption isotherms.  It was 

considered that, up to a pressure of ca. 10 bar, a fairly linear dependency of solubility 

with pressure (as presumed by Henry’s law) could be reasonably assumed.  Thus, the 

H values (Table 5.5) were calculated as the inverse of the slopes of the linear fits of the 

solubility-versus-pressure plots using the data points within the mentioned pressure 

range (equation 3.17). 
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Tabla 5.5: Henry constants (H ) calculated from the CO2 absorption data at 298.2 K in the mixture 

[C2C1im][NTf2] + [Cat][EtSO4] (where [Cat]+ = [C2C1im]+, [C4C2im]+, or [C2py]+), as a function of the 

composition of the ionic liquid mixture. 

[EtSO4]
-
 ionic liquid x[C2C1im][NTf2] H / bar 

[C2C1im][EtSO4] 0.0000 119 
 0.2526 74.1 
 0.4918 49.8 
 0.7452 43.5 
 1.0000 37.0 
   

[C4C2im][EtSO4] 0.0000 82.6 
 0.2361 60.6 
 0.4885 50.3 
 0.7434 44.6 
 1.0000 37.0 
   

[C2py][EtSO4] 0.0000 145 
 0.2505 81.3 
 0.4894 62.9 
 0.7441 46.9 
 1.0000 37.0 

 

As expected, the values for the Henry constants decrease as the concentration 

of [C2C1im][NTf2] increases, which is in agreement with the increase observed in the 

absorption capacity.  A strong effect on the Henry constants is observed when 

replacing the anion [NTf2]- by [EtSO4]-.  The variation of the cation also has a influence, 

as well as the variation of the length of their alkyl substituent chains. 

In Figure 5.6, the H values are plotted as a function of the composition of the 

binary mixtures.  A synergistic effect on the absorption capacity of the intermediate 

compositions can be inferred from the nonlinear behaviour with a convex shape.  The 

latter means that a larger amount of CO2 can be solubilised than the amount 

corresponding to the ‘ideal’ linear average of the solubilities in the pure ionic liquids.  

Thus, the mixtures of ionic liquids, even though always having a lower CO2 absorption 

capacity than the pure ionic liquid with the highest capacity of the two 

([C2C1im][NTf2]), might be a preferred absorbent in a real process if it led, 

simultaneously, to a better combination of sustainability and more favourable 

processing properties. 
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Figure 5.6:  Henry constants, at 298.2 K, for CO2 absorption in the mixtures of ionic liquids, as a 

function of the molar fraction of [C2C1im][NTf2].  Ionic liquid mixtures: , [C2C1im][NTf2] 

+[C2py][EtSO4]; ▲, [C2C1im][NTf2] +[C2C1im][EtSO4]; ■, [C2C1im][NTf2] +[ C4C2im][EtSO4]. 

In the concentration range with predominance of the ethylsulfate ionic 

liquids, there is an appreciable difference between the values.  The system with 

[C2py][EtSO4] exhibits higher H values, in accordance with the poorer capacity of this 

ionic liquid to absorb CO2.  Interestingly, when the molar fraction of [C2C1im][NTf2] 

becomes greater than ca. 0.60, there is practically no difference among the calculated 

H values for the different systems at a given concentration. 

Other relevant aspect to evaluate is the reversibility of the capture of the gas 

through regeneration of the solvent regeneration. For this, the desorption curves were 

performed at the same temperature condition and decreasing the pressure.  Selected 

series (each pure ionic liquid, plus the 50:50 mixtures) of the systems are plotted in 

Figures 5.7 to 5.9. 

At the end of each desorption series, the conservation of the chemical 

identities of the ions involved was verified by 1H NMR and 13C NMR spectroscopy.  

Thus, all ionic liquids (or the mixture of ionic liquids) were confirmed to be stable and 

not to undergo decomposition in the presence of CO2, in particular at the conditions of 

temperature and pressure applied in the experiments reported herein. 
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Figure 5.7:  Comparison of absorption (solid symbols) and desorption (open symbols) isotherms for 

CO2 in [C2C1im][NTf2] + [C2C1im][EtSO4].  Solvent: ▼, pure [C2C1im][NTf2]; ,  49:51 mixture in molar 

basis; ▲, pure [C2C1im][EtSO4]. 

 

 

Figure 5.8: Comparison of absorption (solid symbols) and desorption (open symbols) isotherms for 

CO2 in [C2C1im][NTf2] + [C4C2im][EtSO4].  Solvent: ▼, pure [C2C1im][NTf2]; , 49:51 mixture in molar 

basis; ■, pure [C4C2im][EtSO4]. 
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Figure 5.9: Comparison of absorption (solid symbols) and desorption (open symbols) isotherms for 

CO2 in [C2C1im][NTf2] + [C2py][EtSO4].  Solvent: ▼, pure [C2C1im][NTf2]; , 49:51 mixture in molar 

basis; ●, pure [C2py][EtSO4]. 

As can be seen in Figures 5.7 to 5.9, practically all the gas is desorbed upon 

lowering the pressure.  In the case of the fluorinated ionic liquid, this desorption is 

complete; however, in ethylsulfate ionic liquids a small portion is retained in the ionic 

liquid (see numerical values in Table 5.2 to 5.4). 

Not so favourable is that, for a given pressure, the solubility of CO2 in the ionic 

liquid during the desorption process is higher than that of the absorption process.  

This occurs over the investigated range for all mixtures, including pure ionic liquids.  

The difference between the trajectories of the absorption and desorption isotherms 

varies with the composition of the mixture.  Thus, for the ionic liquid with a higher 

absorption capacity ([C2C1im][NTf2]), this difference is smaller and therefore the 

absorption and desorption paths are almost coincident.  As the concentration of the 

[EtSO4]-based ionic liquid is increased, however, such difference gets larger and 

larger, reaching the maximum difference for the pure [C4C2im][EtSO4] (Figure 5.8, 

square symbols). 

As in the previous case, at the end of each desorption series, preservation of 

the chemical structure of the ionic liquids was verified by 1H NMR and 13C NMR. 

The absorption data obtained were correlated by means of one of the most 

widely used thermodynamic models: the NRTL model (Renon and Prausnitz, 1968).  
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The binary mixture of ionic liquids was treated as a single pseudo-component, thus 

treating the system composed by CO2 and the two ionic liquids as a pseudo-binary 

system.  The correlation parameters were obtained using a computer program that 

runs a non-linear regression method to diminish deviations among experimental and 

correlated pressures (Sørensen and Arlt, 1980).  The correlation was made using 

values of 0.1, 0.2 and 0.3 for the non-randomness parameter of the model, .  The best 

fit of the experimental data was achieved for  = 0.3.  For each system, the 

corresponding binary interaction parameters (g12 and g21) are reported in Table 

5.6.  The low values of the root mean square deviations are indicative of a good 

correlation of the experimental data, as it can be visually observed in Figures 5.3 to 

5.5. 

Table 5.6:  Binary interaction parameters, g12 and g21, of the NRTL model with  = 0.3 for 

correlation of the pressure-composition data at 298.2 K of the pseudo-binary system CO2 

(1) + ([C2C1im][NTf2] + [Cat][EtSO4]) (2), where [Cat]+ = [C2C1im]+, [C4C2im]+, or [C2py]+.  The root 

mean square deviations (rmsd) calculated from experimental and correlated pressure data are shown 

in the column on the right for each case. 

[EtSO4]
-
 ionic liquid x[C2C1im][NTf2] g12 / J·mol-1 g21 / J·mol-1 rmsd(P) / bar 

[C2C1im][EtSO4] 0.0000 1751.04 345.70 0.33 
 0.2526 -320.20 1072.41 0.38 
 0.4918 1761.76 -2007.87 0.26 
 0.7452 2493.85 -3036.04 0.25 
 1.0000 2866.34 -3676.93 0.24 
     

[C4C2im][EtSO4] 0.0000 -2305.28 4717.99 0.47 
 0.2361 -2633.95 4387.15 0.50 
 0.4885 1623.32 -1827.61 0.39 
 0.7434 2339.62 -2840.74 0.23 
 1.0000 2866.34 -3676.93 0.24 
     

[C2py][EtSO4] 0.0000 -2138.33 5852.83 0.32 
 0.2505 -1347.45 2751.85 0.35 
 0.4894 2563.86 -1813.73 0.29 
 0.7441 1130.77 -1896.21 0.24 
 1.0000 2866.34 -3676.93 0.24 

5.2.1.2. Thermal properties 

The thermal phase transitions of the pure ionic liquids, as well as of their binary 

mixtures over the entire composition range, were determined from the DSC 

thermograms and are reported in Table 5.7 (see figures C.1 to C.3 in Appendix C).  

Although the samples were cooled down to 183 K in each cycle, the signal baseline lost 
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stability below ca. 200 K (due to limitation of the apparatus used).  Thus, the portions 

of the thermograms below this temperature were systematically disregarded (even 

though some glass transitions seemed to lie there, which would be in accordance with 

literature data for the pure ionic liquids (Holbrey et al., 2002; Fredlake et al., 2004; 

Tokuda et al., 2005; Crosthwaite et al., 2005; Domańska et al., 2007; Domańska and 

Laskowska, 2008; Liu et al., 2010). 

For the pure ionic liquid [C2C1im][NTf2], a crystallisation temperature of 

232 K and a melting temperature of 257 K were found.  This is in very good agreement 

with literature values for the melting temperature (Ngo et al., 2000; Fredlake et al., 

2004; Tokuda et al., 2005), and in fair agreement with the (more erratic) 

crystallisation temperature (Ngo et al., 2000; Holbrey et al., 2002; Tokuda et al., 2005; 

Domańska et al., 2007; Domańska and Laskowska, 2008; Liu et al., 2010).  

In the thermogram obtained for pure [C2C1im][EtSO4] no thermal event was 

identified, in accordance with literature data, where only a glass transition below the 

lower temperature limit for reliable measurements of our apparatus was reported 

(Domańska et al., 2007; Domańska and Laskowska, 2008).  Nevertheless, in its 

mixtures with [C2C1im][NTf2], signals were observed in the samples with 

[C2C1im][NTf2] molar fractions of 0.90 (cold crystallisation at 232 K, and melting 

temperature 254 K) and of 0.80 (cold crystallisation at 243 K, and melting 

temperature 252 K).  For all the other samples, with a [C2C1im][NTf2] molar fraction of 

0.70 or lower, no thermal events were identified. 

In the thermograms of mixtures of [C2C1im][NTf2] with [C4C2im][EtSO4], the 

melting and crystallisation peaks of pure [C2C1im][NTf2] were suppressed even for the 

sample with a [C2C1im][NTf2] molar fraction as high as 0.88.  It must be noted, 

nevertheless, that a tiny ‘melting peak’ was consistently observed in all these samples, 

at ca. 242 K.  Since its associated specific enthalpy was well below 1 J/g in all cases, 

and this was far much lower than 54 J/g found for pure [C2C1im][NTf2], we suspect 

that this tiny peak might be the result of some slight contamination of the 

[C4C2im][EtSO4] batch used in the preparation of the DSC samples.  Because of this 

concern, we preferred not to display it in Table 5.7, where the melting and 

crystallisation temperatures of pure [C2C1im][NTf2] are the only reported transition 

temperatures of the entire [C2C1im][NTf2] + [C4C2im][EtSO4] system. 
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Table 5.7: Melting temperature (Tm ) and crystallisation temperature (Tc ) (determined by DSC at 

heating/ cooling rates of 2 K·min-1, in the range 200-293 K), as well as decomposition temperatures 

at the 5 % onset (Td,5%onset ) (determined at a heating rate of 5 K·min-1), for binary mixtures of 

[C2C1im][NTf2] + ([C2C1im][EtSO4] or [C4C2im][EtSO4] or [C2py][EtSO4]), at different molar fraction 

compositions of [C2C1im][NTf2] (x1).  Cold crystallizations are indicated with an asterisk (*). 

x1 Tm (K) Tc (K) Td,5%onset (K) 

[C2C1im][NTf2] (1) + [C2C1im][EtSO4] (2) 

0.0000 - - 438 

0.1042 - - 430 

0.2008 - - 428 

0.2975 - - 432 

0.4356 - - 431 

0.4940 - - 433 

0.5982 - - 431 

0.6996 - - 500 

0.8000 252 243* 542 

0.9025 254 232* 570 

1.0000 257 232 597 

[C2C1im][NTf2] (1) + [C4C2im][EtSO4] (2) 

0.0000 - - 431 
0.0917 - - 424 
0.1810 - - 427 
0.2981 - - 421 
0.3791 - - 429 
0.4755 - - 433 
0.5798 - - 475 
0.6746 - - 517 
0.7767 - - 530 
0.8829 - - 560 
1.0000 257 232 597 

[C2C1im][NTf2] (1) + [C2py][EtSO4] (2) 

0.0000 289 245*, 258* 419 
0.1024 241  415 
0.1981 242  418 
0.2987 247  417 
0.4002 245  429 
0.5001 245  462 
0.6034 244  511 
0.7060 243  519 
0.8195 243  548 
0.9169 249 226* 569 
1.0000 257 232 597 
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In the case of the [C2C1im][NTf2] + [C2py][EtSO4] system, [C2py][EtSO4] was 

found to have a relatively high melting point (289 K) if compared with similar ionic 

liquids such as [C2C1im][EtSO4], which shows a glass transition at 187 K (or 208 K) 

(Holbrey et al., 2002; Domańska et al., 2007), or 1-ethyl-3-methylpyridinium 

ethylsulfate ([C2C1py][EtSO4]), whose glass transition occurs at 202 K (Crosthwaite et 

al., 2005).  The higher degree of symmetry of the [C2py]+ cation, with respect to 

[C4C2im]+ and [C2C1im]+, is likely the reason for such a substantial increase in the 

liquefaction temperature (Bonhôte et al., 1996; Ngo et al., 2000).  Interestingly, 

however, all studied mixtures of [C2py][EtSO4] with [C2C1im][NTf2] have a lower 

melting point than either of the pure ionic liquids.  Although no clear trend is 

observed, it can be speculated that this could be indicative of a eutectic behaviour.  In 

any case, it is remarkable how the observed melting temperature drops by near 50 K 

by addition of 10 mol% [C2C1im][NTf2] to the ionic liquid [C2py][EtSO4], thus enabling 

its use as a fluid in engineering processes in a notably wider temperature range. 

In addition to the melting point at 289 K, two cold crystallisation peaks were 

registered for [C2py][EtSO4] at the measuring conditions used.  Crystallisation 

temperatures for the mixtures of [C2py][EtSO4] and [C2C1im][NTf2] were only 

observed for the most concentrated one in [C2C1im][NTf2] (90 mol%), during the DSC 

heating ramps; i.e., as cold crystallisation.  For all other mixtures studied, no 

crystallisation peak appeared in the thermograms. 

The DSC results described are indicative that, for any of the systems studied, 

the addition of the ethylsulfate ionic liquids in small to moderate amounts to 

[C2C1im][NTf2] causes the mixture to remain liquid at temperatures well below the 

melting temperature of pure [C2C1im][NTf2], even lower than 200 K. 

Table 5.7 also includes the decomposition temperatures for the onset at a 

5 wt% decomposition (Td,5%onset).  The values obtained for the pure ionic liquids are 

more conservative than others available in the literature (Ngo et al., 2000; Holbrey et 

al., 2002; Domańska and Laskowska, 2008; Liu et al., 2010).  It must be taken into 

account that Td,5%onset is reported herein, instead of the simple onset decomposition 

temperature.  Also, in this work a heating rate of 5 K·min-1 was used, which is lower 

than the more usual rate of 10 K·min-1 used in most literature references to date.   
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Figure 5.10: TGA plots for pure ionic liquids (from right to left, at a 50% decomposition): 

[C2C1im][NTf2] (red), [C2C1im][EtSO4] (orange), [C4C2im][EtSO4] (green), [C2py][EtSO4] (blue), and 

[C2C1im][OAc] (purple). 

The analysis of the evolution of the sample weight with temperature in the 

TGA thermograms of the pure ionic liquids (Figure 5.10) highlights the influence of 

the anion in the ionic liquid stability.  For example, [C2C1im][NTf2] is thermally stable 

up to a temperature 150 K higher than [C2C1im][EtSO4] (Table 5.7), in a similar way to 

what was previously reported by Ngo et al. (2000).  Analogously, the increase of the 

alkyl substituent chains in the cation improves the thermal stability of the ionic liquid 

(as deduced from the comparison of [C2C1im][EtSO4] and [C4C2im][EtSO4]), although 

not as markedly as in the previous case with variation of the anion. 

A detailed analysis of the thermograms in Figure 5.10 reveals a 2-step 

decomposition for the ionic liquids with the ethylsulfate anion.  Typically, a first step 

with little degradation is apparent, while most of the degradation happens in a second, 

much more prominent step.   

The experimental decomposition temperatures for the three binary mixtures 

of ionic liquids are plotted as a function of molar fraction of [C2C1im][NTf2] in Figure 

5.11 (the TGA plots are plotted in Figures C.5 to C.7 in Appendix C).  The thermal 

stability of the samples rich in the ethylsulfate ionic liquid remains quite constant 
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(Td,5%onset in the range 420-440 K), up to [C2C1im][NTf2] molar fractions of ca.  0.5-0.6.  

With further enrichment in [C2C1im][NTf2], the mixtures become increasingly stable, 

up to the almost 600 K that correspond to the pure [C2C1im][NTf2]. 

  

Figure 5.10:  Decomposition temperatures of the mixtures [C2C1im][NTf2] + [C2C1im][EtSO4] (▲), 

[C2C1im][NTf2] + [C4C2im][EtSO4] (■), and [C2C1im][NTf2] + [C2py][EtSO4] (●), as a function of the 

molar fraction of [C2C1im][NTf2] in the mixture, as determined by TGA. 

 From the curves in Figures C.5 and C.7 in Appendix C, it can be observed 

that the onset temperatures for the two steps of decomposition of the ethylsulfate 

ionic liquids in the mixtures do not remain constant and equal to those of each pure 

ionic liquid, as it would be likely to happen if both ionic liquids in the mixture were 

decomposing separately (Niedermeyer et al., 2012). 

5.2.1.3. Physical properties 

Density, viscosity and surface tension were determined, at 298.2 K and atmospheric 

pressure, for all the mixtures over the entire compositional range (Table 5.8).  The 

experimental results for density are shown in Figure 5.12.  With an increase in the 

molar fraction of [C2C1im][NTf2], and since it is denser than the ethylsulfate ionic 

liquids, the density of the mixtures increases in all cases.  Only a small difference is 

observed between the values of the [C2C1im][NTf2] + [C2py][EtSO4] and the 

[C2C1im][NTf2] + [C2C1im][EtSO4] mixtures, with the latter having a slightly lower 
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density.  This may be possibly connected with the greater number (two versus one) of 

alkyl substituent chains in the cation of the ethylsulfate ionic liquid.   A stronger 

difference in density is observed with the [C2C1im][NTf2] + [C4C2im][EtSO4] mixture.  

By comparison of the latter with the mixture comprising the [C2C1im][EtSO4] ionic 

liquid, it can be deduced that, for these systems, the density decreases as the length of 

the alkyl substituent chains increase, as reported by other researchers (Huddleston et 

al., 2001; Fredlake et al., 2004; Jacquemin et al., 2008). 

 

Figure 5.12: Density (ρ ) of mixtures of ionic liquids, at 298.15 K, as a function of the molar fraction of 

[C2C1im][NTf2].  Ionic liquid mixtures: ▲, [C2C1im][NTf2] + [C2C1im][EtSO4]; ■, 

[C2C1im][NTf2] + [C4C2im][EtSO4]; ●, [C2C1im][NTf2] + [C2py][EtSO4]. 

 In Figure 5.13, the variation of viscosity of the mixtures of ionic liquids with 

the molar fraction of [C2C1im][NTf2] is shown.  The viscosity of the pure ethylsulfate 

ionic liquids increases in the order: [C2C1im][EtSO4] < [C2py][EtSO4] < [C4C2im][EtSO4]; 

and so does the viscosity of the corresponding mixtures that comprise them, in 

particular when the mixtures are richer in the ethylsulfate ionic liquid.  At molar 

fractions of [C2C1im][NTf2] above ca. 0.50, there is practically no difference between 

the viscosity of the mixtures of [C2C1im][NTf2] + [C4C2im][EtSO4] and [C2C1im][NTf2] + 

[C2py][EtSO4]; and the difference of these with the mixture of [C2C1im][NTf2] + 

[C2C1im][EtSO4] becomes also negligible above [C2C1im][NTf2] molar fractions of ca. 

0.70.  For all three mixtures, the viscosity decreases with an increase of the 

concentration of [C2C1im][NTf2], which is less viscous than any of the ethylsulfate ionic 

liquids with which it has been mixed. 
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Table 5.8: Density (ρ ), viscosity ( ) and surface tension ( ) for the binary systems [C2C1im][NTf2] + 

[C2C1im][EtSO4], [C2C1im][NTf2] + [C4C2im][EtSO4], and [C2C1im][NTf2] + [C2py][EtSO4], at 298.15 K 

and atmospheric pressure, for different molar fractions of [C2C1im][NTf2] (x[C2C1im][NTf2]). 

x[C2C1im][NTf2] ρ (g·cm-3)  (mPa·s) σ (mN·m-1) 

[C2C1im][NTf2] + [C2C1im][EtSO4] 
0.0000 1.23893 100.6 48.6 
0.1042 1.27418 95.64 43.1 
0.2008 1.30567 90.59 41.7 
0.2975 1.33588 84.09 40.7 
0.4356 1.37683 72.51 39.5 
0.4940 1.39328 67.82 39.0 
0.5982 1.42177 58.31 38.5 
0.6996 1.44801 50.07 37.8 
0.8000 1.47287 43.24 37.4 
0.9025 1.49692 37.67 37.1 
1.0000 1.51887 32.55 36.6 

[C2C1im][NTf2] + [C4C2im][EtSO4] 

0.0000 1.15188 255.2 38.8 
0.1009 1.18955 212.4 37.7 
0.2031 1.22758 172.4 37.0 
0.2951 1.26158 139.9 36.4 
0.4027 1.30145 109.3 36.0 
0.5013 1.33766 87.58 35.9 
0.5989 1.37349 69.65 35.9 
0.7113 1.41449 57.11 36.0 
0.8024 1.44748 47.55 36.0 
0.8996 1.48263 39.59 36.2 
1.0000 1.51887 32.55 36.6 

[C2C1im][NTf2] + [C2py][EtSO4] 
0.0000 1.26277 143.0 50.0 
0.0859 1.29124 141.2 45.4 
0.1761 1.31985 130.0 42.9 
0.3119 1.35919 111.4 41.1 
0.4084 1.38523 96.44 39.8 
0.5599 1.42348 74.90 39.3 
0.6145 1.43655 67.81 38.9 
0.6717 1.44980 60.42 38.7 
0.7665 1.47110 50.78 38.1 
0.8742 1.49356 41.09 37.4 
1.0000 1.51887 32.55 36.6 
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Figure 5.13: Viscosity (η ) of mixtures, at 298.15 K, as a function of the molar fraction of 

[C2C1im][NTf2].  Ionic liquid mixtures: ▲, [C2C1im][NTf2] + [C2C1im][EtSO4]; 

■, [C2C1im][NTf2] + [C4C2im][EtSO4]; ●, [C2C1im][NTf2] + [C2py][EtSO4]. 

Surface tension values for the three mixtures of ionic liquids studied are 

plotted in Figure 5.14 as a function of composition.  For the mixtures of [C2C1im][NTf2] 

+ [C2C1im][EtSO4] and [C2C1im][NTf2] + [C2py][EtSO4], the surface tension decreases 

with an increase in the concentration of [C2C1im][NTf2].  This is consistent with the 

fact of [C2C1im][NTf2] having a lower surface tension.  For the mixture of 

[C2C1im][NTf2] + [C4C2im][EtSO4], interestingly, the series presents intermediate 

compositions for which the surface tension is lower than any of the pure constituent 

ionic liquids of the mixture.  The surface tension of [C4C2im][EtSO4] is notably lower 

than that of [C2C1im][EtSO4] or [C2py][EtSO4], due to its longer alkyl side chains (Law 

and Watson, 2001; Freire et al., 2007; Kilaru et al., 2007; Freemantle, 2010); and 

therefore the difference between the surface tension of pure ionic liquids is smaller in 

the mixture of [C2C1im][NTf2] and [C4C2im][EtSO4] than in the other two. 

A more detailed analysis of the mixing effect on these physical properties was 

carried out by examining the excess molar volume, the viscosity deviation, and the 

surface tension deviation, as explained in section 3.2.2. 
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Figure 5.14: Surface tension ( ) of mixtures, at 298.2 K, as a function of the molar fraction of 

[C2C1im][NTf2].  Ionic liquid mixtures: ▲, [C2C1im][NTf2] + [C2C1im][EtSO4]; 

■, [C2C1im][NTf2] + [C4C2im][EtSO4]●, [C2C1im][NTf2] + [C2py][EtSO4]. 

The excess molar volume, VE, is the difference between the observed and the 

ideal volume of a mixture and it is calculated with equation 3.33.  The values obtained 

for the studied systems are relatively large in the context of typical values for excess 

molar volumes (Table 5.9).  However, even for the longest molar volumes, such values 

are lower than 1 cm3·mol-1, and therefore much smaller in absolute terms than the 

molar volumes V of the mixtures (calculated as the quotient of the composition-

weighted average formula weight divided by the density).  The excess volume is 

positive over the entire composition range, with a maximum between 0.3-0.6 

[C2C1im][NTf2] molar fraction (Figure 5.15).  This is indicative of a lower level of 

attractive interaction in the mixed ionic liquids, compared to the interactions 

occurring in the pure ionic liquids.  This causes an increase of the free volume upon 

mixing of the pure ionic liquids.  Since the free volume has been connected in the 

literature with the capacity of an ionic liquid for the physical absorption of CO2 

(Anderson et al., 2007; Blanchard et al., 2001), the positive excess molar volume may 

be, at least in part, a reason for the synergistic absorption capacity effect described in 

section 5.2.1.1 (see Figure 5.6).  In the case of the mixture with the pyridinium ionic 

liquid, the absolute values of VE are less than 0.50 cm3·mol-1.  This is probably due to 

the [C2py]+ cation having only one alkyl substituent versus the two alkyl substituents 
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of the [C2mim]+, and therefore [C2py]+ contributing less to the generation of free 

volume within the mixture (Canongia Lopes et al., 2005; Niedermeyer et al., 2012). 

 

Figure 5.15: Excess molar volume (VE ) of mixtures, at 298.15 K, as a function of the molar fraction of 

[C2C1im][NTf2].  Ionic liquid mixtures: ▲, [C2C1im][NTf2] + [C2C1im][EtSO4]; 

■, [C2C1im][NTf2] + [C4C2im][EtSO4]; ●, [C2C1im][NTf2] + [C2py][EtSO4]. 

The viscosity deviation for the mixtures is reported as a function of the 

composition in Table 5.9.  In the mixtures of [C2py][EtSO4] and of [C2C1im][EtSO4] with 

[C2C1im][NTf2], the  values switch from positive to negative at a [C2C1im][NTf2] 

molar fraction of 0.4-0.6, approximately (Figure 5.16).  However the system with 

[C4C2im][EtSO4] exhibits much larger viscosity deviations (in absolute value), and 

always negative.  This is consistent with the reports by Navia et al. (2008), who stated 

that the largest deviations are obtained for those mixtures of ionic liquids with more 

dissimilar structures, particularly in terms of lengths of alkyl substituent chains.  An 

absolute maximum viscosity deviation of almost 60 mPa·s is achieved in this system 

for a molar fraction of [C2C1im][NTf2] of 0.5-0.6, which accounts for more than 40 % 

deviation of the value that would results from the weighted average of the viscosities 

of the individual ionic liquids constituting the mixture. 

The viscosity deviations of lowest magnitude in absolute value correspond to 

the system [C2C1im][NTf2] + [C2C1im][EtSO4], likely due to the fact of both ionic liquids 

sharing exactly the same cation.  This is in contrast with the mixture of [C2C1im][NTf2] 
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+ [C2py][EtSO4], where, although the [C2py]+ cation has a similar size to [C2C1im]+, 

there are four different ions involved. 

Table 5.9: Excess molar volume (VE ), viscosity deviation ( ) and surface tension deviation ( ) for 

the binary systems [C2C1im][NTf2] + [C2C1im][EtSO4], [C2C1im][NTf2] + [C4C2im][EtSO4], and 

[C2C1im][NTf2] + [C2py][EtSO4], at 298.15 K and atmospheric pressure, for different molar fractions of 

[C2C1im][NTf2] (x[C2C1im][NTf2]). 

[EtSO4]
-
 ionic liquid x[C2C1im][NTf2] VE/ cm3·mol-1 / mPa·s / mN·m-1 

[C2C1im][EtSO4] 0.0000 0.000 0.00 0.0 
 0.1042 0.429 2.15 -4.2 
 0.2008 0.655 3.67 -4.5 
 0.2975 0.774 3.75 -4.3 
 0.4356 0.798 1.56 -3.8 
 0.4940 0.783 0.85 -3.7 
 0.5982 0.670 -1.58 -2.9 
 0.6996 0.548 -2.92 -2.4 
 0.8000 0.377 -2.92 -1.6 
 0.9025 0.203 -1.51 -0.7 
 1.0000 0.000 0.00 0.0 
     

[C4C2im][EtSO4] 0.0000 0.000 0.00 0.0 
 0.1009 0.315 -20.4 -0.9 
 0.2031 0.537 -37.7 -1.4 
 0.2951 0.691 -49.6 -1.8 
 0.4027 0.747 -56.3 -1.9 
 0.5013 0.754 -56.0 -1.8 
 0.5989 0.691 -52.2 -1.6 
 0.7113 0.573 -39.7 -1.3 
 0.8024 0.441 -29.0 -1.0 
 0.8996 0.250 -15.3 -0.6 
 1.0000 0.000 0.00 0.0 
     

[C2py][EtSO4] 0.0000 0.000 0.00 0.0 
 0.0859 0.169 7.65 -3.4 
 0.1761 0.243 6.50 -4.8 
 0.3119 0.397 2.88 -4.8 
 0.4084 0.455 -1.37 -4.8 
 0.5599 0.439 -6.14 -3.3 
 0.6145 0.406 -7.17 -2.9 
 0.6717 0.366 -8.23 -2.5 
 0.7665 0.239 -7.38 -1.8 
 0.8743 0.155 -5.14 -1.0 
 1.0000 0.000 0.00 0.0 
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Figure 5.16: Viscosity deviation ( ) of mixtures, at 298.15 K, as a function of the molar fraction of 

[C2C1im][NTf2].  Ionic liquid mixtures: ▲, [C2C1im][NTf2] + [C2C1im][EtSO4]; 

■, [C2C1im][NTf2] + [C4C2im][EtSO4]; ●, [C2C1im][NTf2] + [C2py][EtSO4]. 

A similar analysis was established for surface tension.  The surface tension 

deviation of the mixtures was calculated using equation 3.35, and the numerical 

values obtained are reported in Table 5.9.  For the entire compositional range, 

negative surface tension deviations were systematically obtained (Figure 5.17).  This 

can be taken as an indication of a preferential enrichment of the surface in the ionic 

liquid with the lower surface tension (or in one of its ions mainly responsible for the 

low value of surface tension).  In this case, the ionic liquid with the lower surface 

tension is [C2C1im][NTf2]; so probably the surface of the mixtures is proportionally 

richer in the [NTf2]- anion than the bulk. 

A minimum is found approximately in the range of 0.2-0.4 molar fraction of 

[C2C1im][NTf2] for the mixtures of [C2C1im][NTf2] + [C2py][EtSO4] and [C2C1im][NTf2] 

+ [C2C1im][EtSO4].  However, in the case of mixture of [C2C1im][NTf2] + 

[C4C2im][EtSO4] the minimum is around a [C2C1im][NTf2] molar fraction of 0.6.  The 

impressive coincidence of the surface tension deviation of the [C2C1im][NTf2] + 

[C2py][EtSO4] mixture with the [C2C1im][NTf2] + [C2C1im][EtSO4] mixture can also be 

observed in Figure 5.17.  The only variation of the [C2py]+/[C2mim]+ cations has a very 

small effect on the surface activity of the mixture. 

 

x
[C

2
C

1
im][NTf

2
]

0.0 0.2 0.4 0.6 0.8 1.0




 /
 (

m
P

a
·s

)

-60

-40

-20

0

20



5. RESULTS AND DISCUSSION 

 95 

 

 

Figure 5.17: Surface tension deviation ( ) of mixtures, at 298.15 K, as a function of the molar 

fraction of [C2C1im][NTf2].  Ionic liquid mixtures: ▲, [C2C1im][NTf2] + [C2C1im][EtSO4]; 

■, [C2C1im][NTf2] + [C4C2im][EtSO4]; ●, [C2C1im][NTf2] + [C2py][EtSO4]. 

Data correlation 

The excess and deviation properties could be correlated by means of Redlich-

Kister polynomial expansions (Redlich and Kister, 1948), with the form of the 

mathematical expression in equation 3.43.  The fit parameters and the corresponding 

root mean square deviations (rmsd) (equation 3.44) are summarised in Table 5.10.  

Also, the correlation polynomials are plotted in Figures 5.15 to 5.17.  

Acceptably good correlations were obtained for all three properties with a 

second-degree polynomial for the mixtures [C2C1im][NTf2] + [C2py][EtSO4] and 

[C2C1im][NTf2] + [C4C2im][EtSO4], and with a third-degree polynomial for the mixture 

[C2C1im][NTf2] + [C2C1im][EtSO4]. 

Data prediction 

Beyond correlation, the possibility of predicting the properties of the mixture 

of ionic liquids merely from information on the properties of the pure ionic liquids 

would be desirable and very welcome from an application perspective.  For density, a 

first estimate can be obtained by a weighted average of the molar volumes of the pure 

components (Canongia Lopes et al., 2005; Navia et al., 2007).  The results are very 
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similar to the experimental data, with deviations less than 0.5 % (Figure 5.18).  

Nevertheless, it is important to note that this approach neglects the excess molar 

volume of the mixture, and the valuable information that it provides of the liquid 

medium at a molecular level. 

Table 5.10: Coefficients Ai of the Redlich-Kister polynomials for the correlation of the excess molar 

volume (VE ), viscosity deviation (∆ ) and surface tension deviation (∆ ), for the mixtures 

[C2C1im][NTf2] + [C2C1im][EtSO4], [C2C1im][NTf2] + [C4C2im][EtSO4] and [C2C1im][NTf2] + 

[C2py][EtSO4], at 298.15 K and atmospheric pressure.  The coefficients and the corresponding root 

mean square deviations (shown in the column on the right) are expressed in cm3·mol-1, mPa·s and 

mN·m-1 for VE, ∆ and ∆, respectively. 

Solvent A0 A1 A2 A3 rmsd 

Excess molar volume (VE) 

[C2C1im][NTf2]+[C2C1im][EtSO4] 3.0686 -1.3839 0.5118 -0.0989 0.006 

[C2C1im][NTf2]+[C4C2im][EtSO4] 3.0038 -0.5195 0.1857 – 0.007 

[C2C1im][NTf2]+[C2py][EtSO4] 1.8098 -0.3559 -0.4943 – 0.015 

Viscosity deviation () 

[C2C1im][NTf2]+[C2C1im][EtSO4] 1.788 -43.92 1.402 28.42 0.12 

[C2C1im][NTf2]+[C4C2im][EtSO4] -225.8 43.53 48.06 – 0.54 

[C2C1im][NTf2]+[C2py][EtSO4] -19.01 -70.85 54.29 – 0.62 

Surface tension deviation () 

[C2C1im][NTf2]+[C2C1im][EtSO4] -13.7 8.28 -16.8 22.5 0.2 

[C2C1im][NTf2]+[C4C2im][EtSO4] -7.22 -2.40 -1.17 – 0.0 

[C2C1im][NTf2]+[C2py][EtSO4] -15.2 17.6 -14.9 – 0.2 

 

For the prediction of the viscosity of a binary mixture, there exist some well 

known mixing laws, among which those expressed by means of equations 3.45 and 

3.47 have been reportedly used with mixtures of two ionic liquids (Navia et al., 2008).  

Application of both equations to the prediction of the viscosity of the mixtures yielded 

similar results.  However, the best predictions were obtained for the system 

[C2C1im][NTf2] + [C4C2im][EtSO4], with root mean square deviations below 3.0 mPa·s.  

In the other mixtures, the results obtained were higher, leading to deviations as large 

as ca. 20 % for some of the data points (Figure 5.19).  With such degree of deviation, 

these predictive methods would not be too useful for most design purposes. 
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Figure 5.18:  Deviation percentage for the prediction of molar volume of the ionic liquid mixtures, at 

298.15 K, as a function of the molar fraction of [C2C1im][NTf2].  Ionic liquid mixtures:  red, 

[C2C1im][NTf2] + [C2C1im][EtSO4]; green, [C2C1im][NTf2] + [C4C2im][EtSO4]; blue, [C2C1im][NTf2] + 

[C2py][EtSO4]. 

Equivalent expressions to equations 3.45 and 3.47 can be written for surface 

tension instead of viscosity, yielding equations 3.48 and 3.49.  Application of such 

mixing laws for the case of surface tension in the studied mixtures led to predictions 

with maximum deviations as high as ca. 10 % for some of the experimental data points 

(Figure 5.20).  Although this is relatively low in percentage (as it would be expected in 

any case, due to the similarity of the surface tension values of the pure ionic liquids), it 

must be noticed that the predicted values did not provide a good qualitative 

description of the variation of the surface tension with composition. 

The use of equation 3.51 predicts surface tension values that lead to 

intermediate deviation percentages if compared to those obtained with equations 3.48 

and 3.49.  Given this intermediate character, the values obtained with equation 3.51 

are not included in Figure 5.20, to facilitate its reading. 
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Figure 5.19:  Deviation percentage for the prediction of the viscosity of the ionic liquid mixtures, at 

298.15 K, as a function of the molar fraction of [C2C1im][NTf2].  Ionic liquid mixtures: blue, 

[C2C1im][NTf2] + [C2py][EtSO4];  red, [C2C1im][NTf2] + [C2C1im][EtSO4]; green, [C2C1im][NTf2] + 

[C4C2im][EtSO4].  For each mixture, the dark colour represents the deviation percentages obtained 

from equation 3.45, and the light colour those obtained from equation 3.47.  

 

 

Figure 5.20:  Deviation percentage for the prediction of the surface tension of the ionic liquid 

mixtures, at 298.2 K, as a function of the molar fraction of [C2C1im][NTf2].  Ionic liquid mixtures: blue, 

[C2C1im][NTf2] + [C2py][EtSO4];  red, [C2C1im][NTf2] + [C2C1im][EtSO4]; green, [C2C1im][NTf2] + 

[C4C2im][EtSO4].  For each mixture, the dark colour represents the deviation percentages obtained 

from equation 3.48, and the light colour those obtained from equation 3.49.  
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5.2.2. Combined physical and chemical absorption 

In the section 5.1, interesting features were observed by mixing two ionic liquids with 

the capacity to absorb CO2 by means of a physical mechanism.  Nevertheless, the 

absolute absorption values achieved are lower than those corresponding to typical 

chemical absorption procedures.  In trying to combine the advantages of both physical 

and chemical mechanisms, and a possible enhancement of such advantages via the use 

of a mixture of ionic liquids, in this section the CO2 absorption capacity and thermal 

and physical properties are studied for a mixture of an ionic liquid that absorbs CO2 

physically and another ionic liquid that absorbs it chemically.  In particular, the 

mixture [C2C1im][OAc] + [C2C1im][EtSO4] is investigated. 

Table 5.11: Pressure-composition data for the absorption/desorption of CO2 in [C2C1im][EtSO4] at 

different temperatures.  The solubility of CO2 is expressed as molar fraction (xCO2). 

[C2C1im][EtSO4] + CO2 

T = 298.2 K T = 318.2 K T = 338.2 K T = 358.2 K 

P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 

Absorption 
1.00 0.0034 1.03 0.0042 1.04 0.0012 1.04 0.0004 
2.00 0.0182 2.04 0.0042 2.01 0.0046 2.05 0.0024 
3.10 0.0231 3.02 0.0148 3.00 0.0087 3.08 0.0055 
3.99 0.0358 4.04 0.0214 4.02 0.0156 4.00 0.0084 
5.05 0.0409 4.96 0.0301 5.03 0.0191 5.01 0.0143 
6.04 0.0486 6.00 0.0372 6.00 0.0247 6.00 0.0169 
6.98 0.0561 6.93 0.0450 6.94 0.0334 7.03 0.0193 
9.03 0.0737 8.90 0.0553 9.02 0.0412 8.98 0.0268 

10.98 0.0903 10.89 0.0661 10.91 0.0507 11.00 0.0379 
13.04 0.1152 12.34 0.0862 12.67 0.0629 12.98 0.0409 
14.87 0.1382 14.89 0.0935 14.48 0.0745 15.00 0.0492 
16.46 0.1460 16.02 0.1024 16.06 0.0750 16.36 0.0504 

Desorption 
14.05 0.1447 14.01 0.1044 13.92 0.0745 14.01 0.0514 
12.02 0.1396 11.99 0.0974 11.93 0.0693 12.01 0.0483 
9.82 0.1182 9.92 0.0806 9.96 0.0606 9.94 0.0425 
8.03 0.1019 8.02 0.0697 7.97 0.0520 7.99 0.0333 
6.08 0.0839 6.03 0.0536 5.98 0.0387 6.02 0.0249 
5.00 0.0757 5.00 0.0474 4.98 0.0325 5.00 0.0208 
4.00 0.0662 3.99 0.0405 3.94 0.0309 4.02 0.0174 
3.00 0.0546 2.98 0.0332 3.01 0.0229 2.99 0.0136 
2.01 0.0415 1.98 0.0244 1.99 0.0159 2.01 0.0100 
1.02 0.0359 1.01 0.0191 1.00 0.0081 1.01 0.0049 
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5.2.2.1. Analysis of the CO2 absorption capacity 

The ionic liquid [C2C1im][OAc] absorbs CO2 chemically (Shiflett and Yokozeki, 2009; 

Stevanovic et al., 2012), whereas [C2C1im][EtSO4] absorbs it physically, as discussed 

before.  The absorption/desorption of CO2 by pure [C2C1im][OAc] and by its mixture 

with [C2C1im][EtSO4] (which was previously studied in pure state in section 5.2.1) was 

investigated, in the pressure range up to ca. 16 bar, at several isotherms from 298.2 K 

to 358.2 K.  The mixtures of these two ionic liquids were prepared at approximate 

molar fractions of 0.25, 0.50, and 0.75.  The results in molar basis are summarised in 

Tables 5.11 to 5.14, and in mass fraction in Tables B.5 to B.8 in Appendix B. 

Table 5.12: Pressure-composition data for the absorption/desorption of CO2 in [C2C1im][OAc] at 

different temperatures.  The solubility of CO2 is expressed as molar fraction (xCO2). 

[C2C1im][OAc] + CO2 

T = 298.2 K T = 318.2 K T = 338.2 K T = 358.2 K 

P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 

Absorption 
0.94 0.2606 0.95 0.2223 0.92 0.1621 0.98 0.1624 
2.00 0.2916 2.01 0.2574 1.92 0.2441 1.96 0.2006 
2.96 0.3075 3.03 0.2732 3.04 0.2642 3.11 0.2218 
4.00 0.3213 3.98 0.2819 4.00 0.2697 4.00 0.2325 
5.00 0.3284 4.99 0.2927 5.02 0.2845 5.01 0.2448 
6.04 0.3255 6.03 0.3030 5.98 0.2922 5.97 0.2528 
7.02 0.3273 7.30 0.3097 7.00 0.2974 7.02 0.2591 
9.04 0.3308 8.95 0.3227 9.01 0.3112 9.10 0.2720 

11.04 0.3347 10.99 0.3346 10.97 0.3218 11.02 0.2832 
12.89 0.3391 12.98 0.3452 12.96 0.3290 13.01 0.2922 
14.86 0.3432 14.93 0.3555 14.96 0.3379 14.98 0.3002 
16.39 0.3396 16.44 0.3614 16.33 0.3425 16.30 0.3050 

Desorption 
14.03 0.3468 14.03 0.3591 14.03 0.3412 13.99 0.3027 
12.00 0.3433 12.01 0.3508 11.97 0.3377 11.97 0.2954 
10.03 0.3397 10.02 0.3456 10.04 0.3337 10.04 0.2896 
8.01 0.3362 8.02 0.3368 8.00 0.3254 7.95 0.2771 
6.00 0.3324 6.05 0.3209 6.11 0.3049 6.00 0.2654 
4.98 0.3303 5.03 0.3122 4.99 0.2991 5.00 0.2625 
4.00 0.3281 4.02 0.3082 4.02 0.2899 4.04 0.2518 
2.99 0.3258 2.99 0.2920 2.99 0.2825 2.98 0.2395 
2.03 0.3228 1.98 0.2838 2.00 0.2706 2.01 0.2309 
1.02 0.3184 1.01 0.2698 1.04 0.2582 1.06 0.2046 
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Table 5.13: Pressure-composition data for the absorption/desorption of CO2 in the binary mixture 

[C2C1im][OAc] + [C2C1im][EtSO4], at 298.2 K and as a function of the composition ratio of the two 

ionic liquids (x’1 stands for the molar fraction of [C2C1im][OAc] in a CO2-free basis).  The solubility of 

CO2 is expressed as molar fraction (xCO2 ). 

[C2C1im][OAc] (1) + [C2C1im][EtSO4] (2) + CO2 

x’1 = 0.0000 x’1 = 0.2516 x’1 = 0.4919 x’1 = 0.7503 x’1 = 1.0000 
P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 

Absorption 
1.00 0.0034 0.99 0.0790 0.98 0.1344 0.98 0.1956 0.94 0.2606 
2.00 0.0182 2.03 0.1042 1.98 0.1640 1.99 0.2174 2.00 0.2916 
3.10 0.0231 3.02 0.1168 2.91 0.1821 3.03 0.2356 2.96 0.3075 
3.99 0.0358 4.04 0.1294 3.93 0.1936 4.06 0.2485 4.00 0.3213 
5.05 0.0409 5.00 0.1360 4.91 0.2035 5.00 0.2538 5.00 0.3284 
6.04 0.0486 5.99 0.1524 6.00 0.2093 5.98 0.2673 6.04 0.3255 
6.98 0.0561 6.97 0.1619 6.74 0.2244 7.05 0.2794 7.02 0.3273 
9.03 0.0737 8.95 0.1811 8.71 0.2404 8.96 0.2952 9.04 0.3308 

10.98 0.0903 10.98 0.1970 10.89 0.2540 10.98 0.3074 11.04 0.3347 
13.04 0.1152 12.95 0.2141 12.46 0.2711 12.90 0.3200 12.89 0.3391 
14.87 0.1382 15.04 0.2283 14.39 0.2862 15.03 0.3369 14.86 0.3432 
16.46 0.1460 16.02 0.2402 16.02 0.2971 16.39 0.3456 16.39 0.3396 

Desorption 
14.05 0.1447 13.97 0.2399 13.04 0.2857 13.98 0.3427 14.03 0.3468 
12.02 0.1396 12.03 0.2264 11.98 0.2839 12.10 0.3339 12.00 0.3433 
9.82 0.1182 10.04 0.2104 9.78 0.2680 10.05 0.3189 10.03 0.3397 
8.03 0.1019 8.01 0.1957 7.90 0.2607 8.06 0.3135 8.01 0.3362 
6.08 0.0839 6.03 0.1802 5.70 0.2351 6.00 0.2912 6.00 0.3324 
5.00 0.0757 5.00 0.1706 4.97 0.2285 5.01 0.2826 4.98 0.3303 
4.00 0.0662 4.02 0.1545 3.98 0.2231 3.99 0.2791 4.00 0.3281 
3.00 0.0546 2.97 0.1498 2.98 0.2083 2.99 0.2673 2.99 0.3258 
2.01 0.0415 2.00 0.1424 2.01 0.1988 2.00 0.2650 2.03 0.3228 
1.02 0.0359 1.02 0.1251 1.04 0.1899 1.05 0.2494 1.02 0.3184 

 

Several authors have reported that the absorption capacity of ionic liquids 

decreases with increasing temperature (Anthony et al., 2002; Chen et al., 2006; Deng 

et al., 2011; Manic et al., 2012a, 2012b).  This is mostly in agreement with the 

experiments performed herein with each of the ionic liquids (Figure 5.21).  The only 

exception to that trend is observed for pure [C2C1im][OAc] at high pressures within 

the range studied: the absorption capacity at 298.2 K is approximately equivalent or 

lower than the absorption capacities obtained at 318.2 and 338.2 K.  This peculiar 

behaviour is likely due to the formation of the solid product of reaction between 

[C2C1im][OAc] and CO2, as explained in section 5.1,  which may limit the ability to 

physically absorb CO2 once the chemical reaction is nearly completed.  For the other 

investigated temperatures, the sample with absorbed gas remains liquid, thus not 

undergoing such limitation. 
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Table 5.14: Pressure-composition data for the absorption/desorption of CO2 in the binary mixture 

[C2C1im][OAc] + [C2C1im][EtSO4], at 358.2 K and as a function of the composition ratio of the two 

ionic liquids (x’1 stands for the molar fraction of [C2C1im][OAc] in a CO2-free basis).  The solubility of 

CO2 is expressed as molar fraction (xCO2). 

[C2C1im][OAc] (1) + [C2C1im][EtSO4] (2) + CO2 

x’1 = 0.0000 x’1 = 0.2516 x’1 = 0.4919 x’1 = 0.7503 x’1 = 1.0000 
P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 P / bar xCO2 

Absorption 
1.04 0.0004 1.06 0.0397 1.01 0.0835 1.00 0.0952 0.98 0.1624 
2.05 0.0024 2.06 0.0560 2.02 0.1071 1.99 0.1263 1.96 0.2006 
3.08 0.0055 3.01 0.0669 3.04 0.1212 3.08 0.1439 3.11 0.2218 
4.00 0.0084 4.01 0.0771 4.02 0.1309 4.07 0.1539 4.00 0.2325 
5.01 0.0143 5.02 0.0836 5.03 0.1400 5.02 0.1635 5.01 0.2448 
6.00 0.0169 5.99 0.0892 5.99 0.1479 6.03 0.1726 5.97 0.2528 
7.03 0.0193 7.02 0.0981 7.03 0.1545 7.03 0.1793 7.02 0.2591 
8.98 0.0268 9.02 0.1042 8.98 0.1653 8.97 0.1915 9.10 0.2720 

11.00 0.0379 10.93 0.1164 10.95 0.1753 11.05 0.2028 11.02 0.2832 
12.98 0.0409 12.98 0.1258 13.02 0.1850 12.94 0.2128 13.01 0.2922 
15.00 0.0492 15.00 0.1368 14.93 0.1941 15.00 0.2201 14.98 0.3002 
16.36 0.0504 16.37 0.1380 16.48 0.1996 16.14 0.2251 16.30 0.3050 

Desorption 
14.01 0.0514 14.01 0.1341 13.99 0.1981 14.00 0.2233 13.99 0.3027 
12.01 0.0483 11.98 0.1260 12.03 0.1882 11.94 0.2145 11.97 0.2954 
9.94 0.0425 9.97 0.1173 9.99 0.1784 10.04 0.2061 10.04 0.2896 
7.99 0.0333 7.99 0.1086 8.01 0.1692 8.02 0.2004 7.95 0.2771 
6.02 0.0249 6.02 0.0984 6.00 0.1588 5.95 0.1833 6.00 0.2654 
5.00 0.0208 5.00 0.0917 4.98 0.1505 5.02 0.1776 5.00 0.2625 
4.02 0.0174 4.02 0.0868 3.92 0.1404 4.00 0.1678 4.04 0.2518 
2.99 0.0136 2.99 0.0801 2.98 0.1311 3.00 0.1557 2.98 0.2395 
2.01 0.0100 1.99 0.0694 1.99 0.1222 2.00 0.1431 2.01 0.2309 
1.01 0.0049 1.02 0.0591 1.04 0.1023 1.04 0.1257 1.06 0.2046 

 

 

Figure 5.21:  Molar fraction solubility of CO2 (xCO2 ), as a function of pressure (P ), in pure 

[C2C1im][OAc] (solid symbols) and pure [C2C1im][EtSO4] (open symbols) at several temperatures: 

298.2 K (circles), 318.2 K (triangles), 338.2 K (squares), and 358.2 K (diamonds). 
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Figure 5.21 also provides a direct visual comparison of the CO2 absorption 

capacities of [C2C1im][OAc] and of [C2C1im][EtSO4].  As expected, the absorption 

capacity of [C2C1im][OAc], with chemisorption of CO2 accompanied by physical 

absorption, is much higher than that of [C2C1im][EtSO4], with only physisorption of 

CO2; for the entire temperature range explored herein. 

The absorption capacity of mixtures of [C2C1im][OAc] and [C2C1im][EtSO4] 

were investigated at the lowest and highest temperature for which the absorption 

capacity of the constituent pure ionic liquids was determined – namely 298.2 K and 

358.2 K.  The numerical values are presented in Tables 5.13 and 5.14.  In Figure 5.22, a 

graphical visualisation is provided of how the absorption varies with pressure for the 

different series of constant composition.  For both temperatures, a change in the shape 

of the curve and an increment of the absorption capacity are observed with an 

increase of the concentration of [C2C1im][OAc] in the mixture of ionic liquids.  In 

general, the solubility of CO2 in the blends lies within those of the pure ionic liquids for 

any given pressure.  However, at 298.2 K, the CO2 absorption achieved by the mixture 

with a [C2C1im][OAc] molar fraction of 0.75 is comparable and even slightly higher 

than that of pure [C2C1im][OAc] at the highest pressures investigated.  This is possibly 

due, again, to the solidification occurring exclusively with pure [C2C1im][OAc] at 

298.2 K, as mentioned above. 

 

Figure 5.22:  Comparison of carbon dioxide absorption (in molar fraction, xCO2 ) in the mixture 

[C2C1im][OAc] + [C2C1im][EtSO4] at 298.2 K (a) and 358.2 K (b), as a function of pressure and at 

different molar ratios of the mixture of ionic liquids: , 100:0 (pure [C2C1im][OAc]); , 75:25; ●, 

49:51; +, 25:75; ▲, 0:100 (pure [C2C1im][EtSO4]).   
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Regarding desorption, it is observed in Figure 5.23 that the mechanism by 

which the gas is absorbed has a strong influence on the desorption ability under 

isothermal conditions.  In the case of [C2C1im][EtSO4], most of the absorbed CO2 can be 

desorbed by simply lowering the pressure.  However, with [C2C1im][OAc] this is not 

enough: the covalent bonds formed between CO2 and [C2C1im][OAc] in chemical 

absorption are stronger, so a greater input of energy (for example an increase in 

temperature) will be required to recover the CO2.   

 

Figure 5.23: Comparison of absorption (solid symbols) and desorption (open symbols) isotherms for 

CO2 in [C2C1im][OAc] + [C2C1im][EtSO4] at 298.2 K (a) and 358.2 K(b), at different molar ratios of the 

mixture of ionic liquids: , 100:0 (pure [C2C1im][OAc]); ●, 49:51; ▲, 0:100 (pure [C2C1im][EtSO4]). 

5.2.2.2. Thermal properties 

DSC analyses were carried out to identify the phase transitions in the system 

[C2C1im][OAc] + [C2C1im][EtSO4] over the entire composition range.  In the reliable 

temperature range analysed, only cold crystallisation peaks were observed in the 

thermograms of the mixtures with a [C2C1im][OAc] molar fraction between 0.20 and 

0.90 (see Figure C.4 in appendix C).  The numerical values obtained are reported in 

Table 5.15.  It is unclear why these cold crystallisations occur practically at a constant 

temperature (ca. 250 K), regardless of the composition.  In any case, all mixtures are 

clearly liquid well below the common ranges of operation temperature in CO2 capture 

processes.  For the pure ionic liquids no phase transitions were observed, in 

agreement with the literature (Bonhôte et al., 1996; Domańska et al., 2007; 

Troshenkova et al., 2010a), where glass transitions below 200 K and no melting 

temperatures are reported for these ionic liquids. 
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Table 5.15 also includes the numerical values of the decomposition 

temperatures of the mixture at a 5 wt% onset (Td,5%onset), as determined by TGA (see 

TGA thermograms in Figure C.8 in Appendix C).  Both ionic liquids have similar 

Td,5%onset values (438 K for [C2C1im][EtSO4] and 426 K for [C2C1im][OAc]), which in turn 

result in their mixtures also having thermal stabilities that do not differ significantly.  

The decomposition temperatures obtained in this work for the pure ionic liquids are 

lower than those previously reported in the literature (Holbrey et al., 2002; Fernández 

et al., 2007; Troshenkova et al., 2010b; Almeida et al., 2012), as a result of considering 

the Td,5%onset value instead of the regular onset decomposition temperature (thus 

providing a better approach to the valid temperature upper limit for practical 

applications).  In addition, a relatively low heating rate of 5 K/min was used in this 

work, also contributing to lowering the reported values and improving their practical 

significance. 

Table 5.15: Melting temperature (Tm ) and crystallisation temperature (Tc ) (determined by DSC at 

heating/cooling rates of 2 K·min-1, in the range 200-293 K), as well as decomposition temperatures 

at the 5 % onset (Td,5%onset ) (determined at a heating rate of 5 K·min-1), for binary mixtures at different 

molar fraction compositions.  All crystallisation temperatures reported correspond to a cold 

crystallisation 

x[C2C1im][OAc] Tm (K) Tc (K) Td,5%onset (K) 
0.0000 - - 438 
0.0993 - - 427 
0.2011 - 249 404 
0.2973 - 251 402 
0.3917 - 250 411 
0.5069 - 251 428 
0.5988 - 251 423 
0.7050 - 251 419 
0.8012 - 251 411 
0.9007 - 246 407 
1.0000 - - 426 

 

By analysing the TGA plots of weight versus temperature (Figure 5.24) in a 

similar manner to that carried out for the systems of section 5.2.1, it is observed that 

[C2C1im][EtSO4] exhibits a 2-step decomposition (Fernández et al., 2007); unlike 

[C2C1im][OAc], for which only one step is observed (Troshenkova et al., 2010b).  These 

distinct patterns of the pure constituent ionic liquids influence the thermal 

decomposition behaviour of the mixtures.  Thus, with an increase in the concentration 
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of [C2C1im][OAc], the 2-step decomposition from [C2C1im][EtSO4] is gradually shifted 

until it finally disappears.  These observations are in good agreement with previous 

reports that indicate that, in a mixture of ionic liquids, each ionic liquid can 

decompose independently (Niedermeyer et al., 2012).  This is particularly suited for 

the mixture studied herein, where the ionic liquids mixed have a common cation, and 

therefore there is no possibility of ‘crossed pairs’ formation. 

 

Figure 5.24:  TGA thermograms (weight versus temperature) for selected compositions of the mixture 

of [C2C1im][OAc] and [C2C1im][EtSO4].  From top to bottom: 0:100 mixture (pure [C2C1im][EtSO4]) 

(blue), 20:80 mixture (red), 39:61 mixture (green), 60:40 mixture (purple), 80:20 mixture (light blue), 

and 100:0 mixture (pure [C2C1im][OAc]). (Ratios provided in a molar basis.) 

5.2.2.3. Physical properties 

Two critical properties in the design of processes involving fluids are the density and 

viscosity.  In this section, density and viscosity values were experimentally 

determined for the binary system [C2C1im][OAc]+[C2C1im][EtSO4], in the temperature 

range 298.15-358.15 K and at atmospheric pressure.  The numerical values are 

reported in Table 5.16. 
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Both properties decrease with increasing temperature, while they follow 

different trends with the variation of the composition.  The specific patterns of 

variation of the studied properties with these variables are discussed below. 

Table 5.16: Density ( ) and viscosity ( ) for the binary system [C2C1im][OAc] (1) + [C2C1im][EtSO4] 

(2) at different temperatures and atmospheric pressure, for different molar fraction compositions of 

[C2C1im][OAc] (x[C2C1im][OAc] ). 

 Temperature (K) 

x[C2C1im][OAc] 298.15 308.15 318.15 328.15 338.15 348.15 358.15 

ρ (g/cm3) 
0.0000 1.23868 1.23192 1.22520 1.21851 1.21188 1.20819 1.19875 
0.0993 1.22662 1.21990 1.21321 1.20659 1.20001 1.19634 1.18700 
0.2011 1.21423 1.20750 1.20090 1.19433 1.18779 1.18412 1.17489 
0.2973 1.20211 1.19548 1.18892 1.18238 1.17591 1.17227 1.16313 
0.3917 1.18985 1.18326 1.17676 1.17026 1.16385 1.16023 1.15118 
0.5069 1.17426 1.16773 1.16131 1.15488 1.14854 1.14494 1.13603 
0.5988 1.16136 1.15486 1.14850 1.14213 1.13586 1.13229 1.12347 
0.7050 1.14581 1.13950 1.13315 1.12687 1.12068 1.11712 1.10841 
0.8012 1.13113 1.12487 1.11865 1.11255 1.10635 1.10278 1.09415 
0.9007 1.11550 1.10930 1.10314 1.09701 1.09093 1.08739 1.07894 
1.0000 1.09904 1.09295 1.08688 1.08086 1.07486 1.07137 1.06303 

η (mPa·s) 
0.0000 96.62 60.41 39.95 28.91 20.63 15.66 12.23 
0.0993 97.20 61.11 40.47 29.06 20.70 15.63 12.57 
0.2011 99.93 61.27 41.05 29.19 20.78 15.58 12.80 
0.2973 101.8 62.35 41.59 29.32 20.84 15.50 12.95 
0.3917 105.2 63.63 42.12 29.44 20.89 15.39 12.93 
0.5069 110.1 65.47 41.77 29.58 20.92 15.24 12.90 
0.5988 114.1 66.99 43.30 29.69 20.92 15.10 12.81 
0.7050 120.1 69.07 43.93 29.81 20.89 14.91 12.70 
0.8012 125.8 71.01 44.55 29.91 20.86 14.72 12.47 
0.9007 131.0 73.40 45.24 30.00 20.84 14.51 12.17 
1.0000 138.4 76.10 45.90 30.10 20.80 14.28 11.53 

 

Figure 5.25 shows the density plotted as a function of temperature, for 

selected series at constant composition.  A decrease of density occurs with increasing 

temperature, as well as with decreasing the concentration of [C2C1im][OAc] (the less 

dense ionic liquid of the two ionic liquids constituting the mixture).  For the evolution 

with temperature, a linear behaviour was concluded, on the basis of analyses made by 

the statistical F-test method (Devore, 2000), which indicated that the quadratic term 

in the correlation of the data by a second-degree polynomial fit was not statistically 
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significant.  Therefore, the density  for each specific composition of the mixture of 

ionic liquids was fit to the following expression: 

 ρ=a+b T  (3.36) 

where T is the absolute temperature, and a and b are the fit parameters.  These 

parameters are summarised in Table 5.17. 

 

Figure 5.25: Density ( ) of mixtures of [C2C1im][OAc] + [C2C1im][EtSO4] as a function of temperature 

(T ), for different molar fraction ratios (selected series): ●, 0:100 (pure [C2C1im][EtSO4]); ▲, 20:80; 

■, 39:61; ♦, 60:40; +, 80:20; ×, 100:0 (pure [C2C1im][OAc]).  Solid lines correspond to linear fits 

(equation 3.36). 

The excess molar volume (VE) provides an approach to the nature of the 

forces existing at a molecular level in a liquid mixture.  This property can be directly 

calculated from experimental composition and density values, according to equation 

3.33.  The numerical values obtained for the mixture of [C2C1im][OAc] and 

[C2C1im][EtSO4] are reported in Table 5.18.  Their graphical representation as a 

function of the composition of the mixture, for selected series at constant 

temperature, is provided in Figure 5.26.  In all cases, positive values are obtained for 

VE, indicating that the interionic forces existing within the mixture of ionic liquids are 

less attractive than those existing within the individual ionic liquids.  It is postulated 

that the presence of two different anions in the mixture introduces a certain degree of 

disruption, as compared to the more ordered structuring in the pure ionic liquids, thus 

weakening the attraction among ions.  A maximum was observed, at each given 
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temperature, for nearly equimolar mixtures.  With increasing temperature, the values 

of VE increase, probably in connection with a weakening of the attractive forces.  The 

influence of temperature is greater at lower temperature. 

Table 5.17: Fit parameters of equation 3.36 for the correlation of the density of mixtures 

[C2C1im][OAc]+[C2C1im][EtSO4] as a function of temperature, for different molar compositions of 

[C2C1im][OAc] (x[C2C1im][OAc]).  The corresponding standard deviations ( ) (equation 3.38) are shown in 

the column on the right. 

x[C2C1im][OAc] a / (g·cm-3) b / (10-5 g·cm-3·K-1)  / (g·cm-3) 

0.0000 1.43051 -6.4437 0.002 

0.0993 1.41705 -6.3974 0.001 

0.2011 1.40317 -6.3483 0.002 

0.2973 1.38972 -6.3023 0.001 

0.3917 1.37547 -6.2446 0.002 

0.5069 1.35841 -6.1862 0.001 

0.5988 1.34371 -6.1261 0.001 

0.7050 1.32600 -6.0520 0.002 

0.8012 1.30908 -5.9768 0.001 

0.9007 1.29180 -5.9219 0.001 

1.0000 1.27265 -5.8305 0.001 

 

Table 5.18: Excess molar volume (VE ) for the binary system [C2C1im][OAc] (1) + [C2C1im][EtSO4] (2) at 

different temperatures and atmospheric pressure, for different molar fraction compositions of 

[C2C1im][OAc](x[C2C1im][OAc] ). 

 Temperature (K) 

x[C2C1im][OAc] 298.15 308.15 318.15 328.15 338.15 348.15 358.15 

0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.0993 0.088 0.092 0.097 0.096 0.096 0.097 0.098 
0.2011 0.112 0.128 0.126 0.126 0.130 0.132 0.133 
0.2973 0.129 0.137 0.139 0.144 0.145 0.146 0.146 
0.3917 0.132 0.143 0.145 0.151 0.151 0.153 0.153 
0.5069 0.130 0.143 0.143 0.152 0.152 0.152 0.151 
0.5988 0.119 0.136 0.137 0.144 0.143 0.143 0.143 
0.7050 0.105 0.105 0.114 0.120 0.116 0.117 0.118 
0.8012 0.086 0.088 0.089 0.078 0.087 0.092 0.098 
0.9007 0.034 0.038 0.039 0.044 0.045 0.049 0.048 
1.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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The excess molar volumes were adequately correlated by Redlich-Kister 

polynomial expansions.  For each series at constant temperature, a third-order 

polynomial expansion was found to suitably correlate the results in this work.  The 

obtained fit parameters, along with the corresponding root mean square deviations 

(equation 3.44), are shown in Table 5.19.  For selected isotherms, the correlations are 

graphically depicted in Figure 5.26. 

 

Figure 5.26: Excess molar volume (VE ) of mixtures of [C2C1im][OAc] and [C2C1im][EtSO4] as a function 

of the molar fraction of [C2C1im][OAc] (x[C2C1im][OAc]) in the mixture, for different temperatures (selected 

series): ●, 298.2 K; ▲, 318.2 K; ■, 338.2 K; , 358.2 K.  Solid lines correspond to the correlations 

with Redlich-Kister polynomials. 

Table 5.19:  Coefficients Ai of the Redlich-Kister polynomials, in cm3·mol-1, for the fit of the excess 

molar volume (VE ) of the binary system [C2C1im][OAc]+[C2C1im][EtSO4], at different temperatures and 

atmospheric pressure.  The corresponding root mean square deviations (rmsd) are also reported. 

 Temperature (K) 

Ai, rmsd 298.15 308.15 318.15 328.15 338.15 348.15 358.15 

A0 0.5175 0.5654 0.5707 0.6031 0.5983 0.5984 0.5988 
A1 -0.0463 -0.0771 -0.0433 -0.0655 -0.0865 -0.0933 -0.0758 
A2 0.2717 0.2553 0.2807 0.1913 0.2475 0.2980 0.3205 
A3 -0.4301 -0.4367 -0.5130 -0.4754 -0.4116 -0.3549 -0.3822 

rmsd  0.004 0.003 0.002 0.003 0.002 0.002 0.003 

 

Figure 5.27 shows the influence of temperature in viscosity, for series of 

constant composition.  A strong decrease of absolute viscosity is observed with 

increasing temperature in the low temperature range.  Also in this temperature range, 
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the influence of the composition on the absolute viscosity is more pronounced than at 

the highest temperatures, with viscosity increasing as the [C2C1im][OAc] 

concentration increases.  The latter effect is probably a result of the higher basicity of 

the acetate anion, which causes an increase of the intermolecular forces (Hasse et al., 

2009). 

 

Figure 5.27: Viscosity ( ) of mixtures of [C2C1im][OAc] + [C2C1im][EtSO4] as a function of 

temperature (T ), for different molar fraction ratios: ●, 0:100 (pure [C2C1im][EtSO4]); ▲, 20:80; ■, 

39:61; ♦, 60:40; +, 80:20; ×, 100:0 (pure [C2C1im][OAc]).  Solid lines correspond to fits by means of 

the VFT equation. 

The VFT equation, in the modified version of Cohen and Turnbull (equation 

3.40), was used for correlation of the viscosity  as a function of the absolute 

temperature T.  The fits for selected series, at constant composition, are plotted in 

Figure 5.27 along with the experimental data.  The values of the fit parameters for all 

series are reported in Table 5.20. 

The viscosity deviation can provide an additional insight into the interactions 

occurring within the mixture of ionic liquids at a molecular level.  This viscosity 

deviation was calculated by equation 3.34.  The values of  thus calculated are 

reported in Table 5.21, and a selection of them is graphically plotted as a function of 

the mixture composition at different temperatures in Figure 5.28.  At low 

temperatures, a strong negative deviation is observed.  As the temperature increases, 

the deviation obtained decreases in absolute value, and it switches to positive values, 
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but much smaller in magnitude than those obtained at lower temperatures.  For all 

isothermal series, a maximum/minimum at approximately equimolar compositions 

was observed, as in the case of the excess molar volume previously commented.  This 

equimolar composition seems to be, again, the one causing the strongest disruption of 

forces at molecular level with respect to any of the pure ionic liquids. 

Table 5.21: Viscosity deviation ( ) for the binary system [C2C1im][OAc] (1) + [C2C1im][EtSO4] (2) at 

different temperatures and atmospheric pressure, for different molar fraction compositions of 

[C2C1im][OAc] (x[C2C1im][OAc] ). 

 Temperature (K) 

x[C2C1im][OAc] 298.15 308.15 318.15 328.15 338.15 348.15 358.15 

0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.0993 -3.56 -0.86 -0.07 0.03 0.06 0.11 0.41 
0.2011 -5.09 -2.29 -0.10 0.04 0.12 0.21 0.71 
0.2973 -7.24 -2.73 -0.13 0.05 0.16 0.25 0.93 
0.3917 -7.76 -2.92 -0.16 0.06 0.20 0.27 0.98 
0.5069 -7.69 -2.89 -0.19 0.07 0.21 0.29 1.03 
0.5988 -7.49 -2.81 -0.22 0.07 0.20 0.27 1.01 
0.7050 -5.96 -2.40 -0.22 0.06 0.15 0.23 0.96 
0.8012 -4.27 -1.97 -0.17 0.04 0.10 0.17 0.81 
0.9007 -3.25 -1.14 -0.07 0.02 0.06 0.10 0.57 
1.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

Figure 5.28: Viscosity deviation ( ) of mixtures of [C2C1im][OAc] and [C2C1im][EtSO4] as a function 

of the molar fraction of [C2C1im][OAc] in the mixture, for different temperatures: ●, 298.2 K; ▲, 

318.2 K; ■, 338.2 K; , 358.2 K.  Solid lines correspond to the correlations with Redlich-Kister 

polynomials. 
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The viscosity deviation was satisfactorily correlated by the Redlich-Kister 

equation, using a third-order polynomial expansion.  The obtained fit parameters, 

along with the corresponding root mean square deviations, are shown in Table 5.22.  

The quality of the fit can be visually verified in Figure 5.28, where the correlation lines 

were plotted for selected series along with the corresponding experimental data. 

Table 5.22: Coefficients Ai of the Redlich-Kister polynomials, in mPa·s, for the fit of the viscosity 

deviation ( ) of the binary system [C2C1im][OAc]+[C2C1im][EtSO4] at different temperatures and 

atmospheric pressure.  The corresponding root mean square deviations (rmsd) are also reported. 

 Temperature (K) 

Ai, rmsd 298.15 308.15 318.15 328.15 338.15 348.15 358.15 

A0 -31.03 -11.95 -0.779 0.268 0.823 1.163 4.101 

A1 6.887 3.061 -0.673 0.026 -0.099 -0.103 -0.031 

A2 -3.305 -1.402 -0.111 0.006 -0.365 0.037 2.095 

A3 -6.975 -6.569 1.005 -0.188 0.106 -0.022 1.684 

rmsd 0.30 0.11 0.01 0.00 0.00 0.01 0.01 

 

5.3. Supported-ionic liquid phases (SILPs) 

Amino acid ionic liquids constitute an interesting option in the absorption of 

CO2 with ionic liquid absorbents.  Their high absorption capacity via a chemical 

mechanism has been explored in an increasing number of publications.  However, a 

major disadvantage for their application is the high viscosity that they typically 

exhibit.  This limits the mass transfer, strongly lowering the pace at which the 

absorption process occurs.  In order to improve the mass transfer, as well as the 

thermal stability of the ionic liquid, it was decided to use a supported-ionic liquid 

phase (SILP) approach, by supporting the ionic liquid in a mesoporous solid support.  

Namely, the ionic liquid investigated in this section was [N6666][Ile], supported on 

mesoporous silica with an average pore size of 60 Å (SiO2-60Å). 

The TGA thermograms for thermal stability of the pure silica, the pure ionic 

liquid, and the SILP (with a 40 % ionic liquid loading) are shown in Figure 5.29.  As 

expected, the silica is perfectly stable in the temperature range screened.  On the other 

hand, an initial loss of mass is observed in both the pure ionic liquid and the SILP at 

near-ambient temperatures.  This mass loss can be attributed, in the first instance, to 
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evaporation of water contained in the samples due to the strong hygroscopic 

character of [N6666][Ile].  Therefore, for calculation of the decomposition 

temperatures, the inflexion point of the thermogram curve following the initial mass 

loss was taken as the starting point for determination of the onset.  A Td,5%onset value of 

347 K was calculated for [N6666][Ile]; whereas the corresponding [N6666][Ile]-SiO2 SILP 

led to an increase of its thermal stability, with a Td,5%onset value of 401 K (i.e. an 

increase of 16 %) for a 40 % ionic liquid loading.  

 

Figure 5.29: TGA plots (with a heating rate of 5 K·min-1) for SiO2-60Å (green); [N6666][Ile]-SiO2 SILP 

with 40 % load of ionic liquid (blue); and pure [N6666][Ile] (red). 

A first set of studies on the absorption of CO2 by the SILP was carried out in a 

TGA apparatus, at 298.2 K and atmospheric pressure, with the SILP as ‘sample’ and 

CO2 as the gas flowing through.  The flow of gas in the measuring chamber of the 

apparatus is horizontal, in parallel to the balance arm.  Given this geometric layout, it 

can be presumed in principle that buoyancy effects will not be relevant.  To verify this 

negligible buoyancy, firstly some experiments were conducted at different CO2 flows.  

The results obtained are shown in Figure 5.30 (the first hours of the runs, comprising 

conditioning steps in the TGA method, are not shown).  The two runs with the highest 

CO2 flows (25 and 45 mL/min) gave very close results, whereas the experiment with a 

low flow (5 mL/min) led to a lower value.  From these results it was assumed that, at 

sufficiently high CO2 flows (>25 mL/min), the buoyancy of the measurements would 

be negligible; in particular at the atmospheric pressure at which the experiments were 
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carried out.  Therefore, a gas flowrate of 45 mL/min was set for all subsequent 

experiments in the apparatus. 

 

Figure 5.30:  Mass fraction of CO2 (CO2 ) absorbed in [N6666][Ile]-SiO2 SILP at 298.2 K and 

atmospheric pressure, as determined by TGA, for different circulating flowrates of CO2 (from bottom 

to top): 5 mL/min (red), 25 mL/min (blue), 45 mL/min (green). 

The absorption of N2 in the solid support was also tested, given that this gas 

was intended to be used as inert gas in the experiments.  Runs were carried out with a 

sample of SiO2-60Å, circulating either CO2 or N2.  Figure 5.31 shows that the 

mesoporous support has the ability to absorb both gases, although to a very different 

extent: the concentration of absorbed N2 attainable is much lower than that of CO2 (as 

expected).  The capacity of the silica to absorb N2 was taken into account to correct the 

CO2 absorption measurements. 

To analyse the capacity of the SILP for absorption/desorption of CO2, 

successive cycles were carried out consecutively with the same sample, without 

unloading it from the apparatus.  The absorption steps were carried out with a flow of 

CO2 of 45 mL/min.  Reproducible cycles were obtained (although a systematic decay 

of the weights recorded by the balance was observed, probably due to problems with 

the calibration of the equipment for long term experiments).  The maximum 

absorption capacity (the net absorption corresponding to each absorption step) 

remained practically constant, with just a slight decrease after each cycle (Table 5.23). 
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Figure 5.31:  Mass fraction of CO2 (CO2 ) or of N2 (N2 ) absorbed in SiO2-60Å or in the SILP at 

298.2 K and atmospheric pressure, as determined by TGA, at a circulating flowrate of 45 mL/min.  

Gas and absorbent (from top to bottom): CO2 in SILP (red), CO2 in SiO2-60Å (green), N2 in SiO2-60Å 

(blue). 

Table 5.23:  Concentration of CO2 (in mass fraction) calculated after completion of the absorption 

step and of the desorption step in each cycle of CO2 absorption/desorption in TGA experiments for 

the [N6666][Ile]-SiO2 SILP with a 40% loading of the ionic liquid. 

cycle 
ωCO2 

Absorption Desorption 

1 0.0238 0.0008 
2 0.0231 0.0007 
3 0.0227 0.0005 
4 0.0224 0.0002 

 

In a different set of experiments, the effect of pressure on the absorption 

capacity of [N6666][Ile] and of the SILP was analysed, using a magnetic suspension 

balance.  Due to the high viscosity of the neat ionic liquid, the equilibrium criterion 

was enhanced with respect to the one used in previous experiments (see sections 5.1 

and 5.2).  Thus, instead of a mass variation of less than 10 g in 10 min, a time period 

of 30 min was used in this case.  Figure 5.32 shows the results obtained.  In the case of 

pure [N6666][Ile], the amount of CO2 absorbed at the maximum pressure tested was 

still below the one corresponding to the theoretical maximum for the 1:1 chemical 

reaction with CO2 (CO2 = 0.083).  Regarding the SILP, a much higher absorption is 

achieved, in part due to the absorption capacity of the silica, and in part due likely to 
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the facilitation of the access of the CO2 molecules to the ionic liquid in the SILP 

configuration. 

 

Figure 5.32:  Absorption of CO2 (in mass fraction), at 298.2 K and as a function of pressure, in pure 

[N6666][Ile] (■) and in the [N6666][Ile]-SiO2 SILP with a 40 % loading of the ionic liquid (). 

As in the TGA experiments previously described in this section, the stability of 

the SILP was also tested in the magnetic suspension balance by means of successive 

cycles of absorption and desorption.  However, in this case the desorbing stage was 

performed by lowering the pressure instead of by increasing the temperature.  As 

shown in Figure 5.33, a total desorption is achieved in each cycle.  A slight decrease in 

maximum and minimum values of absorbed CO2 is observed with increasing the 

number of cycles.  This might be partially due to a small drift of the baseline of the 

apparatus in long-time experimental runs.  The net CO2 absorption capacities for each 

cycle in the pressure range tested are numerically shown in Table 5.24. 

 Finally, it is interesting to note that there is a good agreement between the 

results obtained at atmospheric pressure by both techniques utilised in the 

experiments in this section: TGA and magnetic suspension balance. 
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Table 5.24:  Concentration of CO2 (in mass fraction) calculated after completion of the absorption 

step and of the desorption step in each cycle of CO2 absorption/desorption in the magnetic 

suspension balance for the [N6666][Ile]-SiO2 SILP with a 40% loading of the ionic liquid, at 298.2 K. 

cycle 
ωCO2 

Absorption Desorption 

1 0.1225 0.0201 
2 0.1174 0.0164 
3 0.1131 0.0140 
4 0.1122 0.0126 
5 0.1115 0.0119 

 

 

Figure 5.33:  Absorption isotherms for consecutive cycles of absorption/desorption of CO2, at 

298.2 K and up to a pressure of ca. 16 bar, in the [N6666][Ile]-SiO2 SILP with a 40% loading of ionic 

liquid. 
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6. CONCLUSIONS 

The CO2 absorption capacity of a series of ionic liquids was studied.  Namely, these 

ionic liquids were: [C2C1im][NTf2], [C2py][EtSO4], [C2C1im][EtSO4], [C4C2im][EtSO4], 

[C2C1im][OAc], and [N6666][Ile].  In all cases, CO2 solubilities were tested as a function 

of pressure in the pressure range up to ca. 17 bar.  In some cases, investigation of the 

influence of temperature, or of supporting the ionic liquid on a mesoporous support, 

was also carried out.  The variation of cations and anions of the ionic liquids allowed 

the analysis of the influence of features of their chemical structure on the CO2 

absorption capacity.  Thus, it was found that the ionic liquids with the [NTf2]- or the 

[EtSO4]- anions absorbed CO2 exclusively through a physical mechanism; whereas the 

ionic liquids containing anions with a basic character, namely [OAc]- and [Ile]-, 

undergo a chemical reaction with CO2, and therefore both chemical and physical 

absorption mechanisms may be present.  Among the ionic liquids with just 

physisorption, [C2C1im][NTf2] exhibited a higher absorption capacity than any of the 

ionic liquids containing the [EtSO4]- anion, regardless of the nature of the cation.  Some 

influence of the cation was identified when comparing the absorption isotherms of all 

three ethylsulfate-containing ionic liquids, with the ion with longer alkyl substituent 

chains ([C4C2im]+) leading to a greater absorption than the other two ([C2C1im]+ or 

[C2py]+), in a molar basis.  In any case, higher absorption levels could be achieved with 

ionic liquids involving chemical absorption.  Nevertheless, this higher absorption 

capacity would come associated with a higher energy cost in the step of solvent 

recovery in a continuous CO2 absorption unit. 

 The experimental methods used for the determination of the CO2 absorption 

and the thermal properties were validated by checking the good agreement in the 

comparison of the results herein obtained for some of the individual ionic liquids with 

those results reported by other authors in the literature. 

 The use of binary mixtures of ionic liquids was explored, searching for 

possible synergies with respect to the utilisation of single ionic liquids.  In a first 

instance, a series of mixtures of ionic liquids with only physical absorption of CO2 
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were investigated, with one of the constituting ionic liquids being [C2C1im][NTf2] and 

the other one of the ethylsulfate ionic liquids: [C2py][EtSO4], [C2C1im][EtSO4], or 

[C4C2im][EtSO4].  The entire composition range was screened, both in terms of CO2 

absorption and from the point of view of a series of important thermal and physical 

properties, at 298.2 K.  None of the intermediate compositions was found to have an 

absorption capacity greater than that of pure [C2C1im][NTf2], in the pressure range up 

to 16 bar.  Nevertheless a slight synergistic effect was identified, by means of analysis 

of the Henry constants, for the absorption capacity of the mixtures when compared to 

linearly weighted averages, in a molar basis, of the pure ionic liquid components.  This 

effect may be partially due to a positive excess molar volume in the mixtures, as 

derived from density measurements, which may be related to an increment of the free 

volume of the liquid solvent.  In all three mixtures investigated in this section, a 

positive excess volume was found over the entire composition range.  In addition to 

density and molar volume, other thermophysical properties of interest can be tuned 

with the mixture of two ionic liquids.  For instance, viscosity and surface tension of the 

mixture do typically vary between the extreme limit values of the two constituent 

single ionic liquids, but interestingly they do not follow a linear variation with 

composition.  Instead, relevant viscosity deviations and surface tension deviations are 

observed.  In the case of viscosity, a pronouncedly negative deviation in viscosity 

occurs for the mixture [C2C1im][NTf2] + [C4C2im][EtSO4]; whereas for the mixtures 

[C2C1im][NTf2] + [C2C1im][EtSO4] and [C2C1im][NTf2] + [C2py][EtSO4] both positive and 

negative deviations are observed, depending on the concentration range, and in a 

smaller absolute magnitude.  In terms of surface tension, a negative surface tension 

deviation is observed for all three systems studied, indicating a preferential 

concentration of the ionic liquid with a lower surface tension ([C2C1im][NTf2]) at the 

surface of the liquid mixture. All mixtures remained liquid down to temperatures well 

below room temperature, and up to decomposition temperatures (Td,5% onset) above 

373 K. 

An acceptably good correlation of the experimental data of the CO2 absorption 

isotherms, using ionic liquids and their mixtures which only implied a physical 

absorption mechanism, was obtained by means of the classical NRTL model.  Redlich-

Kister polynomial expansions were found to adequately describe the excess molar 

volume, viscosity deviation, and surface tension deviation as a function of the 
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composition of the binary mixtures.  Predictive mixing laws for the estimation of 

viscosity and surface tension of mixtures of the ionic liquids only from data of the pure 

constituents were tested; but they failed to provide a prediction sufficiently accurate 

for most engineering purposes.   

The mixture of a physisorbing ionic liquid and a chemisorbing ionic liquid was 

also investigated.  Specifically, the absorption of CO2 in the mixture of [C2C1im][EtSO4] 

+ [C2C1im][OAc] was studied at 298.2 K and 353.2 K, up to pressures of 16 bar.  The 

absorption capacity was higher at the lowest temperature tested.  At this temperature, 

the presence of [C2C1im][EtSO4] in the solvent prevented the solidification of the 

product resulting from the chemical reaction between CO2 and [C2C1im][OAc], 

improving the gas absorption capacity by facilitating physical absorption after the 

completion of the chemical reaction.  In addition, a notably negative viscosity 

deviation was observed for the mixture at low temperatures.  The maximum deviation 

of the viscosity from the linearly averaged behaviour of the pure ionic liquids occurs 

at an approximately equimolar composition, where also the maximum excess molar 

volume is observed.  Both densities and viscosities for this system could be correlated 

as a function of temperature by means of a quadratic polynomial and of the VFT 

equation, respectively. Third-order Redlich-Kister polynomial were sufficient to 

provide an acceptable correlation of the excess molar volumes and viscosity 

deviations as a function of the composition of the ionic liquid mixture at the different 

temperatures.  Thermal stability was not worse in the mixture than for the less stable 

ionic liquid, and the lower end of the liquidus range was also well preserved. 

In general terms, it can be said that mixtures of ionic liquids can offer some 

improvements with regard to single ionic liquids with just one type of cation and one 

type of anion.  On the one hand, relatively better absorption capacities can be 

obtained; and on the other, a greater flexibility in the tailoring of their properties is 

achieved.  Moreover, other beneficial effects can be obtained by mixing ionic liquids in 

CO2 capture processes, as it was exemplified herein in the prevention of the 

solidification of the product of a chemical absorption reaction. 

In a last approach, a SILP was investigated as absorbent.  The absorption 

capacity obtained for neat [N6666][Ile] was very similar to that obtained with 

[C2C1im][NTf2], in a mass basis.  However, the absorption values for the former are 
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probably limited by its high viscosity, not corresponding to the theoretical maximum 

capacity.  A substantial improvement was observed when supporting the [N6666][Ile] 

onto mesoporous silica (configuring a SILP), achieving a CO2 mass fraction equivalent 

to that for neat [C2C1im][OAc].  This improvement was accompanied by a higher 

thermal stability of the SILP.  However, this stability might still be relatively too low as 

to be used in a real gas absorption unit.  Exploration of other supports or tailoring of 

the structure of the amino acid ionic liquid could help in overcoming this aspect. 
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List of symbols 

 

A empirical fit parameter in the Antoine equation (3.23) 

A fit parameter in the Arrhenius-type equation for viscosity (3.39) 

A  fit parameter in the Redlich-Kister equation (3.43) 

A fit parameter in the VFT equation (3.41) 

a activity 

a empirical fit parameter in equation for density (3.36 and 3.37) 

B empirical fit parameter in the Antoine equation (3.23) 

B fit parameter in the Arrhenius-type equation for viscosity (3.39) 

b empirical fit parameter in equation for density (3.36 and 3.37) 

C empirical fit parameter in the Antoine equation (3.23) 

c empirical fit parameter in equation for density (3.37) 

Ea ‘activation’ energy; fit parameter in the Arrhenius-type equation for 

viscosity (3.40) 

f fugacity 

G Gibbs free energy 

G interaction parameters in the Grunberg and Nissan equation (3.46) 

gij binary interaction parameter in the NRTL model 

H Henry constant 

k fit parameter in the VFT equation (3.41) 

M generic property 

m number of experimental datapoints 

m number of components 
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m mass 

m mass of liquid with absorbed gas 

MW molecular weight 

n degree of polynomial expansion 

n number of components 

n  number of moles  

P pressure 

Q generic property 

R universal constant of gases 

r empirical exponent in equation 3.50 

rmsd root mean square deviation (3.44) 

S entropy  

T temperature  

T0 ideal glass transition temperature; fit parameter in the VFT equation 

(3.40) 

V volume 

V molar volume  

v velocity  

x  molar fraction in the liquid phase 

x spatial direction 

y  molar fraction in the vapour phase 

y spatial direction 

Subscripts 

bal value measured by the balance at equilibrium 

calc calculated value 
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corr corrected value 

CO2 carbon dioxide 

exp experimental value 

gas gaseous phase 

i component 

j  component 

m mixture 

r sample bucket 

s sample 

x vector component in the x direction 

0 value at the initial time 

Superscripts 

E excess property 

id ideal solution property 

k generic phase 

L liquid phase 

sat saturation value (3.23) 

V vapour phase 

0 standard state 

Greek letters 

α non-randomness parameter in the NRTL model 

γ activity coefficient 

 variation of property 
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 dynamic viscosity 

∞ dynamic viscosity at infinite temperature; fit parameter in the 

Arrhenius-type equation for viscosity (3.40) 

μ chemical potential 

 kinematic viscosity 

 density 

 surface tension 

 standard deviation (3.38) 

r relative standard deviation (3.41) 

ij parameter in the NRTL model 

yx shear stress in the x direction on a unit area perpendicular to the y 

direction 

 number of phases 

φ fugacity coefficient 

ω mass fraction 
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Appendix A: 

1H and 13C NMR spectra of the ionic liquids 

 

In this Appendix, the 1H and 13C NMR spectra of the ionic liquids used in this Thesis 

are presented.  Most of them were synthesised in-house, whereas [C2C1im][OAc] was 

purchased from a vendor and purified in-house prior to use (see Chapter 4 for 

details). 

 The alphabetically-ordered list of ionic liquids, with full names and the 

corresponding abbreviations, is shown in Table A.1.  For each of them, the 1H NMR 

spectrum is presented first, followed by the 13C NMR spectrum, in the following pages. 

 

Table A.1.  Full names and abbreviations of the ionic liquids involved in the experimental work of this 

Thesis, and whose 1H and 13C NMR spectra are collected in this Appendix. 

Name Abbreviation 

1-Butyl-3-ethylimidazolium ethylsulfate [C4C2im][EtSO4] 

1-Ethyl-3-methylimidazolium acetate [C2C1im][OAc] 

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide [C2C1im][NTf2] 

1-Ethyl-3-methylimidazolium ethylsulfate [C2C1im][EtSO4] 

1-Ethylpyridinium ethylsulfate [C2py][EtSO4] 

Tetrahexylammonium isoleucine [N6666][Ile] 
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1-Butyl-3-ethylimidazolium ethylsulfate ([C4C2im][EtSO4]) 

 

 

 

1H NMR, δH (CDCl3, 300 MHz): 0.95 (t, J = 7.4 Hz, 3H, NCH2CH2CH2CH3), 1.28 (t, J = 

7.1 Hz, 3H, OCH2CH3), 1.38 (m, J = 7.5 Hz, 2H, NCH2CH2CH2), 1.57 (t, J = 7.4 Hz, 3H, 

NCH2CH3), 1.88 (m, J = 7.6 Hz, 2H, NCH2CH2), 4.10 (q, J = 7.1 Hz, 2H, OCH2),4.27 (t, J = 

7.4 Hz, 2H, NCH2CH2), 4.35 (q, J = 7.4 Hz, 2H, NCH2CH3), 7.46-7.57 (m, unresolved, 2H, 

C(5)H and C(4)H), 9.60 (1H, s, C(2)H). 
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13C NMR, δC (CDCl3, 75.4 MHz): 13.0 (NCH2CH2CH2CH3), 14.9 (OCH2CH3), 15.2 

(NCH2CH3), 19.1 (NCH2CH2CH2), 31.7 (NCH2CH2), 44.7 (OCH2), 49.3 (NCH2CH2), 62.8 

(NCH2CH3), 121.8(C(4)H), 121.9 (C(5)H), 136.3 (C(2)H). 
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1-Ethyl-3-methylimidazolium acetate ([C2C1im][OAc]) 

 

 

 

1H NMR, δH (CDCl3, 300 MHz): 1.40 (t, J = 7.2 Hz, 3H, NCH2CH3), 1.62 (s, = 7.4 Hz, 3H, 

COOCH3), 4.13 (s, 3H, NCH3), 4.4 (q, J = 7.0 Hz, 2H, NCH2), 8.40-8.80 (m, unresolved,2H, 

C(5)H and C(4)H), 10.76 (1H, s, C(2)H). 
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13C NMR, δC (CDCl3, 75.4 MHz):  15.4 (NCH2CH3), 25.6 (COOCH3),  32.4 (NCH3), 44.2 

(NCH2), 122.9 (C(4)H), 124.3 (C(5)H), 138.7 (C(2)H),174.7 (COOCH3). 
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1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide 

([C2C1im][NTf2]) 

 

 

 

1H NMR, δH (CD3OD, 300 MHz): 1.52 (t, J = 7.4 Hz, 3H, NCH2CH3), 3.91 (s, 3H, NCH3), 

4.25 (q, J = 7.4 Hz, 2H, NCH2), 7.52-7.61 (m, unresolved, 2H, C(5)H and C(4)H), 8.83 (s, 

1H, C(2)H). 
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13C NMR, δC (CD3OD, 75.4 MHz): 15.5 (NCH2CH3), 36.5 (NCH3), 46.0 (NCH2), 121.2 (q, 

JC-F = 322 Hz, 2 × CF3), 125.0 (C(4)H), 127.6 (C(5)H), 137.5 (C(2)H). 
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1-Ethyl-3-methylimidazolium ethylsulfate ([C2C1im][EtSO4]) 

 

 

 

1H NMR, δH (CDCl3, 300 MHz): 1.28 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.56 (t, J = 7.4 Hz, 3H, 

NCH2CH3), 4.02 (s, 3H, NCH3), 4.09 (q, J = 7.1 Hz, 2H, OCH2), 4.32 (q, J = 7.4 Hz, 2H, 

NCH2), 7.50-7.70 (m, unresolved,2H, C(5)H and C(4)H), 9.48 (1H, s, C(2)H). 
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13C NMR, δC (CDCl3, 75.4 MHz): 14.9 (OCH2CH3), 15.2 (NCH2CH3), 36.0 (NCH3), 44.8 

(OCH3), 62.9 (NCH2), 121.8 (C(4)H), 123.5 (C(5)H), 136.7 (C(2)H). 
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1-Ethylpyridinium ethylsulfate ([C2py][EtSO4]) 

 

 

 

1H NMR, δH (CD3OD, 300 MHz): 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.66 (t, J = 7.4 Hz, 3H, 

NCH2CH3), 4.04 (q, J = 7.1 Hz, 2H, OCH2), 4.70 (q, J = 7.4 Hz, 2H, NCH2), 8.13 (br s, J = 

7.0 Hz, 2H, C(3)H and C(5)H), 8.60 (t, J = 7.8 Hz, 1H, C(4)H), 9.02 (d, J = 5.6 Hz, 2H, 

C(2)H y C(6)H). 
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13C NMR, δC (CD3OD, 75.4 MHz): 14.0 (OCH2CH3), 15.3 (NCH2CH3), 57.1 (NCH2), 63.5 

(OCH2), 128.1 (C(4)H), 144.3 (t, J = 18 Hz, C(3)H and C(5)H), 145.4 (s, C(2)H and 

C(6)H). 
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Tetrahexylammonium isoleucine ([N6666][Ile]) 

 

 

 

1H NMR, δH ((CD3)2SO, 300 MHz): 0.71-0.80 (m, unresolved, 6H, CHCH2CH3 + CHCH3), 

0.88 (t, J = 7 Hz, 12H, 4 × N(CH2)5CH3), 1.14-1.68 (m, unresolved, 34H, 4 × 

NCH2(CH2)4CH3 + CHCH2CH3), 2.60 (br s, 1H, CHCH2CH3), 3.17 (br, unresolved, 8H, 4 × 

NCH2), 3.38 (br s, 1H, COOCH).  The protons in the amino group of the anion are not 

observed. 
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13C NMR, δC ((CD3)2SO, 75.4 MHz): 12.1 (CHCH2CH3), 13.7 (4 × N(CH2)5CH3), 16.8 

(CHCH2CH3), 20.9 (4 × N(CH2)4CH2), 21.8 (4 × N(CH2)3CH2), 23.6 (4 × N(CH2)2CH2), 

25.3 (CHCH3), 30.5 (4 × NCH2CH2), 57.5 (4 × NCH2), 57.6 (COOCH).  The peak 

corresponding to the carbon in the  position is hidden by the signal of the 

deuteriated solvent (at ca. 38.6 ppm).  The peak corresponding to the carbon in the 

carboxylate group could not be observed, likely due to low concentration of the NMR 

sample. 
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Appendix B: 

Carbon dioxide absorption data in a mass basis 

 

The tables in this Appendix summarise results of the experiments on absorption and 

desorption of CO2 in pure ionic liquids and in mixtures of ionic liquids.  These tables 

are equivalent to Tables 5.1 to 5.4 and 5.11 to 5.14; but with the CO2 solubility 

expressed as a mass fraction instead of a molar fraction. 

 

 

Table B.1: Pressure-composition data for the absorption/desorption of CO2 in the pure ionic liquids 

at 298.2 K.  The solubility of CO2 is expressed as mass fraction (ωCO2 ). 

[C2C1im][OAc] [C2C1im][NTf2] [C4C2im][EtSO4] [C2C1im][EtSO4] [C2py][EtSO4] 
P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 

Absorption 
0.94 0.0835 1.06 0.0020 0.91 0.0005 1.00 0.0006 1.09 0.0004 
2.00 0.0962 2.08 0.0064 2.03 0.0024 2.00 0.0034 1.99 0.0016 
2.96 0.1030 3.00 0.0086 3.05 0.0034 3.10 0.0044 3.04 0.0021 
4.00 0.1090 3.98 0.0129 4.00 0.0052 3.99 0.0069 4.04 0.0041 
5.00 0.1123 5.05 0.0174 5.00 0.0078 5.05 0.0079 4.97 0.0052 
6.04 0.1109 6.07 0.0211 6.00 0.0092 6.04 0.0094 5.95 0.0063 
7.02 0.1117 7.45 0.0264 6.97 0.0122 6.98 0.0109 7.05 0.0084 
9.04 0.1134 8.84 0.0322 8.99 0.0175 9.03 0.0146 8.84 0.0108 

11.04 0.1151 10.65 0.0396 10.96 0.0228 10.98 0.0181 10.91 0.0147 
12.89 0.1171 12.72 0.0469 13.01 0.0259 13.04 0.0237 12.02 0.0180 
14.86 0.1190 15.52 0.0584 14.92 0.0337 14.87 0.0290 13.65 0.0218 
16.39 0.1174   16.43 0.0362 16.46 0.0309 14.66 0.0245 

Desorption 
14.03 0.1207 13.89 0.0528 14.01 0.0355 14.05 0.0305 13.26 0.0225 
12.00 0.1191 11.81 0.0452 12.12 0.0338 12.02 0.0293 11.68 0.0216 
10.03 0.1174 9.87 0.0379 10.03 0.0285 9.82 0.0244 10.01 0.0197 
8.01 0.1158 7.90 0.0306 8.02 0.0253 8.03 0.0207 8.02 0.0165 
6.00 0.1141 6.00 0.0234 5.99 0.0195 6.08 0.0168 6.06 0.0132 
4.98 0.1131 5.00 0.0197 5.00 0.0179 5.00 0.0150 4.96 0.0108 
4.00 0.1121 4.01 0.0159 4.02 0.0156 4.00 0.0130 4.04 0.0093 
2.99 0.1111 2.99 0.0120 3.02 0.0130 3.00 0.0106 3.00 0.0071 
2.03 0.1097 2.00 0.0081 1.97 0.0112 2.01 0.0080 2.02 0.0051 
1.02 0.1078 1.04 0.0045 1.02 0.0095 1.02 0.0069 1.02 0.0032 
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Table B.2: Pressure-composition data for the absorption/desorption of CO2 in the mixture 

[C2C1im][NTf2] + [C2C1im][EtSO4] at 298.2 K.  The solubility of CO2 is expressed as mass fraction 

(ωCO2 ). 

[C2C1im][NTf2] (1) + [C2C1im][EtSO4] (2) + CO2 

ω’1 = 0.0000 ω’1 = 0.3589 ω’1 = 0.6158 ω’1 = 0.8289 ω’1 = 1.0000 
P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 

Absorption 
1.00 0.0006 1.00 0.0018 1.01 0.0023 1.01 0.0026 1.06 0.0020 
2.00 0.0034 2.02 0.0031 2.03 0.0044 2.07 0.0062 2.08 0.0064 
3.10 0.0044 3.00 0.0051 3.01 0.0079 3.00 0.0089 3.00 0.0086 
3.99 0.0069 3.99 0.0085 4.00 0.0108 4.01 0.0122 3.98 0.0129 
5.05 0.0079 5.02 0.0103 5.01 0.0147 5.01 0.0166 5.05 0.0174 
6.04 0.0094 6.02 0.0117 6.03 0.0178 6.01 0.0197 6.07 0.0211 
6.98 0.0109 6.98 0.0148 7.96 0.0247 7.03 0.0235 7.45 0.0264 
9.03 0.0146 8.93 0.0210 9.97 0.0310 8.92 0.0306 8.84 0.0322 

10.98 0.0181 10.95 0.0264 11.94 0.0382 10.99 0.0377 10.65 0.0396 
13.04 0.0237 12.91 0.0313 13.97 0.0446 12.92 0.0451 12.72 0.0469 
14.87 0.0290 14.92 0.0360 16.39 0.0537 15.04 0.0511 15.52 0.0584 
16.46 0.0309 16.34 0.0394   16.24 0.0566   

Desorption 
14.05 0.0305 14.13 0.0368 13.02 0.0447 14.08 0.0510 13.89 0.0528 
12.02 0.0293 12.02 0.0317 10.91 0.0385 12.07 0.0440 11.81 0.0452 
9.82 0.0244 10.07 0.0271 9.05 0.0324 10.01 0.0371 9.87 0.0379 
8.03 0.0207 8.09 0.0228 7.03 0.0263 7.99 0.0301 7.90 0.0306 
6.08 0.0168 6.09 0.0179 6.01 0.0227 6.06 0.0233 6.00 0.0234 
5.00 0.0150 5.01 0.0166 4.92 0.0192 5.01 0.0198 5.00 0.0197 
4.00 0.0130 3.94 0.0129 4.00 0.0162 4.02 0.0163 4.01 0.0159 
3.00 0.0106 3.03 0.0105 2.99 0.0130 3.00 0.0126 2.99 0.0120 
2.01 0.0080 1.99 0.0081 2.01 0.0098 1.87 0.0087 2.00 0.0081 
1.02 0.0069 1.04 0.0054 1.02 0.0067 1.04 0.0058 1.04 0.0045 
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Table B.3: Pressure-composition data for the absorption/desorption of CO2 in the mixture 

[C2C1im][NTf2] + [C4C2im][EtSO4] at 298.2 K.  The solubility of CO2 is expressed as mass fraction 

(ωCO2 ). 

[C2C1im][NTf2] (1) + [C4C2im][EtSO4] (2) + CO2 

ω’1 = 0.0000 ω’1 = 0.3029 ω’1 = 0.5731 ω’1 = 0.8028 ω’1 = 1.0000 
P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 

Absorption 
0.91 0.0005 1.04 0.0012 0.92 0.0010 1.00 0.0026 1.06 0.0020 
2.03 0.0024 2.02 0.0021 2.01 0.0036 2.08 0.0051 2.08 0.0064 
3.05 0.0034 2.99 0.0047 3.07 0.0059 2.99 0.0085 3.00 0.0086 
4.00 0.0052 3.99 0.0080 4.02 0.0099 4.02 0.0119 3.98 0.0129 
5.00 0.0078 5.02 0.0106 5.10 0.0139 5.00 0.0154 5.05 0.0174 
6.00 0.0092 7.02 0.0165 5.99 0.0155 5.99 0.0183 6.07 0.0211 
6.97 0.0122 8.88 0.0204 7.07 0.0195 7.04 0.0221 7.45 0.0264 
8.99 0.0175 10.99 0.0269 9.01 0.0252 8.98 0.0288 8.84 0.0322 

10.96 0.0228 12.92 0.0314 10.85 0.0321 10.96 0.0349 10.65 0.0396 
13.01 0.0259 14.97 0.0383 13.09 0.0388 12.98 0.0423 12.72 0.0469 
14.92 0.0337 16.23 0.0406 15.03 0.0433 15.02 0.0487 15.52 0.0584 
16.43 0.0362   16.31 0.0487 16.21 0.0532   

Desorption 
14.01 0.0355 14.07 0.0397 14.13 0.0496 14.14 0.0477 13.89 0.0528 
12.12 0.0338 12.06 0.0348 12.29 0.0449 12.08 0.0413 11.81 0.0452 
10.03 0.0285 10.04 0.0296 9.99 0.0390 10.08 0.0347 9.87 0.0379 
8.02 0.0253 8.03 0.0251 8.15 0.0320 8.08 0.0281 7.90 0.0306 
5.99 0.0195 6.05 0.0188 6.02 0.0266 6.06 0.0222 6.00 0.0234 
5.00 0.0179 5.01 0.0160 4.96 0.0199 5.03 0.0183 5.00 0.0197 
4.02 0.0156 3.99 0.0136 4.00 0.0171 4.04 0.0150 4.01 0.0159 
3.02 0.0130 3.01 0.0105 2.98 0.0145 3.00 0.0116 2.99 0.0120 
1.97 0.0112 2.01 0.0075 2.01 0.0109 2.00 0.0081 2.00 0.0081 
1.02 0.0095 1.04 0.0048 1.03 0.0080 1.05 0.0053 1.04 0.0045 
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Table B.4: Pressure-composition data for the absorption/desorption of CO2 in the mixture 

[C2C1im][NTf2] + [C2py][EtSO4] at 298.2 K.  The solubility of CO2 is expressed as mass fraction (ωCO2 ). 

[C2C1im][NTf2] (1) + [C2py][EtSO4] (2) + CO2 

ω’1 = 0.0000 ω’1 = 0.3592 ω’1 = 0.6165 ω’1 = 0.8298 ω’1 = 1.0000 
P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 

Absorption 
1.09 0.0004 1.01 0.0013 1.53 0.0023 1.00 0.0021 1.06 0.0020 
1.99 0.0016 2.01 0.0027 2.56 0.0050 2.04 0.0053 2.08 0.0064 
3.04 0.0021 3.02 0.0048 3.10 0.0066 3.02 0.0086 3.00 0.0086 
4.04 0.0041 3.95 0.0070 4.09 0.0097 3.99 0.0117 3.98 0.0129 
4.97 0.0052 5.00 0.0091 5.09 0.0118 4.99 0.0148 5.05 0.0174 
5.95 0.0063 6.02 0.0108 6.01 0.0142 5.97 0.0183 6.07 0.0211 
7.05 0.0084 6.95 0.0126 6.99 0.0164 6.97 0.0214 7.45 0.0264 
8.84 0.0108 8.79 0.0188 9.00 0.0218 8.95 0.0276 8.84 0.0322 

10.91 0.0147 10.88 0.0216 10.95 0.0276 10.95 0.0347 10.65 0.0396 
12.02 0.0180 12.58 0.0284 13.15 0.0346 12.88 0.0412 12.72 0.0469 
13.65 0.0218 14.38 0.0328 15.08 0.0387 14.89 0.0482 15.52 0.0584 
14.66 0.0245 16.17 0.0360 16.34 0.0418 16.51 0.0521   

Desorption 
13.26 0.0225 13.92 0.0342 15.31 0.0417 14.10 0.0470 13.89 0.0528 
11.68 0.0216 12.01 0.0293 13.57 0.0388 12.2 0.0407 11.81 0.0452 
10.01 0.0197 10.00 0.0259 11.62 0.0334 9.15 0.0312 9.87 0.0379 
8.02 0.0165 7.94 0.0204 9.53 0.0277 7.96 0.0274 7.90 0.0306 
6.06 0.0132 5.95 0.0155 7.55 0.0225 6.10 0.0213 6.00 0.0234 
4.96 0.0108 4.99 0.0147 6.52 0.0197 5.00 0.0179 5.00 0.0197 
4.04 0.0093 4.02 0.0112 5.51 0.0171 4.01 0.0145 4.01 0.0159 
3.00 0.0071 3.00 0.0088 4.52 0.0143 3.00 0.0112 2.99 0.0120 
2.02 0.0051 2.02 0.0063 2.48 0.0086 1.99 0.0077 2.00 0.0081 
1.02 0.0032 1.02 0.0052 0.98 0.0046 1.04 0.0045 1.04 0.0045 
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Table B.5: Pressure-composition data for the absorption/desorption of CO2 in [C2C1im][EtSO4] at 

different temperatures.  The solubility of CO2 is expressed as mass fraction (ωCO2 ). 

[C2C1im][EtSO4] + CO2 

T = 298.2 K T = 318.2 K T = 338.2 K T = 358.2 K 

P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 

Absorption 
1.00 0.0006 1.03 0.0008 1.04 0.0002 1.04 0.0001 
2.00 0.0034 2.04 0.0008 2.01 0.0009 2.05 0.0004 
3.10 0.0044 3.02 0.0028 3.00 0.0016 3.08 0.0010 
3.99 0.0069 4.04 0.0040 4.02 0.0029 4.00 0.0016 
5.05 0.0079 4.96 0.0057 5.03 0.0036 5.01 0.0027 
6.04 0.0094 6.00 0.0071 6.00 0.0047 6.00 0.0032 
6.98 0.0109 6.93 0.0087 6.94 0.0064 7.03 0.0036 
9.03 0.0146 8.90 0.0108 9.02 0.0079 8.98 0.0051 

10.98 0.0181 10.89 0.0130 10.91 0.0098 11.00 0.0073 
13.04 0.0237 12.34 0.0173 12.67 0.0124 12.98 0.0079 
14.87 0.0290 14.89 0.0189 14.48 0.0148 15.00 0.0095 
16.46 0.0309 16.02 0.0208 16.06 0.0149 16.36 0.0098 

Desorption 
14.05 0.0305 14.01 0.0212 13.92 0.0148 14.01 0.0100 
12.02 0.0293 11.99 0.0197 11.93 0.0137 12.01 0.0094 
9.82 0.0244 9.92 0.0161 9.96 0.0119 9.94 0.0082 
8.03 0.0207 8.02 0.0138 7.97 0.0101 7.99 0.0064 
6.08 0.0168 6.03 0.0104 5.98 0.0074 6.02 0.0047 
5.00 0.0150 5.00 0.0092 4.98 0.0062 5.00 0.0039 
4.00 0.0130 3.99 0.0078 3.94 0.0059 4.02 0.0033 
3.00 0.0106 2.98 0.0064 3.01 0.0043 2.99 0.0026 
2.01 0.0080 1.98 0.0046 1.99 0.0030 2.01 0.0019 
1.02 0.0069 1.01 0.0036 1.00 0.0015 1.01 0.0009 
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Table B.6: Pressure-composition data for the absorption/desorption of CO2 in [C2C1im][OAc] at 

different temperatures.  The solubility of CO2 is expressed as mass fraction (ωCO2 ). 

[C2C1im][OAc] + CO2 

T = 298.2 K T = 318.2 K T = 338.2 K T = 358.2 K 

P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 

Absorption 
0.94 0.0835 0.95 0.0688 0.92 0.0477 0.98 0.0477 
2.00 0.0962 2.01 0.0823 1.92 0.0771 1.96 0.0609 
2.96 0.1030 3.03 0.0886 3.04 0.0850 3.11 0.0686 
4.00 0.1090 3.98 0.0921 4.00 0.0872 4.00 0.0726 
5.00 0.1123 4.99 0.0966 5.02 0.0932 5.01 0.0773 
6.04 0.1109 6.03 0.1010 5.98 0.0964 5.97 0.0804 
7.02 0.1117 7.30 0.1040 7.00 0.0987 7.02 0.0829 
9.04 0.1134 8.95 0.1097 9.01 0.1046 9.10 0.0881 

11.04 0.1151 10.99 0.1151 10.97 0.1093 11.02 0.0927 
12.89 0.1171 12.98 0.1200 12.96 0.1125 13.01 0.0965 
14.86 0.1190 14.93 0.1248 14.96 0.1166 14.98 0.0998 
16.39 0.1174 16.44 0.1277 16.33 0.1187 16.30 0.1019 

Desorption 
14.03 0.1207 14.03 0.1265 14.03 0.1181 13.99 0.1009 
12.00 0.1191 12.01 0.1226 11.97 0.1165 11.97 0.0978 
10.03 0.1174 10.02 0.1201 10.04 0.1147 10.04 0.0953 
8.01 0.1158 8.02 0.1161 8.00 0.1109 7.95 0.0902 
6.00 0.1141 6.05 0.1089 6.11 0.1019 6.00 0.0854 
4.98 0.1131 5.03 0.1050 4.99 0.0994 5.00 0.0843 
4.00 0.1121 4.02 0.1033 4.02 0.0955 4.04 0.0800 
2.99 0.1111 2.99 0.0964 2.99 0.0924 2.98 0.0753 
2.03 0.1097 1.98 0.0929 2.00 0.0875 2.01 0.0720 
1.02 0.1078 1.01 0.0872 1.04 0.0826 1.06 0.0624 
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Table B.7: Pressure-composition data for the absorption/desorption of CO2 in the binary mixture 

[C2C1im][OAc] + [C2C1im][EtSO4], at 298.2 K and as a function of the composition ratio of the two 

ionic liquids (ω’1 stands for the mass fraction of [C2C1im][OAc] in a CO2-free basis).  The solubility of 

CO2 is expressed as mass fraction (ωCO2 ). 

[C2C1im][OAc] (1) + [C2C1im][EtSO4] (2) + CO2 

ω’1 = 0.0000 ω’1 = 0.1949 ω’1 = 0.4108 ω’1 = 0.6840 ω’1 = 1.0000 
P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 

Absorption 
1.00 0.0006 0.99 0.0169 0.98 0.0325 0.98 0.0542 0.94 0.0835 
2.00 0.0034 2.03 0.0228 1.98 0.0407 1.99 0.0614 2.00 0.0962 
3.10 0.0044 3.02 0.0258 2.91 0.0459 3.03 0.0677 2.96 0.1030 
3.99 0.0069 4.04 0.0289 3.93 0.0493 4.06 0.0723 4.00 0.1090 
5.05 0.0079 5.00 0.0306 4.91 0.0523 5.00 0.0742 5.00 0.1123 
6.04 0.0094 5.99 0.0348 6.00 0.0541 5.98 0.0792 6.04 0.1109 
6.98 0.0109 6.97 0.0373 6.74 0.0588 7.05 0.0838 7.02 0.1117 
9.03 0.0146 8.95 0.0424 8.71 0.0640 8.96 0.0899 9.04 0.1134 

10.98 0.0181 10.98 0.0468 10.89 0.0685 10.98 0.0947 11.04 0.1151 
13.04 0.0237 12.95 0.0518 12.46 0.0743 12.90 0.0999 12.89 0.1171 
14.87 0.0290 15.04 0.0560 14.39 0.0797 15.03 0.1070 14.86 0.1190 
16.46 0.0309 16.02 0.0596 16.02 0.0837 16.39 0.1107 16.39 0.1174 

Desorption 
14.05 0.0305 13.97 0.0595 13.04 0.0795 13.98 0.1094 14.03 0.1207 
12.02 0.0293 12.03 0.0554 11.98 0.0789 12.10 0.1057 12.00 0.1191 
9.82 0.0244 10.04 0.0507 9.78 0.0733 10.05 0.0994 10.03 0.1174 
8.03 0.0207 8.01 0.0465 7.90 0.0708 8.06 0.0972 8.01 0.1158 
6.08 0.0168 6.03 0.0422 5.70 0.0622 6.00 0.0883 6.00 0.1141 
5.00 0.0150 5.00 0.0396 4.97 0.0601 5.01 0.0850 4.98 0.1131 
4.00 0.0130 4.02 0.0353 3.98 0.0584 3.99 0.0836 4.00 0.1121 
3.00 0.0106 2.97 0.0341 2.98 0.0538 2.99 0.0792 2.99 0.1111 
2.01 0.0080 2.00 0.0322 2.01 0.0509 2.00 0.0783 2.03 0.1097 
1.02 0.0069 1.02 0.0278 1.04 0.0482 1.05 0.0726 1.02 0.1078 
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Table B.8: Pressure-composition data for the absorption/desorption of CO2 in the binary mixture 

[C2C1im][OAc] + [C2C1im][EtSO4], at 358.2 K and as a function of the composition ratio of the two 

ionic liquids (ω’1 stands for the mass fraction of [C2C1im][OAc] in a CO2-free basis).  The solubility of 

CO2 is expressed as mass fraction (ωCO2 ). 

[C2C1im][OAc] (1) + [C2C1im][EtSO4] (2) + CO2 

ω’1 = 0.0000 ω’1 = 0.1949 ω’1 = 0.4108 ω’1 = 0.6840 ω’1 = 1.0000 
P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 P / bar ωCO2 

Absorption 
1.04 0.0001 1.06 0.0082 1.01 0.0193 1.00 0.0242 0.98 0.0477 
2.05 0.0004 2.06 0.0118 2.02 0.0252 1.99 0.0329 1.96 0.0609 
3.08 0.0010 3.01 0.0142 3.04 0.0289 3.08 0.0381 3.11 0.0686 
4.00 0.0016 4.01 0.0165 4.02 0.0315 4.07 0.0411 4.00 0.0726 
5.01 0.0027 5.02 0.0179 5.03 0.0339 5.02 0.0440 5.01 0.0773 
6.00 0.0032 5.99 0.0192 5.99 0.0361 6.03 0.0469 5.97 0.0804 
7.03 0.0036 7.02 0.0213 7.03 0.0380 7.03 0.0490 7.02 0.0829 
8.98 0.0051 9.02 0.0228 8.98 0.0410 8.97 0.0529 9.10 0.0881 

11.00 0.0073 10.93 0.0257 10.95 0.0439 11.05 0.0566 11.02 0.0927 
12.98 0.0079 12.98 0.0280 13.02 0.0467 12.94 0.0599 13.01 0.0965 
15.00 0.0095 15.00 0.0308 14.93 0.0494 15.00 0.0624 14.98 0.0998 
16.36 0.0098 16.37 0.0311 16.48 0.0511 16.14 0.0641 16.30 0.1019 

Desorption 
14.01 0.0100 14.01 0.0301 13.99 0.0506 14.00 0.0635 13.99 0.1009 
12.01 0.0094 11.98 0.0281 12.03 0.0477 11.94 0.0605 11.97 0.0978 
9.94 0.0082 9.97 0.0259 9.99 0.0448 10.04 0.0577 10.04 0.0953 
7.99 0.0064 7.99 0.0238 8.01 0.0421 8.02 0.0558 7.95 0.0902 
6.02 0.0047 6.02 0.0214 6.00 0.0392 5.95 0.0503 6.00 0.0854 
5.00 0.0039 5.00 0.0198 4.98 0.0369 5.02 0.0484 5.00 0.0843 
4.02 0.0033 4.02 0.0187 3.92 0.0341 4.00 0.0454 4.04 0.0800 
2.99 0.0026 2.99 0.0171 2.98 0.0316 3.00 0.0417 2.98 0.0753 
2.01 0.0019 1.99 0.0147 1.99 0.0292 2.00 0.0379 2.01 0.0720 
1.01 0.0009 1.02 0.0124 1.04 0.0240 1.04 0.0328 1.06 0.0624 
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Appendix C: 

DSC and TGA thermograms 

 

The heating ramps of the last cycle of the DSC thermograms for all samples in the 

mixtures of ionic liquids are reported in the first part of this Appendix.  Later, the 

corresponding TGA thermograms are also presented. 

 To facilitate the visualisation of the TGA thermograms, solid and dashed 

lines have been alternatively chosen to plot the curves corresponding to the different 

concentrations. 

 

 

 

Fig C.1: DSC heating ramps of thermograms for [C2C1im][NTf2] + [C2C1im][EtSO4] mixtures, from pure 

[C2C1im][NTf2] (top) to pure [C2C1im][EtSO4] (bottom) with a step of 0.10 in molar fraction. 
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Fig C.2: DSC heating ramps of thermograms for [C2C1im][NTf2] + [C4C2im][EtSO4] mixtures, from pure 

[C2C1im][NTf2] (top) to pure [C4C2im][EtSO4] (bottom) with a step of 0.10 in molar fraction. 

 

Fig C.3: DSC heating ramps of thermograms for [C2C1im][NTf2] + [C2py][EtSO4] mixtures, from pure 

[C2C1im][NTf2] (top) to pure [C2py][EtSO4] (bottom) with a step of 0.10 in molar fraction. 
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Fig C.4: DSC heating ramps of thermograms for [C2C1im][OAc] + [C2C1im][EtSO4] mixtures, from pure 

[C2C1im][OAc] (top) to pure [C2C1im][EtSO4] (bottom) with a step of 0.10 in molar fraction. 

 

Fig C.5: TGA thermograms for [C2C1im][NTf2] + [C2C1im][EtSO4] mixtures, from pure [C2C1im][NTf2] 

(top/right) to pure [C2C1im][EtSO4] (bottom/left) with a step of 0.10 in molar fraction. 
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Fig C.6: TGA thermograms for [C2C1im][NTf2] + [C4C2im][EtSO4] mixtures, from pure [C2C1im][NTf2] 

(top/right) to pure [C4C2im][EtSO4] (bottom/left) with a step of 0.10 in molar fraction. 

 

Fig C.7: TGA thermograms for [C2C1im][NTf2] + [C2py][EtSO4] mixtures, from pure [C2C1im][NTf2] 

(top/right) to pure [C2py][EtSO4] (bottom/left) with a step of 0.10 in molar fraction. 
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Fig C.8: TGA thermograms for [C2C1im][OAc] + [C2C1im][EtSO4] mixtures, from pure [C2C1im][EtSO4] 

(top/right) to pure [C2C1im][OAc] (bottom/left) with a step of 0.10 in molar fraction. 
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Appendix E: 

“Resumen” (Summary, in Spanish) 

 

 

Introducción 

El objetivo central de la presente Tesis consiste en analizar la capacidad de absorción 

de algunos líquidos iónicos, así como sus combinaciones binarias, para su posible 

aplicación en procesos de absorción de dióxido de carbono (CO2). 

La idea nace a partir de la necesidad de buscar nuevas tecnologías más 

eficientes para la captura reversible de CO2 en corrientes gaseosas emitidas a la 

atmósfera por actividades antropogénicas.  El CO2 emitido en las actividades 

industriales actualmente, causa una grave afección al medioambiente dado su carácter 

de gas de efecto invernadero.  En los últimos años, son numerosos los convenios y 

tratados establecidos a nivel internacional con el fin de controlar sus niveles, lo cual se 

ve reflejado en la disminución de las emisiones.  Sin embargo esta reducción dista de 

ser suficiente. 

El CO2 representa más del 80 % del total de emisiones de gases de efecto 

invernadero, y proviene principalmente de la quema de combustibles fósiles para la 

generación de energía.  La tecnología existente en estas plantas de producción 

energética, desafortunadamente, no permite por sí misma satisfacer las necesidades 

actuales con un bajo nivel de emisiones.  Por ello, la mejora de la eficiencia de los 

procesos industriales y de captación y almacenamiento de CO2 es absolutamente 

necesaria. 

Las tecnologías de captura de CO2 se pueden clasificar en tres tipos: oxy-

combustión, pre-combustión y post-combustión; siendo este último el más empleado.  

Dentro de los procesos de post-combustión, el de absorción de CO2 por medio de 

disoluciones acuosas de aminas es el más común a escala industrial.  Se basa en hacer 

pasar la corriente gaseosa con el CO2 en contracorriente por la disolución acuosa de 

amina.  Esto genera un carbamato, en una reacción exotérmica y reversible, 



ABSORPTION OF CARBON DIOXIDE IN IONIC LIQUIDS AND THEIR MIXTURES 

194  

 

capturando el CO2.  No obstante, el uso de las disoluciones acuosas de aminas como 

absorbentes presenta varios inconvenientes, como por ejemplo: altos gastos de 

operación, energéticos, baja estabilidad y alta volatilidad.  Debido a esto, la búsqueda 

de nuevos disolventes más económicos y eficientes se ha convertido en una prioridad. 

Una posible alternativa es el uso de líquidos iónicos.  Estas sustancias han 

generado gran expectación en la comunidad científica e industrial en los últimos años.  

Sus atractivas características permiten poder adaptarlos a procesos existentes, 

haciéndolos más eficientes y sostenibles.  Los líquidos iónicos son sustancias 

constituidas por iones y con un punto de fusión bajo; considerándose normalmente un 

valor inferior a los 373 K.  Aunque esta familia agrupa a muy diferentes compuestos y 

cualquier generalización es difícil, se puede decir que entre las propiedades más 

comunes a muchos líquidos iónicos se encuentran: su baja volatilidad, el amplio rango 

de temperaturas en que se encuentran en estado líquido, y que sus propiedades 

pueden ser modeladas para una aplicación particular mediante la variación 

controlada de su estructura.  De aquí que se acuñase el término “disolventes de 

diseño” para referirse a ellos. 

La aplicación de líquidos iónicos en la captura de CO2 se comenzó a investigar 

cuando Brennecke y colaboradores (Blanchard et al., 1999) comprobaron que el gas 

podía ser absorbido en un líquido iónico y luego ser completamente recuperado por 

simple disminución de la presión de trabajo.  A partir de ahí se han publicado 

numerosos trabajos que analizan la solubilidad, selectividad e interacciones entre el 

CO2 y diferentes líquidos iónicos. 

Se ha comprobado que los líquidos iónicos presentan dos posibles 

mecanismos de absorción de CO2.  La absorción física es un mecanismo sencillo 

basado en interacciones débiles.  El gas llena los espacios libres a medida que aumenta 

la presión, interactuando con los iones pero sin afectar a la estructura química del 

líquido iónico.  Su principal ventaja es la baja energía requerida para recuperar el gas, 

lo cual puede hacerse por disminución de la presión o por un ligero incremento de la 

temperatura.  Los iones constituyentes del líquido iónico determinan la capacidad de 

éste para absorber más o menos CO2 por fisisorción.  En general, las mayores 

capacidades de absorción se han obtenido con líquidos iónicos conteniendo un anión 

fluorado, dada la alta electronegatividad que presentan los átomos de flúor que les 
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permite una mayor interacción con los átomos de oxígeno del CO2.  Sin embargo 

dichos aniones fluorados suelen presentar una serie de desventajas, entre las que 

típicamente se encuentra su alto coste o toxicidad.  Los cationes parecen tener una 

influencia menor, si bien la longitud de cadena de sus sustituyentes alquílicos también 

puede mejorar la capacidad de absorción. 

El segundo mecanismo identificado es la absorción química.  En este caso, el 

CO2 reacciona con el líquido iónico para formar un complejo químico.  Debido a ello, se 

requiere de mayor cantidad de energía para romper los enlaces y poder desorber el 

gas.  Este mecanismo puede observarse, principalmente, en líquidos iónicos que se 

han funcionalizado con aminas o aminoácidos, o en líquidos iónicos convencionales 

con anión básico.  La principal ventaja de este mecanismo es la alta capacidad de 

absorción.  Con él se han conseguido rendimientos comparables al obtenido con 

disoluciones acuosas de aminas, pero además con la ventaja de su mayor estabilidad y 

la disminución de la pérdida de disolventes a la atmósfera por evaporación. 

Si bien los resultados obtenidos hasta la fecha pueden considerarse 

prometedores, también son insuficientemente satisfactorios y se requiere de más 

investigaciones para mejorar el rendimiento en estos sistemas.  Con ese objetivo, se 

han intentado diferentes estrategias para mejorar la capacidad de absorción.  Aparte 

de la no siempre viable opción de cambiar las condiciones del proceso (temperatura y 

presión), una posibilidad que va más allá de la simple modificación de la estructura 

química del catión y el anión de un líquido iónico es la utilización de mezclas de 

líquidos iónicos.  En mezclas binarias de dos líquidos iónicos ‘puros’ habrá hasta 

cuatro iones diferentes (dos cationes y dos aniones), en proporciones variables; o 

solamente tres iones diferentes si los líquidos iónicos constitutivos tienen bien el 

catión o bien el anión comunes.  En cualquier caso, se producirán nuevas interacciones 

en un fluido con propiedades particulares y diferentes a las que se podrían obtener 

con líquidos iónicos sencillos.  Los estudios disponibles acerca de mezclas de líquidos 

iónicos aún son escasos, centrándose principalmente en el estudio del efecto de la 

composición sobre las propiedades físicas.  En esta Tesis se investigarán tanto la 

capacidad de absorción de CO2 de las mezclas como propiedades térmicas y físicas de 

importancia para el diseño de un proceso, utilizando esas mezclas como fluidos de 

trabajo. 
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Otra alternativa novedosa para mejorar la absorción de CO2 por parte de 

líquidos iónicos, en particular aquellos con propiedades de transporte desfavorable 

(como por ejemplo una muy elevada viscosidad), es el uso de soportes sólidos de alta 

área superficial.  Los líquidos iónicos soportados (SILPs) consisten en líquidos iónicos 

adsorbidos en la superficie de la estructura porosa de un soporte sólido, como puede 

ser el caso de sílica o alúmina.  De los estudios realizados en SILPs, son escasos los que 

se centran en su uso para la absorción del CO2.  Sin embargo se ha podido comprobar 

que el uso de los soportes permite reacciones más rápidas y reversibles, sin pérdida 

significativa de la capacidad de absorción después de numerosos ciclos sucesivos de 

absorción y desorción.  En esta Tesis también se explorará un SILP construido a partir 

de un líquido iónico muy viscoso con un anión derivado de aminoácido, utilizando 

sílice como soporte. 

 

Experimental 

Se seleccionó un conjunto de líquidos iónicos con diferentes cationes y aniones. Se 

eligió algún líquido iónico previamente estudiado en la bibliografía con el objetivo de 

verificar la validez de la puesta en marcha del dispositivo experimental.  El resto se 

seleccionó con idea de cubrir ambos mecanismos de absorción (físico y químico), y en 

general permitiendo un análisis de la influencia de distintos elementos de la 

estructura de los iones constitutivos de los líquidos iónicos en su capacidad de 

absorción de CO2 y propiedades térmicas y físicas. 

Los líquidos iónicos fueron sintetizados en su mayoría en el laboratorio, a 

excepción del acetato de 1-etil-3-metilimidazolio, que fue comprado a la empresa 

Iolitec, GmbH (Heilbronn, Alemania) y posteriormente purificado en el laboratorio.  La 

pureza final de todos los lotes de líquido iónico se verificó mediante confirmación de 

su estructura química y ausencia de cantidades relevantes de impurezas por 

espectrometría de resonancia magnética nuclear de carbono-13 y protón (13C NMR y 

1H NMR, respectivamente), y mediante la determinación de su contenido en agua por 

valoración usando el método de Karl-Fischer.  Este último aspecto es importante, dado 

que el agua es una impureza omnipresente en líquidos iónicos dado el carácter 

higroscópico de estos, y las propiedades y comportamiento del líquido iónico se 
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pueden ver afectadas de manera importante si no se mantienen los valores de 

contenido en agua lo más bajos posible. 

Las mezclas de líquidos iónicos se prepararon por pesada de cada 

componente, agitando posteriormente al menos 4 h a 333.2 K para asegurar su 

homogeneidad. 

Para determinar la capacidad de absorción de CO2 de los líquidos iónicos 

puros y sus mezclas binarias, se realizaron curvas isotérmicas hasta 16 bar en una 

balanza de suspensión magnética Rubotherm (modelo Metal).  La masa de CO2 

absorbida por la muestra fue determinada por el incremento de las fuerzas 

electromagnéticas necesarias para que la muestra se mantenga en suspensión.  En el 

caso del SILP, los primeros experimentos fueron realizados a temperatura ambiente y 

presión atmosférica en un analizador termogravimétrico Mettler Toledo TGA/DSC 1, 

con el cual se determinó la masa de CO2 absorbida por simple diferencia entre la masa 

inicial y final de la muestra.  Posteriormente, se hizo la isoterma a la misma 

temperatura pero variando la presión hasta los 16 bar, con la balanza de suspensión 

magnética Rubotherm. 

Para determinar las condiciones térmicas a las que sería posible la utilización 

de cada líquido iónico y de las mezclas de éstos, se determinaron en cada caso las 

correspondientes propiedades térmicas.  Las temperaturas de descomposición se 

determinaron en un analizador termogravimétrico (TGA) TA instrument Q500; y las 

temperaturas de fusión y cristalización se investigaron en un calorímetro diferencial 

de barrido (DSC) TA instrument Q2000.  Los resultados obtenidos con ambos equipos 

se han analizado a través del software TA Universal Analysis 2000 versión 4.5A.  Para 

la temperatura de descomposición se utilizó el onset a un 5 % de descomposición, que 

es una medida más conservativa y a la vez más realista de la estabilidad térmica de 

una muestra que el onset simple que normalmente se utiliza.  

Además, la caracterización de las muestras se completó con la determinación 

de propiedades físicas críticas para el diseño de procesos en los que se utilicen los 

fluidos investigados.  Concretamente, las propiedades determinadas fueron: densidad, 

viscosidad y tensión superficial.  Las medidas se realizaron en un densímetro Anton 

Paar DMA 5000, micro-viscosímetros capilares tipo Ubbelohde de diferentes 

diámetros, y un tensiómetro Krüss K11 equipado con una placa de platino cilíndrica 
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que permite la medición en muestras pequeñas.  Todos estos aparatos están 

equipados con los correspondientes accesorios de termostatación para efectuar las 

mediciones con control preciso de la temperatura de la muestra.  

 

Resultados 

Líquidos iónicos puros 

Para validar la instalación y puesta en marcha de la balanza de suspensión magnética, 

así como la técnica en que se basa, se determinó en primer lugar la absorción de CO2 

por parte del líquido iónico bis(trifluorometilsulfonil)amiduro de 1-etil-3-

metilimidazolium ([C2C1im][NTf2]).  Este líquido iónico ha sido ampliamente 

estudiado en la bibliografía, a través de diferentes metodologías, por lo que se ha 

considerado apto para confirmar la metodología experimental aquí utilizada.  Además, 

su capacidad de absorción es elevada dentro de los líquidos iónicos que absorben CO2 

mediante un mecanismo de absorción física, por lo que simultáneamente se puede 

utilizar como referencia frente a la absorción obtenida por otros líquidos iónicos. 

Además, se determinaron las isotermas de absorción de CO2 para los 

siguientes líquidos iónicos  puros, a 298.2 K y a presiones hasta ca. 16 bar: 

 Etilsulfato de 1-etilpiridinio ([C2py][EtSO4]). 

 Etilsulfato de 1-etil-3-metilimidazolio ([C2C1im][EtSO4]). 

 Etilsulfato de 1-butil-3-etilimidazolio ([C4C2im][EtSO4]). 

 Acetato de 1-etil-3-metilimidazolio ([C2C1im][OAc]). 

Los líquidos iónicos con anión etilsulfato absorben CO2 mediante fisisorción.  

Sus valores no consiguieron superar la capacidad de absorción del [C2C1im][NTf2], lo 

cual demuestra la fuerte influencia de los átomos fluorados en la misma. 

Por comparación de los resultados obtenidos con los líquidos iónicos con 

anión etilsulfato, se puede observar el efecto del catión y de la longitud de las cadenas 

alquílicas.  Ordenando los cationes de mayor a menor absorción de los líquidos iónicos 

de los que forman parte, se tiene: [C4C2im]+ > [C2C1im]+ ≈ [C2py]; lo cual coincide con el 

orden decreciente de la extensión o número de sus sustituyentes alquílicos.  A su vez, 
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se comprueba que al variar el catión imidazolio por un piridinio no se aprecia un 

efecto importante. 

Al comparar las curvas de los líquidos iónicos anteriores con la del 

[C2C1im][OAc] se aprecia una clara diferencia en su forma y en su capacidad de 

absorción, debido al cambio en el mecanismo de absorción.  Dada la alta basicidad del 

anión acetato, el [C2C1im][OAc] reacciona químicamente con el CO2, por lo que el 

primer mecanismo de importancia en su isoterma es una quimisorción.  El resultado 

que se obtuvo para este líquido iónico a altas presiones difiere de lo publicado 

anteriormente por otros investigadores.  Esto puede deberse a la diferencia en el 

contenido de agua de cada muestra, ya que un contenido suficientemente elevado 

puede dar lugar a la no obtención del producto sólido de reacción entre [C2C1im][OAc]  

y CO2, tal como indican Gurau et al. (2011). 

Mezclas con absorción física 

En una primera exploración de mezclas de líquidos iónicos, se decidió combinar pares 

de líquidos iónicos absorbiendo CO2 meramente por un mecanismo físico.  Se analizó 

así la capacidad de absorción, junto con las propiedades térmicas y físicas, de mezclas 

de [C2C1im][NTf2] con los diferentes etilsulfatos antes mencionados.  En concreto, las 

tres mezclas exploradas fueron: 

 [C2C1im][NTf2] + [C2C1im][EtSO4] 

 [C2C1im][NTf2] + [C4C2im][EtSO4]  

 [C2C1im][NTf2] + [C2py][EtSO4] 

En las tres mezclas realizadas los resultados obtenidos para la absorción de 

CO2 no consiguieron superar la capacidad del líquido iónico [C2C1im][NTf2] en estado 

puro.  Esto se vio reflejado en las constantes de Henry obtenidas, las cuales 

disminuyen a medida que la fracción molar del [C2C1im][NTf2] aumenta.  Sin embargo, 

se observó un ligero efecto sinérgico en composiciones intermedias, con una 

capacidad de absorción superior a la que correspondería a la media ponderada de las 

absorciones de los líquidos iónicos constituyentes de la muestra acorde a la 

composición molar de la misma. 

Se realizaron las curvas de desorción para todos los casos.  Se observó que se 

consigue desorber el CO2 por simple descenso de la presión, aunque siempre con un 
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cierto grado de histéresis, en el que la concentración de CO2 a una determinada 

presión es siempre más elevada en el proceso de desorción que en el de absorción.  Al 

disminuir la longitud de los sustituyentes catiónicos alquílicos del líquido iónico con 

anión etilsulfato, el grado de histéresis también se reduce. 

Todas las curvas fueron correlacionadas adecuadamente con el modelo 

termodinámico NRTL (siglas a partir del original en inglés “Non-Random Two-

Liquid”).  Los parámetros de interacción binaria necesarios para el ajuste se 

obtuvieron mediante un programa que ejecuta un método de regresión no lineal 

(Sørensen and Arlt, 1980) para la minimización de los desvíos entre presiones 

experimentales y correlacionadas, tratando a las mezclas como sistemas pseudo-

binarios (el CO2 como un componente y la mezcla de líquidos iónicos como el otro).  

Como los líquidos iónicos presentan una presión de vapor despreciable en las 

condiciones de operación estudiadas, se consideró un comportamiento ideal para la 

fase gas, íntegramente formada por CO2 gaseoso. 

Con respecto a las propiedades térmicas, el líquido iónico [C2py][EtSO4] es el 

que muestra una mayor temperatura de fusión, cercana a las temperaturas 

ambientales habituales.  Esto es probablemente debido al grado de simetría de su 

catión, en contraste a los cationes más asimétricos de los otros líquidos iónicos.  No 

obstante, al mezclarlo con [C2C1im][NTf2] se produce una fuerte reducción de la 

temperatura de fusión, evitando riesgos de que se produzca solidificación del fluido de 

trabajo.  Este peligro tampoco está presente en los otros dos sistemas, en los que 

únicamente se detectaron temperaturas de fusión superiores a 200 K en mezclas con 

alta concentración de [C2C1im][NTf2], que en cualquier caso es líquido a temperaturas 

superiores a 257 K. 

En el estudio de la temperatura de descomposición, se observó que tanto los 

líquidos iónicos puros como sus mezclas presentan temperaturas de descomposición 

moderadamente altas.  No obstante, el anión [NTf2]- da más estabilidad al líquido 

iónico comparado con el [EtSO4]-, requiriéndose concentraciones molares de 

[C2C1im][NTf2] superiores a ca. 0.50 para generar un efecto importante en la 

temperatura de descomposición. 

Con respecto a las propiedades físicas de las mezclas, se determinaron la 

densidad, viscosidad y tensión superficial a 298.2 K y presión atmosférica en todo el 
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rango de composición.  Se observó que la densidad del [C2C1im][NTf2] es superior a la 

de los líquidos iónicos de etilsulfato, por lo que las densidades de las mezclas son 

ascendentes a medida que la concentración del [C2C1im][NTf2] aumenta.  Por el 

contrario, los valores de viscosidad y tensión superficial son descendentes, 

observándose un mayor descenso en la viscosidad debido a la mayor diferencia entre 

los valores de los líquidos iónicos puros constitutivos de la mezcla. 

Se obtuvo una perspectiva más detallada al analizar las propiedades de 

exceso y efecto de mezcla.  Con respecto al volumen molar de exceso, los valores 

obtenidos fueron positivos sobre todo el rango estudiado.  Esto demuestra que hay 

una disminución de las interacciones de atracción, lo cual se refleja en un aumento del 

volumen libre de las mezclas y puede explicar parcialmente el efecto sinérgico 

observado en el caso de la absorción de CO2 por parte de las mezclas de líquidos 

iónicos. 

Con respecto al cambio de propiedad por efecto de mezcla en la viscosidad, se 

puede ver que las mezclas [C2py][EtSO4] + [C2C1im][NTf2] y 

[C2C1im][EtSO4] + [C2C1im][NTf2] muestran un comportamiento similar, apreciándose 

un cambio de desviación positiva a desviación negativa al aumentar la concentración 

de [C2C1im][NTf2].  Sin embargo, la magnitud de estos valores es mucho menor que la 

de los obtenidos para la mezcla de [C4C2im][EtSO4] + [C2C1im][NTf2].  En esta mezcla, 

la desviación de viscosidad obtenida es negativa sobre todo el rango de concentración, 

con un máximo en las proximidades de la mezcla equimolar. 

El cambio de tensión superficial por efecto de mezcla  presenta un 

comportamiento diferente.  En este caso, todos los valores obtenidos fueron negativos.  

Esto es indicativo de un enriquecimiento de la superficie de la mezcla en el 

componente más tensioactivo, en relación a la composición global del total de la 

mezcla fluida.  No obstante, la magnitud de los valores obtenidos para el sistema con 

[C4C2im][EtSO4] fue mucho menor a la de los otros dos sistemas.  A partir de estos 

resultados se postula que la longitud de las cadenas alquílicas en el catión tiene un 

efecto importante en la tensión superficial. 

Las propiedades de exceso y de efecto de mezcla fueron correlacionadas por 

medio de expansiones polinómicas de Redlich-Kister (Redlich y Kister, 1948), 

obteniéndose resultados aceptables con expansiones de segundo y tercer orden.  
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Se evaluó la capacidad de algunos modelos simples para la predicción de las 

propiedades físicas de las mezclas a partir de información únicamente de las 

propiedades de los componentes puros.  Teniendo en cuenta que la magnitud de los 

volúmenes de exceso es muy inferior a la de los volúmenes molares, una primera 

estimación para la densidad podría venir dada de obviar ese volumen de exceso y 

considerar una variación lineal (ideal) del volumen molar.  No obstante, es importante 

tener presente que esto implicaría denostar el volumen de exceso existente, y la 

consiguiente información al respecto del comportamiento termodinámico a nivel 

molecular de las mezclas. 

Para el caso de la viscosidad y la tensión superficial se exploraron dos reglas 

de mezcla (Grunberg y Nissan, 1949; Katti y Chaudhri, 1964).  Los resultados 

obtenidos son bastante similares entre sí, aunque las mejores predicciones se 

obtuvieron para el sistema con [C4C2im][EtSO4].  Sin embargo, los resultados no 

describen con suficiente exactitud (para propósitos ingenieriles típicos) las 

propiedades buscadas, ni suministran una buena descripción de la variación de estas 

propiedades con la composición de la mezcla. 

Combinación de absorción física y química 

En esta sección se determinó el efecto de la temperatura sobre capacidad de absorción 

y las propiedades de la mezcla [C2C1im][EtSO4] +[C2C1im][OAc]. 

Las isotermas de los líquidos puros se determinaron en el rango entre 

298.2 K y 358.2 K con una variación de la presión hasta 16 bar.  Tal como se explicó en 

la sección de líquidos iónicos puros, la afinidad observada para el líquido iónico 

[C2C1im][OAc] es mucho mayor que la del [C2C1im][EtSO4], por la diferencia en sus 

mecanismos de absorción.  Sin embargo, en el caso del primero de ellos se obtuvieron 

resultados diferentes a los que se esperaban.  Es sabido que un aumento en la 

temperatura disminuye normalmente la afinidad del líquido iónico por el CO2.  Pero en 

el caso del [C2C1im][OAc] esto no se cumple estrictamente, en concreto si se comparan 

las isotermas a altas presiones para las temperaturas 298.2 y 318.2 K.  La variación se 

debe a que el aumento en la temperatura impide en este caso la formación del sólido 

resultante de la reacción química de [C2C1im][OAc] y CO2, y que limita la posibilidad de 

continuar absorbiendo CO2 por medio de un mecanismo físico a 298.2 K. 
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Para el caso de esta mezcla, se observa que la adición de un 25 mol% de 

[C2C1im][EtSO4] en la mezcla impide a 298.2 K la formación del referido sólido, 

consiguiéndose una absorción máxima similar a la del [C2C1im][OAc] puro.  A 358.2 K, 

el comportamiento es el esperado, con disminución de la capacidad de absorción 

como resultado del aumento de la temperatura.  Con mayores aumentos de 

concentración de [C2C1im][EtSO4] en la mezcla de líquidos iónicos, la capacidad de 

absorción del CO2 disminuye, tal como se esperaría. 

En relación a las propiedades térmicas, no se observan temperaturas de 

fusión ni cristalizaciones de los líquidos iónicos puros.  Pese a esto, se detectaron 

picos de cristalización fría a las concentraciones intermedias, aunque muy por debajo 

de las temperaturas utilizadas en el trabajo experimental.  La estabilidad térmica de la 

mezcla mejora a medida que disminuye la concentración del anión acetato, 

pudiéndose observar claramente el cambio en las curvas de descomposición. 

También se determinaron densidad y viscosidad en el mismo rango de 

temperaturas y cubriendo todo el rango de composición.  Se vio que la densidad 

disminuye con el aumento de la temperatura y con el aumento en la concentración de 

[C2C1im][OAc].  Los volúmenes molares de exceso que se obtuvieron son positivos en 

todos los casos, siendo esto representativo del mayor grado de disrupción de las 

fuerzas interiónicas en la mezcla, comparadas a las de cada uno de los líquidos iónicos 

puros.  Con respecto a la viscosidad, ésta disminuye a medida que la concentración de 

[C2C1im][EtSO4] aumenta, y también con un aumento de la temperatura.  La evolución 

de las series de viscosidad con la temperatura se correlacionó adecuadamente 

mediante la ecuación de Vogel-Fulcher-Tamman. 

Al igual que en el caso de las mezclas físicas, el volumen molar de exceso y la 

desviación de la viscosidad fueron satisfactoriamente correlacionadas en función de la 

composición mediante expansiones polinomiales de Redlich-Kister. 

Líquidos iónicos soportados (SILP) 

El líquido iónico isoleucinato de tetrahexylamonio ([N6666][Ile]) contiene un anión de 

aminoácido que puede ser de gran interés para la absorción de CO2 mediante 

quimisorción.  Sin embargo su viscosidad en estado líquido puro es muy elevada, 

condicionando los procesos de transporte necesarios para un adecuado desarrollo de 

la absorción.  Una alternativa para vencer estas dificultades en la transferencia de 
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materia puede ser su utilización en combinación con un soporte poroso, configurando 

un SILP. 

En primer lugar se determinó la isoterma de absorción de [N6666][Ile] en 

estado puro, como líquido, a 298.2 K y hasta una presión de 16 bar.  El resultado fue 

inferior al teórico estequiométrico, probablemente debido a problemas de 

transferencia de materia.  Una vez inmovilizado sobre el soporte de sílica, se consiguió 

una mejora sustancial en la afinidad por el CO2, lo cual fue comprobado a través de dos 

metodologías diferentes.  Además, se verificó que el soporte también provoca un 

aumento de la estabilidad térmica del líquido iónico. 

 

Conclusiones 

En esta Tesis se han investigado una serie de líquidos iónicos de diferente naturaleza, 

y mezclas binarias de varios de ellos, para su potencial utilización como absorbentes 

en procesos de captura de CO2.  En el desarrollo del trabajo se buscaron diversas 

estrategias de optimización, variando las condiciones de operación del sistema, la 

estructura de los líquidos iónicos, la configuración de las mezclas y la utilización de 

soportes sólidos mesoporosos.  Se prestó atención tanto a la propia capacidad de 

absorción del gas como a las propiedades térmicas y físicas de los absorbentes. 

En el empleo de mezclas de líquidos iónicos que absorben CO2 exclusivamente 

por mecanismos físicos, se observó un efecto sinérgico en la capacidad de absorción, 

pudiendo preferir la mezcla en vez del líquido iónico puro con mayor absorción si las 

propiedades térmicas, físicas y de otro tipo (coste, toxicidad...) así lo confirmasen. 

En la combinación de un líquido iónico fisisorbente y otro quimisorbente 

también se ha visto algún beneficio respecto a la utilización del líquido iónico 

quimisorbente en estado puro.  En este caso, se observó que el segundo líquido iónico 

podía prevenir la solidificación del producto de la reacción de absorción química, 

favoreciendo la continuación de la absorción de CO2 mediante fisisorción; además de 

permitir una mayor flexibilidad en el control de las propiedades físicas del absorbente 

líquido. 

Como última estrategia, se evalúo la utilización de un soporte para mejorar la 

capacidad de absorción de un líquido altamente viscoso.  Los resultados muestran un 
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claro aumento en la capacidad de absorción de CO2 y en la estabilidad térmica del 

líquido iónico. 

El trabajo aquí realizado pretende unir el conocimiento precedente en este 

campo con la utilización de estrategias alternativas de reciente actualidad, para el caso 

particular de la aplicación a procesos de captura de CO2 con tecnología basada en 

líquidos iónicos.  Se espera que sea un trabajo de apoyo para el desarrollo futuro de 

nuevas investigaciones en este ámbito, en el camino hacia la aplicación práctica real.  
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