Supporting Information

Iridium(I)-Catalyzed Intramolecular Hydrocarbonation of Alkenes: Efficient Access to Cyclic Systems Bearing Quaternary Stereocenters
David F. Fernández, Moisés Gulías,* José L. Mascareñas,* and Fernando López*

anie_201705105_sm_misellaneous_information.pdf
Supporting Information
©Wiley-VCH 2016
69451 Weinheim, Germany
Table of Contents

General Procedures .. S3
Optimization of the reaction conditions S4
Synthesis of the substrates for catalysis S5
Procedure for the Ir-catalyzed intramolecular hydrocarbonation reaction .. S22
Assays for the development of an enantioselective version ... S31
Procedure for the enantioselective Ir-catalyzed intramolecular hydrocarbonation process S36
Kinetic Isotope Effect determination S41
Transformation of the products into the corresponding ketone derivatives S42
Cycloisomerization of \(1t \) to afford the isomerized indene product \(2t' \) .. S44
References .. S46
NMR Spectra .. S47
General Procedures

Dry solvents were freshly distilled under argon from an appropriate drying agent before use. Bis(cyclooctadiene)iridium(I) tetrakis(3,5-bis(trifluoromethyl) phenyl) borate (abbreviated as \(\text{Ir(cod)}_2\text{BARF} \)), Bis(1,5-cyclooctadiene)iridium(I) tetrafluoroborate (abbreviated as \(\text{Ir(cod)}_2\text{BF}_4 \)), 1,2-Bis[bis(pentafluoro-phenyl)phosphino]ethane (abbreviated as dpp\(^{\text{F}}\)e) were purchased from Aldrich. Other bisphosphines were purchased from Aldrich or Strem-Chemicals. All other reagents used were bought from Aldrich, Alfa Aesar, TCI or Acros and used without further purification.

All reactions dealing with air- and moisture-sensitive compounds were carried out in oven-dried reaction flask under argon atmosphere with dry solvents. The abbreviation "rt" refers to reactions carried out approximately at 23 °C. Reaction mixtures were stirred using Teflon-coated magnetic stirring bars. Reaction temperatures were maintained using Thermowatch-controlled silicone oil baths. Thin-layer chromatography (TLC) was performed on silica gel plates and components were visualized by observation under UV light, and / or by treating the plates with p-anisaldehyde or phosphomolybdic acid solutions, followed by heating. Flash chromatography was carried out on silica gel unless otherwise stated. Dryings were performed with anhydrous \(\text{Na}_2\text{SO}_4 \) or \(\text{MgSO}_4 \).

Concentration refers to the removal of volatile solvents via distillation using a Büchi rotary evaporator followed by residual solvent removal under high vacuum. NMR spectra were recorded in CDCl\(_3\), at 300 MHz (Varian), 400 MHz (Varian) or 500 MHz (Varian). Carbon types and structure assignments were determined from DEPT-NMR. NMR spectra were analyzed using MestreNova© NMR data processing software (www.mestrelab.com). 1,3,5-Trimethoxybenzene was used as internal standard. The following abbreviations are used to indicate signal multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd, double doublet; ddd, doublet of doublet of doublets; td, triple doublet; dt, doublet of triplets; dq, doublet of quartet; m, multiplet; br, broad. Mass spectra (ESI-MS) were acquired using IT-MS Bruker AmaZon SL at CIQUSS and also using chemical ionization (CI) electron impact (El), or electrospray ionization (ESI) at the CACTUS facility of the University of Santiago de Compostela. The reactions were monitored by TLC. Enantioselectivities were determined in an Agilent HPLC 1100 Series with Chiralpak IA, IB, IC, IA3 or OZ-H analytical columns.
Optimization of the reaction conditions

Table S1. Optimization of the reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>[M] (X mol%)</th>
<th>L (y mol%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NEt₂</td>
<td>Ir(cod)₂BArF (5)</td>
<td>dFppe (5)</td>
<td>2a, 91</td>
</tr>
<tr>
<td>2</td>
<td>NEt₂</td>
<td>Ir(cod)₂BArF (5)</td>
<td>P(C₆F₅)₃ (10)</td>
<td>2a, <5</td>
</tr>
<tr>
<td>3</td>
<td>NEt₂</td>
<td>Ir(cod)₂BArF (5)</td>
<td>dppe (5)</td>
<td>2a, 32</td>
</tr>
<tr>
<td>4</td>
<td>NEt₂</td>
<td>Ir(cod)₂BArF (5)</td>
<td>dppb (5)</td>
<td>2a, 62</td>
</tr>
<tr>
<td>5</td>
<td>NEt₂</td>
<td>Ir(cod)₂BArF (5)</td>
<td>rac-Binap (5)</td>
<td>2a, 80</td>
</tr>
<tr>
<td>6</td>
<td>NEt₂</td>
<td>Ir(cod)₂BF₄ (5)</td>
<td>dFppe (5)</td>
<td>2a, 75</td>
</tr>
<tr>
<td>7</td>
<td>NEt₂</td>
<td>[Ir(cod)Cl]₂ (2.5)</td>
<td>dFppe (5)</td>
<td>2a, –</td>
</tr>
<tr>
<td>8</td>
<td>NEt₂</td>
<td>Rh(cod)₂BArF (5)</td>
<td>dppe (5)</td>
<td>2a, <2</td>
</tr>
<tr>
<td>9</td>
<td>NEt₂</td>
<td>Rh(cod)₂BArF (5)</td>
<td>dFppe (5)</td>
<td>2a, <2</td>
</tr>
<tr>
<td>10</td>
<td>NEt₂</td>
<td>Rh(cod)₂BArF (5)</td>
<td>rac-Binap (5)</td>
<td>2a, <2</td>
</tr>
<tr>
<td>11</td>
<td>Pyr</td>
<td>Ir(cod)₂BArF (5)</td>
<td>dFppe (5)</td>
<td>2b, 44</td>
</tr>
<tr>
<td>12</td>
<td>OEt</td>
<td>Ir(cod)₂BArF (5)</td>
<td>dFppe (5)</td>
<td>2u, –</td>
</tr>
<tr>
<td>13</td>
<td>OH</td>
<td>Ir(cod)₂BArF (5)</td>
<td>dFppe (5)</td>
<td>2v, –</td>
</tr>
<tr>
<td>14</td>
<td>Me</td>
<td>Ir(cod)₂BArF (5)</td>
<td>dFppe (5)</td>
<td>3c, 32</td>
</tr>
<tr>
<td>15</td>
<td>Ph</td>
<td>Ir(cod)₂BArF (5)</td>
<td>dFppe (5)</td>
<td>3w, 33</td>
</tr>
</tbody>
</table>

[a] Conditions: 1 was added to a solution of complex [M] (x mol%) and L (y mol%) in dioxane and the mixture was heated at the indicated temperature. [b] Isolated yield. [c] The same result was obtained when the catalyst was generated from [Ir(cod)Cl]₂ (2.5 %), dFppe (5 %) and AgBF₄ (5 %). [d] The same result was obtained at 140 °C.

Hypothesis for the formation of products of type 3

The results obtained with the methyl and phenyl ketone derivatives 1c and 1w (Table S1, entries 14 and 15) would suggest that, for these substrates, an endo-cyclization to afford intermediates like II and III would be preferred, eventually leading to products of type 3 after a reductive elimination. The
reason for the formation of endo product 3 is not clear, but might be related to the weaker coordinating ability of the keto with respect to the amide group.

Synthesis of the substrates for catalysis

General procedure A for preparation of 1,6-diene precursors 1a, 1b, 1d, 1e, 1f, 1g, 1j, 1h and 1i (exemplified for the synthesis of 1f).

5-Hydroxy-N-methoxy-N-methylpentanamide (S1)

Prepared following a procedure described by Flick and coworkers.[1]

AlMe₃ (60 mL, 120 mmol, 2.0 M in hexane) was added dropwise to a stirred solution of N,O-dimethylhydroxyl-amine hydrochloride¹ (11.7 g, 120 mmol) in dry CH₂Cl₂ (26 mL) at 0 °C. (CAUTION: The reaction is very exothermic). The mixture was stirred for 20 min at 0 °C and D-valerolactone (8.0 g, 80 mmol) of was added dropwise. After stirring at 0 °C for 20 min, the mixture was diluted with CHCl₃ (125 mL) and then HCl (aq) (15 mL, 0.1 N) was added dropwise at 0 °C. The mixture was stirred for 1 h, the organic phases were separated, dried, filtered, and concentrated under reduced pressure to give 5-hydroxy-N-methoxy-N-methylpentanamide (12.9 g, 99% yield) as a white solid. The NMR data was consistent with previous characterization.
5-((tert-Butyldimethylsilyl)oxy)-N-methoxy-N-methylpentanamide (S2)

Prepared following a modified procedure described by Stork and coworkers.[2]
imidazole (13.2 g, 194 mmol), tert-butyldimethylsilyl chloride (17.3 g, 115 mmol) and 4-dimethylaminopyridine (117 mg, 0.96 mmol) were sequentially added to a solution of 5-hydroxy-N-methoxy-N-methylpentanamide (12.9 g, 80 mmol) in CH₂Cl₂ (275 mL, 0.29 M). The solution was stirred for 15 minutes, water (10 ml) was added and the reaction mixture was extracted with Et₂O (3 x 10 mL). The combined organic extracts were washed with water and brine, dried and evaporated. The crude was purified by column chromatography on silica gel (1:1 Et₂O – hexane) to obtain the desired product as colorless oil (21.0 g, 95% yield). The characterization analysis was consistent with the previous data.²

7-((tert-Butyldimethylsilyl)oxy)-2-methylheptan-3-one (S3)[3]

iPrMgBr (98 mL, 98 mmol, 1.0 M) was added dropwise to a solution of 5-((tert-butyldimethylsilyl)oxy)-N-methoxy-N-methylpentanamide (S2, 9.0 g, 32.6 mmol) in Et₂O (220 mL, 0.15 M) at -78 ºC. The reaction was allowed to warm to rt and stirred overnight. Then Rochelle’s Salt (sat) (50 mL) was added at 0 ºC, the organic phase was separated and subsequently washed with NH₄Cl (sat) (250 mL), water (200 mL) and brine (200 mL). After extraction with Et₂O (3 x 280 mL), the combined organic extracts were dried and evaporated to yield a crude residue that was purified by column chromatography on silica gel (1:8 Et₂O – hexanes) to obtain the desired product (S3) as colorless oil (8.4 g, 57% yield) The NMR data is consistent with that previously described in literature.³

1H NMR (300 MHz, CDCl₃): δ 3.56 (t, J = 6.2 Hz, 2H), 2.54 (p, J = 6.9 Hz, 1H), 2.42 (t, J = 7.2 Hz, 2H), 1.63 – 1.52 (m, 2H), 1.50 – 1.41 (m, 2H), 1.03 (d, J = 6.9 Hz, 6H), 0.84 (s, 9H), -0.01 (s, 6H).¹³C NMR (75 MHz, CDCl₃): δ 214.64 (C), 62.95 (CH₂), 40.78 (CH), 40.12 (CH₂), 32.39 (CH₂), 26.01 (CH₃), 20.33 (CH₂), 18.32 (CH₃), -5.26 (CH₃). MS (ESI): ([M+H]+) 259.2.

tert-Butyldimethyl((6-methyl-5-methyleneheptyl)oxy)silane (S4)

Sodium tert-butoxide (3.84 g, 40 mmol) was added to a suspension of methyltriphenylphosphonium bromide (16.2 g, 45.4 mmol) in benzene (90 mL, 0.2 M). The mixture was refluxed for 4 hours, allowed to cooled down to rt and a solution of 7-((tert-butyldimethylsilyl)oxy)-2-methylheptan-3-one, (S3, 4.7 g, 18.18 mmol) in benzene (10 mL) was added. The mixture was stirred for 12 hours, concentrated and most of the phosphine oxide was precipitated by adding cold hexane. After filtration of this oxide and evaporation of the solvent, the resulting crude was purified by column chromatography (1:40 Et₂O – hexane) to obtain desired product as colorless oil (3.9 g, 84% yield).¹¹H NMR (300 MHz, CDCl₃): δ 4.77 – 4.66 (m, 2H), 3.63 (t, J = 6.2 Hz, 2H), 2.31 – 2.16 (m, 1H), 2.04 (t, J = 6.9 Hz, 2H), 1.61 – 1.43 (m, 2H), 1.03 (d, J = 6.8 Hz, 6H), 0.90 (s, 9H), 0.05 (s, 6H).¹³C NMR (75 MHz, CDCl₃): δ 156.06 (C), 106.41...
6-Methyl-5-methyleneheptan-1-ol (S5)

TBAF (38 mL, 1 M, 38 mmol) was added to a solution of tert-butyldimethyl(6-methyl-5-methyleneheptyloxy)silane (S4, 3.90 g, 15.2 mmol) in THF (152 mL, 0.1M) at 0 ºC. The reaction mixture was allowed to warm to rt and stirred for 30 min. NH₄Cl (sat) (20 mL) was then added and the layers were separated. The aqueous phase was extracted with Et₂O (3 x 70 mL) and the combined organic extracts were dried, evaporated and purified by column chromatography (1:5 Ethyl acetate – hexane) to yield the desired alcohol as a colorless oil (1.90 g, 88% yield). ¹H NMR (300 MHz, CDCl₃): δ 4.76 – 4.62 (m, 2H), 3.60 (t, J = 6.4 Hz, 2H), 2.32 – 2.14 (m, 2H), 2.02 (t, J = 7.2 Hz, 2H), 1.62 – 1.43 (m, 4H), 0.99 (d, J = 6.8 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 155.80 (C), 106.43 (CH₂), 62.78 (CH₂), 34.20 (CH₂), 33.75 (CH), 32.64 (CH₂), 24.34 (CH₂), 21.92 (CH₃). MS (ESI): ([M+H]+) 143.1

6-Methyl-5-methyleneheptanal (S6)

DMSO (2.7 mL, 38.0 mmol) in CH₂Cl₂ (4.1 mL, 2.5 M) was added dropwise to a solution of oxalyl chloride (1.6 mL, 19.0 mmol) in CH₂Cl₂ (60 mL, 0.18 M) at –78 ºC. The reaction was stirred for 10 min and then a solution of 6-methyl-5-methyleneheptan-1-ol (S5) (1.5 g, 10.6 mmol) in CH₂Cl₂ (7.5 mL, 1.4 M) was added slowly. After 45 min Et₃N (7.3 mL) was added at –78 ºC. After stirring at that temperature for 30 min, the mixture was warmed to rt and stirred for 30 min. H₂O (10 mL) was then added, the organic phase was separated and washed with HCl (1.0 M solution), NaHCO₃ (sat) and brine. The organic phases were dried and carefully concentrated under vacuum at 0 ºC. The crude aldehyde was submitted to the next step without purification. ¹H NMR (300 MHz, CDCl₃): δ 9.78 (t, J = 1.7 Hz, 1H), 4.80 – 4.68 (m, 2H), 2.48 – 2.41 (m, 2H), 2.27 – 2.17 (m, 1H), 2.06 (t, J = 7.6 Hz, 2H), 1.86 – 1.72 (m, 2H), 1.02 (d, J = 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 202.47 (COH), 154.74 (C), 107.22 (CH₂), 43.53 (CH₂), 33.64 (CH₂), 21.90 (CH), 21.83 (CH₃), 20.48 (CH₂).

(E)-N,N-Diethyl-8-methyl-7-methylenenon-2-enamide (1f)

Dimethyl (2-(diethylamino)-2-oxoethyl) phosphonate (1.52 g, 6.85 mmol) was added dropwise to a suspension of NaH (60 %) (251 mg, 6.28 mmol) in THF (36 mL) at rt. The mixture was stirred for 15 minutes before 6-methyl-5-methyleneheptanal (800 mg, 5.71 mmol) was added dropwise to the mixture. After one hour, water and Et₂O were successively added and the layers were separated. The organic phase was washed with water (2 x 10 mL). The aqueous combined phases were extracted with CH₂Cl₂ (2 x 10
mL) and the combined organic phases were dried and concentrated. Purification of the crude residue by flash chromatography on silica gel (1:10 to 1:3 EtOAc: Hexanes) afforded the desired product as a colorless oil (907 mg, 67 % yield). \(^1H \text{NMR} \) (300 MHz, CDCl\(_3\)): \(\delta \) 6.92 – 6.75 (m, 1H), 6.19 – 6.02 (m, 1H), 4.75 – 4.56 (m, 2H), 3.39 – 3.26 (m, 4H), 2.21 – 2.11 (m, 3H), 2.03 – 1.95 (m, 2H), 1.60 – 1.50 (m, 2H), 1.18 – 1.04 (m, 6H), 1.00 – 0.89 (m, 6H). \(^13C \text{NMR} \) (75 MHz, CDCl\(_3\)): \(\delta \) 165.79 (C), 155.27 (C), 145.72 (CH), 120.65 (CH), 106.59 (CH\(_2\)), 42.08 (CH\(_2\)), 40.73 (CH\(_2\)), 33.80 (CH\(_2\)), 33.64 (CH), 32.16 (CH\(_2\)), 26.79 (CH\(_2\)), 21.83 (CH\(_3\)), 14.84 (CH\(_3\)), 13.15 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{15}\)H\(_{28}\)NO ([M+H]+) 238.2164, found 238.2165.

(E)-N,N-Diethyl-7-methyleneundec-2-enamide (1a)

This compound was prepared according to the general procedure A using \(^n\)BuMgBr in stead of \(^i\)PrMgBr. \(^1H \text{NMR} \) (300 MHz, CDCl\(_3\)): \(\delta \) 6.85 (dt, \(J = 14.5, 7.0 \) Hz, 1H), 6.15 (dd, \(J = 15.0, 1.6 \) Hz, 1H), 4.69 – 4.63 (m, 2H), 3.40 – 3.30 (m, 4H), 2.20 – 2.11 (m, 2H), 2.02 – 1.91 (m, 4H), 1.60 – 1.48 (m, 2H), 1.39 – 1.20 (m, 4H), 1.17 – 1.06 (m, 6H), 0.85 (t, \(J = 7.1 \) Hz, 3H). \(^13C \text{NMR} \) (75 MHz, CDCl\(_3\)): \(\delta \) 165.86 (C), 149.40 (C), 145.78 (CH), 120.71 (CH), 109.04 (CH\(_2\)), 42.13 (CH\(_2\)), 40.80 (CH\(_2\)), 35.68 (CH\(_2\)), 35.49 (CH\(_2\)), 32.10 (CH\(_2\)), 30.02 (CH\(_2\)), 26.50 (CH\(_2\)), 22.49 (CH\(_2\)), 14.89(CH\(_3\)), 14.00 (CH\(_3\)), 13.20 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{16}\)H\(_{30}\)NO ([M+H]+) 252.2321, found 252.2322.

(E)-N,N-Diethyl-7-methylocta-2,7-dienamide (1d)

This compound was prepared according the general procedure A using MeMgBr instead of \(^i\)PrMgBr. \(^1H \text{NMR} \) (300 MHz, CDCl\(_3\)): \(\delta \) 7.41 – 7.22 (m, 5H), 6.94 – 6.82 (m, 1H), 6.16 (dt, \(J = 15.0, 1.5 \) Hz, 1H), 5.29 – 5.01 (m, 2H), 3.44 – 3.29 (m, 4H), 2.53 (td, \(J = 7.5, 1.2 \) Hz, 2H), 2.28 – 2.17 (m, 2H), 1.67 – 1.55 (m, 2H), 1.21 – 1.06 (m, 6H). \(^13C \text{NMR} \) (75 MHz, CDCl\(_3\)): \(\delta \) 165.83 (C), 148.08 (C), 145.55 (CH), 145.07 (C), 120.62 (CH), 110.12 (CH\(_2\)), 41.98 (CH\(_2\)), 40.64 (CH\(_2\)), 37.03 (CH\(_2\)), 31.81 (CH\(_2\)), 26.16 (CH\(_2\)), 22.12 (CH\(_3\)), 14.74 (CH\(_3\)), 13.05 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{13}\)H\(_{24}\)NO ([M+H]+) 210.1851, found 210.1852.

(E)-N,N-Diethyl-7-phenylocta-2,7-dienamide (1h)

This compound was prepared according to the general procedure A using PhMgBr instead of \(^i\)PrMgBr. \(^1H \text{NMR} \) (300 MHz, CDCl\(_3\)): \(\delta \) 7.41 – 7.22 (m, 5H), 6.94 – 6.82 (m, 1H), 6.16 (dt, \(J = 15.0, 1.5 \) Hz, 1H), 5.29 – 5.01 (m, 2H), 3.44 – 3.29 (m, 4H), 2.53 (td, \(J = 7.5, 1.2 \) Hz, 2H), 2.28 – 2.17 (m, 2H), 1.67 – 1.55 (m, 2H), 1.21 – 1.06 (m, 6H). \(^13C \text{NMR} \) (75 MHz, CDCl\(_3\)): \(\delta \) 165.83 (C), 148.08 (C), 145.55 (CH), 141.16 (C), 128.33 (CH), 127.41 (CH), 126.16 (CH), 120.90 (CH), 112.68 (CH\(_2\)), 42.14 (CH\(_2\)), 40.81 (CH\(_2\)), 34.76, (CH\(_2\)) 31.92 (CH\(_2\)), 26.93 (CH\(_2\)), 14.92 (CH\(_3\)), 13.24 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{18}\)H\(_{28}\)NO ([M+H]+) 272.2099, found 272.2099.
(E)-7-Methylene-1-(pyrrolidin-1-yl)undec-2-en-1-one (1b)

This compound was prepared according to the general procedure A using dimethyl (2-oxo-2-(pyrrolidin-1-yl)ethyl)phosphonate in the last step. 1H NMR (300 MHz, CDCl$_3$): δ 6.89 (dt, $J = 15.1$, 7.0 Hz, 1H), 6.08 (dt, $J = 15.1$, 1.6 Hz, 1H), 4.72 – 4.64 (m, 2H), 3.48 (dd, $J = 6.7$, 3.6 Hz, 4H), 2.23 – 2.13 (m, 2H), 2.05 – 1.90 (m, 6H), 1.88 – 1.80 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 164.63 (C), 149.14 (C), 145.11 (CH), 121.77 (CH), 108.89 (CH$_2$), 46.31 (CH$_2$), 45.59 (CH$_2$), 35.51 (CH$_2$), 31.81 (CH$_2$), 29.84 (CH$_2$), 26.31 (CH$_2$), 25.99 (CH$_2$), 24.18 (CH$_2$), 22.31 (CH$_2$), 13.83 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{16}$H$_{28}$NO ([M+H]$^+$) 250.2167, found 250.2165.

(E)-N,N-Diethylocta-2,7-dienamide (1i)

This compound was prepared according to the last two steps of the general procedure A using the commercial available hex-5-enal as the aldehyde. 1H NMR (300 MHz, CDCl$_3$): δ 6.84 (dt, $J = 14.4$, 7.0 Hz, 1H), 6.14 (d, $J = 15.1$ Hz, 1H), 5.82 – 5.65 (m, 1H), 4.99 – 4.88 (m, 2H), 3.34 (dd, $J = 16.2$, 7.6 Hz, 4H), 2.21 – 2.1 (m, 2H), 2.08 – 1.98 (m, 2H), 1.56 – 1.44 (m, 2H), 1.18 – 1.05 (m, 6H). 13C NMR (75 MHz, CDCl$_3$): δ 165.81 (C), 145.60 (CH), 138.24 (CH), 120.76 (CH), 114.90 (CH$_2$), 42.11 (CH$_2$), 40.78 (CH$_2$), 33.17 (CH$_2$), 31.82 (CH$_2$), 27.61 (CH$_2$), 14.88 (CH$_3$), 13.18 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{12}$H$_{22}$NO ([M+H]$^+$) 196.1697, found 196.1697.

(E)-N,N-Diethyl-8-methyl-7-methylenenon-2-enamide (1e)

This compound was prepared according to the general procedure A using iBuMgBr instead of iPrMgBr. 1H NMR (300 MHz, CDCl$_3$): δ 6.94 – 6.80 (m, 1H), 6.16 (dd, $J = 15.0$, 1.7 Hz, 1H), 4.73 – 4.62 (m, 2H), 3.37 (dq, $J = 14.7$, 7.2 Hz, 4H), 2.22 – 2.12 (m, 2H), 1.98 (t, $J = 7.7$ Hz, 2H), 1.88 – 1.80 (m, 2H), 1.78 – 1.63 (m, 1H), 1.62 – 1.50 (m, 2H), 1.22 – 1.07 (m, 6H), 0.89 – 0.79 (m, 6H). 13C NMR (75 MHz, CDCl$_3$): δ 16 5.93 (C), 148.15 (C), 145.85 (CH), 120.76 (CH), 110.57 (CH$_2$), 45.92 (CH$_2$), 42.18 (CH$_2$), 40.85 (CH$_2$), 35.21 (CH$_2$), 32.18 (CH$_2$), 26.49 (CH$_2$), 26.06 (CH), 22.57 (CH$_3$), 14.95 (CH$_3$), 13.26 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{16}$H$_{30}$NO ([M+H]$^+$) 252.2320, found 252.2322.

(E)-7-Benzyl-N,N-diethylocta-2,7-dienamide (1g)

This compound was prepared according to the general procedure A using BnMgBr instead of iPrMgBr. 1H NMR (300 MHz, CDCl$_3$): δ 7.30 – 7.23 (m, 2H), 7.21 – 7.14 (m, 3H), 6.93 – 6.81 (m, 1H), 6.15 (dd, $J = 15.0$, 1.3 Hz, 1H), 4.79 (d, $J = 19.5$ Hz, 2H), 3.46 – 3.24 (m, 6H), 2.24 – 2.10 (m, 2H), 2.06 – 1.94 (m, 2H), 1.66 – 1.53 (m, 2H), 1.37 – 1.22 (m, 6H). 13C NMR (75 MHz, CDCl$_3$): δ 165.93 (C), 148.15 (C), 145.85 (CH), 120.76 (CH), 110.57 (CH$_2$), 45.92 (CH$_2$), 42.18 (CH$_2$), 40.85 (CH$_2$), 35.21 (CH$_2$), 32.18 (CH$_2$), 26.49 (CH$_2$), 26.06 (CH), 22.57 (CH$_3$), 14.95 (CH$_3$), 13.26 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{16}$H$_{30}$NO ([M+H]$^+$) 252.2320, found 252.2322.
1.21 – 1.09 (m, 6H). **^1^3C NMR** (75 MHz, CDCl$_3$): δ 165.86 (C), 148.39 (C), 145.64 (CH), 139.69 (C), 129.00 (CH), 128.33 (CH), 126.13 (CH), 120.81 (CH), 111.62 (CH$_2$), 43.03 (CH$_2$), 42.15 (CH$_2$), 40.82 (CH$_2$), 34.91 (CH$_2$), 32.05 (CH$_2$), 26.37 (CH$_2$), 14.93 (CH$_3$), 13.24 (CH$_3$). **HRMS (ESI-TOF):** m/z calculated for C$_{19}$H$_{28}$NO ([M+H]$^+$) 286.2165, found 286.2165.

(E)-N,N-Diethyl-2-methyl-7-methyleneundec-2-enamide (1j)

This compound was prepared according the general procedure A using S6 and the appropriate dimethyl (1-(diethylamino)-1-oxopropan-2-yl)phosphonate instead of dimethyl (2-(diethylamino)-2-oxoethy)phosphonate. **^1H NMR** (300 MHz, CDCl$_3$): δ 5.45 (t, $J = 7.2$ Hz, 1H), 4.67 (d, $J = 7.0$ Hz, 2H), 3.33 (q, $J = 7.1$ Hz, 3H), 2.10 – 1.93 (m, 6H), 1.79 (s, 3H), 1.56 – 1.44 (m, 2H), 1.42 – 1.22 (m, 4H), 1.14 – 1.05 (m, 6H), 0.87 (t, $J = 7.0$ Hz, 3H). **^1^3C NMR** (75 MHz, CDCl$_3$): δ 173.51 (C), 149.62 (C), 132.28 (C), 129.34 (CH), 108.95 (CH$_2$), 42.61 (CH$_2$), 38.77 (CH$_2$), 35.74 (CH$_2$), 30.05 (CH$_2$), 27.25 (CH$_2$), 27.21 (CH$_2$), 22.53 (CH$_2$), 14.56 (CH$_3$), 14.06 (CH$_3$), 13.47 (CH$_3$) \{NOTE: This latter signal at 13.47 ppm corresponds to the methyl group of the amide moiety which, due to the existence of rotamers, can only be clearly observed carrying out the NMR at 60 ºC\}. **HRMS (ESI-TOF):** m/z calculated for C$_{17}$H$_{32}$NO ([M+H]$^+$) 266.2479, found 266.2478.

General procedure B for preparation of indene precursors 1l, 1m, 1n and 1t (examplified for the synthesis of 1m)

1-(2-Bromophenyl)-4-methylpentan-2-one (S7)

(2-Bromobenzyl)magnesium bromide was prepared following a modified procedure described by Whitesides et. al.[5] Under an inert atmosphere, magnesium turnings (1.1 equiv) were covered with Et$_2$O (0.35 M) and activated with iodine and 1,2-dibromoethane. A solution of bromobenzyl-bromide (1 equiv) in Et$_2$O (0.35 M) was added dropwise to the activated magnesium. The solution was refluxed for 20 min before being allowed to cool down to rt. The resulting solution containing the Grignard reagent (17.2 mmol) was
added dropwise to a solution of N-methoxy-$N,3$-dimethylbutanamide\(^4\) (6.88 mmol) at -78 °C in Et\(_2\)O (46 mL). The reaction was allowed to warm to rt and was stirred overnight. The mixture was cooled in an ice-water bath and a solution of Rochelle salt was added. NH\(_2\)Cl (sat) was added and the layers were separated. The aqueous phase was extracted with Et\(_2\)O and the combined organic phases were dried and concentrated to yield a crude residue that was purified by flash chromatography (from 1 : 40 to 1 : 10, Et\(_2\)O: Hexanes) to afford the desired product (S\(_7\)) as colorless oil (1.35 g, 77 % yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 7.56 (dd, $J = 8.0, 1.3$ Hz, 1H), 7.27 (td, $J = 7.4, 1.3$ Hz, 1H), 7.20 (dd, $J = 7.6, 2.0$ Hz, 1H), 7.13 (ddd, $J = 7.9, 7.1, 1.9$ Hz, 1H), 3.83 (s, 2H), 2.38 (d, $J = 6.9$ Hz, 2H), 2.25 – 2.12 (m, 1H), 0.93 (d, $J = 6.6, 0.6$ Hz, 6H). \(^1\)C NMR (75 MHz, CDCl\(_3\)): δ 206.61 (C), 134.87 (C), 132.90 (CH), 131.82 (CH), 128.80 (CH), 127.65 (CH), 125.11 (C), 51.53 (CH\(_2\)), 50.55 (CH\(_2\)), 24.55 (CH), 22.66 (CH\(_3\)). MS (ESI): ([M+H\(^+\)]) 255.0 and 257.0

1-Bromo-2-(4-methyl-2-methylenepentyl)benzene (S\(_8\))

Methyltriphenylphosphonium bromide (3.35 g, 9.40 mmol) was dissolved in benzene (20 mL) under argon. Sodium tert-butoxide (0.83 g, 8.62 mmol) was added portion wise to this solution and the mixture was refluxed for 2 hours. The yellow solution was allowed to reach rt, the ketone (S\(_7\), 3.92 mmol) in benzene (0.2 M) was added dropwise and the reaction was stirred overnight. Water (40 mL) and Et\(_2\)O (40 mL) were sequentially added. The layers were separated and the aqueous phase was extracted with Et\(_2\)O (2 x 40 mL). The combined organic layers were dried and concentrated. The crude residue was dissolved in Et\(_2\)O, cooled to -78 °C, and carefully decanted into another flask to separate the phosphine oxide (this operation was repeated three times). Combined organic phases were concentrated and the resulting crude residue was chromatographed (1:40 to 1:20, Et\(_2\)O : Hexane) to afford the desired S\(_8\) as colorless oil (678 mg, 67% yield) \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 7.60 – 7.55 (m, 1H), 7.30 – 7.22 (m, 2H), 7.16 – 7.04 (m, 1H), 4.97 – 4.52 (m, 2H), 3.47 (s, 2H), 2.02 – 1.83 (m, 3H), 0.96 (d, $J = 6.2$ Hz, 6H). \(^1\)C NMR (75 MHz, CDCl\(_3\)): δ 146.47 (C), 139.44 (C), 132.90 (CH), 131.29 (CH), 127.88 (CH), 127.38 (CH), 125.33 (C), 112.92 (CH\(_2\)), 46.23 (CH\(_2\)), 42.31 (CH\(_2\)), 26.28 (CH\(_3\)), 22.68 (CH\(_3\)). MS (ESI): ([M+H\(^+\)]) 253.1 and 255.1

2-(4-Methyl-2-methylenepentyl) benzaldehyde (S\(_9\))

\(^1\)BuLi (6.52 mmol, 2.6 mL, 2.5 M) was added dropwise to a solution of S\(_8\) (550 mg, 2.1 mmol) in THF (2 mL) at -78 °C. After stirring for 30 min, DMF (0.83 mL, 10.8 mmol) in THF (0.67 mL) was added dropwise and the reaction was allowed to slowly warm to rt. After TLC indicates full conversion, NH\(_2\)Cl (sat) (5 mL) was added. After extraction with Et\(_2\)O (3 x 10 mL), the combined organic phases were dried and concentrated. Purification of the crude residue by flash chromatography on silica gel (Et\(_2\)O: Pentane 1 : 20) afforded the titled aldehyde as colorless oil (222 mg, 51% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ
10.22 (s, 1H), 7.86 (dd, J = 7.7, 1.5 Hz, 1H), 7.55 – 7.47 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 7.3 Hz, 1H), 4.86 – 4.35 (m, 2H), 3.69 (s, 2H), 1.96 (d, J = 7.1 Hz, 2H), 1.91 – 1.79 (m, 1H), 0.90 (d, J = 6.5 Hz, 6H). \(^{13}\text{C NMR} (75 \text{ MHz, CDCl}_3): \delta \) 192.07 (C), 148.32 (C), 142.29 (C), 134.43 (C), 133.87 (CH), 131.89 (CH), 130.39 (CH), 127.02 (CH), 113.20 (CH2), 46.58 (CH3), 38.52 (CH2), 26.19 (CH), 22.58 (CH3).

MS (ESI): \([\text{[M+H]}^+]\) 203.1

\(\text{(E)-N,N-Diethyl-3-(2-(4-methyl-2-methylenepentyl)phenyl) acrylamide (1m)}\)

Following the procedure for the Horner–Wadsworth–Emmons reaction (previously exemplified for the synthesis of compound 1f, see page S7), the product was obtained as a white solid. (206 mg, 63% yield). \(^{1}H \text{ NMR} (300 \text{ MHz, CDCl}_3): \delta \) 7.93 (d, J = 15.2 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.28 – 7.11 (m, 3H), 6.68 (d, J = 15.2 Hz, 1H), 4.64 (d, J = 79.4 Hz, 2H), 3.48 – 3.37 (m, 6H), 1.90 (d, J = 7.1 Hz, 2H), 1.74 – 1.58 (m, 6H), 1.53 – 1.38 (m, 1H), 1.27 – 1.12 (m, 8H), 0.89 – 0.77 (m, 2H).

\(^{13}\text{C NMR} (75 \text{ MHz, CDCl}_3): \delta \) 165.72 (C), 147.33 (C), 140.27 (CH), 139.02 (C), 135.27 (C), 130.91 (CH), 129.17 (CH), 126.62 (CH), 126.53 (CH), 119.59 (CH), 113.13 (CH2), 46.24 (CH2), 42.33 (CH2), 41.07 (CH2), 39.71 (CH2), 26.15 (CH), 22.58 (CH3), 15.16 (CH3), 13.33 (CH3).

HRMS (ESI-TOF): m/z calculated for C\(_{20}\)H\(_{30}\)NO \([\text{[M+H]}^+]\) 300.2322, found 300.2322.

\(\text{(E)-3-(2-(2-(Cyclohexylmethyl)allyl)phenyl)-N,N-diethylacrylamide (1n)}\)

This compound was prepared according the general procedure B starting from 2-cyclohexyl-N-methoxy-N-methylacetamide instead of N-methoxy-N,3-dimethylbutanamide.

\(^{1}H \text{ NMR} (300 \text{ MHz, CDCl}_3): \delta \) 7.93 (d, J = 15.2 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.31 – 7.13 (m, 3H), 6.69 (d, J = 15.3 Hz, 1H), 4.82 (s, 1H), 4.48 (s, 1H), 3.49 – 3.38 (m, 6H), 2.02 (t, J = 7.6 Hz, 2H), 1.50 – 1.38 (m, 2H), 1.36 – 1.12 (m, 8H), 0.88 (t, J = 7.2 Hz, 3H).

\(^{13}\text{C NMR} (75 \text{ MHz, CDCl}_3): \delta \) 165.68 (C), 146.63 (C), 140.16 (CH), 138.92 (C), 135.16 (C), 130.75 (CH), 129.02 (CH), 126.50 (CH), 126.44 (CH), 119.49 (CH), 113.01 (CH2), 44.52 (CH2), 42.21 (CH2), 40.96 (CH2), 39.74 (CH2), 35.50 (CH), 33.28 (CH2), 26.59 (CH2), 26.28 (CH2), 15.05 (CH3), 13.22 (CH3).

HRMS (ESI-TOF): m/z calculated for C\(_{23}\)H\(_{34}\)NO \([\text{[M+H]}^+]\) 340.2635, found 340.2635.

\(\text{(E)-N,N-Diethyl-3-(2-(2-methylenehexyl)phenyl)acrylamide (1l)}\)

This compound was prepared according the general procedure B starting from N-methoxy-N-methylpentanamide instead of N-methoxy-N,3-dimethylbutanamide.

\(^{1}H \text{ NMR} (300 \text{ MHz, CDCl}_3): \delta \) 7.94 (d, J = 15.2 Hz, 1H), 7.56 – 7.47 (m, 1H), 7.31 – 7.13 (m, 3H), 6.69 (d, J = 15.3 Hz, 1H), 4.82 (s, 1H), 4.48 (s, 1H), 3.49 – 3.38 (m, 6H), 2.02 (t, J = 7.6 Hz, 2H), 1.50 – 1.38 (m, 2H), 1.36 – 1.12 (m, 8H), 0.88 (t, J = 7.2 Hz, 3H).
140.22 (CH), 138.95 (C), 135.17 (C), 130.82 (CH), 126.56 (CH), 126.50 (CH), 119.49 (CH), 111.42 (CH2), 42.28 (CH2), 41.02 (CH2), 39.95 (CH2), 35.99 (CH2), 29.90 (CH2), 22.46 (CH2), 15.10 (CH3), 14.00 (CH3), 13.27 (CH3). **HRMS (ESI-TOF):** m/z calculated for C20H30NO ([M+H]+) 300.2321, found 300.2322.

HRMS (ESI-TOF): m/z calculated for C21H30NO ([M+H]+) 312.2321, found 312.2322; m/z calculated for C21H29NNaO ([M+Na]+) 334.2142, found 334.2141.

(E)-N,N-Diethyl-3-(2-(5-methyl-2-methylenehex-5-en-1-yl)phenyl)acrylamide (1t)

This compound was prepared according the general procedure B starting from N-methoxy-N,4-dimethylpent-4-enamide instead of N-methoxy-N,3-dimethylbutanamide. **1H NMR** (300 MHz, CDCl3): δ 7.94 (d, J = 15.2 Hz, 1H), 7.53 (dd, J = 7.5, 1.8 Hz, 1H), 7.32 – 7.12 (m, 3H), 6.70 (d, J = 15.4 Hz, 1H), 4.85 (s, 1H), 4.70 – 4.65 (m, 2H), 4.52 (s, 1H), 3.53 – 3.38 (m, 6H), 2.20 – 2.14 (m, 4H), 1.70 (s, 3H), 1.28 – 1.16 (m, 6H). **13C NMR** (75 MHz, CDCl3): δ 165.71 (C), 148.09 (C), 145.52 (C), 140.23 (CH), 138.80 (C), 135.21 (C), 130.88 (CH), 129.20 (CH), 126.67 (CH), 126.56 (CH), 119.57 (CH), 111.77 (CH2), 110.10 (CH2), 42.33 (CH2), 41.08 (CH2), 40.06 (CH2), 36.08 (CH2), 34.42 (CH2), 22.53 (CH3), 15.15 (CH3), 13.31 (CH3). **HRMS (ESI-TOF):** m/z calculated for C21H30NO ([M+H]+) 312.2321, found 312.2322; m/z calculated for C21H29NNaO ([M+Na]+) 334.2142, found 334.2141.

General procedure C for preparation of precursors 1k and 1o (exemplified for the synthesis of 1k)

1-Bromo-2-(2-methylallyl)benzene (S10)

This compound was synthetized according of a previous slightly modified procedure by Toste and coworkers.[6]

Prop-1-en-2-ylmagnesium bromide solution (0.5 M, 1 equiv) was slowly added to solution of 2-bromobenzyl bromide (2.50 g, 10.0 mmol), Cul (190.5 mg, 1.0 mmol,) and 2,2'-bipyridyne (156.2 mg, 1.0 mmol) in toluene (15.1 mL) at 0 °C. The reaction was allowed to warm to rt and stirred for 4 h, when TLC indicates that the reaction is complete. NH4Cl (sat) (25 mL) was added. After extraction (3 × 25 mL, Et2O), the combined organic layers were dried and concentrated and chromatographed to yield the product8 as a colorless oil (87% yield).
2-(2-Methylallyl)benzaldehyde (S11)

This compound was prepared according to the procedure described for the synthesis of S9 (see page S11). The product was isolated as clear oil (89% yield). The NMR and MS analysis were consistent with those previously reported in the literature.\(^6\)

(E)-N,N-Diethyl-3-(2-(2-methylallyl)phenyl)acrylamide (1k)

Prepared following the previously shown Horner–Wadsworth–Emmons procedure from S11 (see experimental procedure at page S7), the product was obtained in 76% yield as clear oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.96 (d, \(J = 15.2\) Hz, 1H), 7.55 – 7.50 (m, 1H), 7.30 – 7.14 (m, 3H), 6.70 (d, \(J = 15.2\) Hz, 1H), 4.85 – 4.48 (m, 2H), 3.51 – 3.39 (m, 6H), 1.73 (s, 3H), 1.28 – 1.14 (m, 6H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 165.78 (C), 144.46 (C), 140.23 (CH), 138.90 (C), 135.16 (C), 130.84 (CH), 129.22 (CH), 126.68 (CH), 126.59 (CH), 119.53 (CH), 112.54 (CH\(_2\)), 42.36 (CH\(_2\)), 41.51 (CH\(_2\)), 41.11 (CH\(_2\)), 22.87 (CH\(_3\)), 15.17 (CH\(_3\)), 13.33 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{17}\)H\(_{24}\)NO ([M+H\(^+\)]\(^+\)) 258.1851, found 258.1852.

(E)-N,N-Diethyl-3-(2-(3-methylbut-3-en-1-yl)phenyl)acrylamide (1o)

This compound was prepared according the general procedure C using (2-methylallyl)magnesium bromide instead of prop-1-en-2-ylmagnesium bromide. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.01 (d, \(J = 15.2\) Hz, 1H), 7.55 – 7.49 (m, 1H), 7.27 – 7.15 (m, 3H), 6.73 (d, \(J = 15.2\) Hz, 1H), 4.75 – 4.68 (m, 2H), 3.51 – 3.43 (m, 4H), 2.92 – 2.86 (m, 2H), 2.30 – 2.23 (m, 2H), 1.77 (s, 3H), 1.29 – 1.16 (m, 6H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 165.71 (C), 145.03 (C), 141.55 (C), 139.89 (CH), 134.27 (C), 129.81 (CH), 129.30 (CH), 126.51 (CH), 126.35 (CH), 119.59 (CH), 110.55 (CH\(_2\)), 42.33 (CH\(_2\)), 41.10 (CH\(_2\)), 39.40 (CH\(_2\)), 31.75 (CH\(_2\)), 22.68 (CH\(_3\)), 15.15 (CH\(_3\)), 13.31 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{18}\)H\(_{26}\)NO ([M+H\(^+\)]\(^+\)) 272.2009, found 272.2009.

General procedure D for preparation of precursors 1p, 1q, 1r and 1s, (exemplified for the synthesis of 1r)
1-(4-Methyl-2-methylenepentyl)-1H-indole-2-carbaldehyde (S12)

Following a modified procedure reported by L. M. Stanley,[7] DMF (7.65 mL, 0.27 M) was added to 1H-indole-2-carbaldehyde (300 mg, 2.06 mmol,) and Cs$_2$CO$_3$ (875 mg, 2.68 mmol) and the resulting mixture was stirred at rt for 0.5 h. 2-(Bromomethyl)-4-methylpent-1-ene[8,9] (2.7 mmol) was added dropwise. The mixture was stirred at rt until the TLC indicates full conversion of the limiting reagent. Water (30 mL) was added to the mixture, and the resulting solution was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with water (100 mL), brine (100 mL), dried and concentrated to yield a crude residue that was purified by flash column chromatography on silica gel (hexane :EtOAc) to give the product as orange oil (404 mg, 81 % yield).

1H NMR (300 MHz, CDCl$_3$): δ 9.88 (s, 1H), 7.78 – 7.73 (m, 1H), 7.44 – 7.32 (m, 2H), 7.29 (s, 1H), 7.22 – 7.15 (m, 1H), 5.19 – 5.11 (m, 2H), 4.78 – 4.72 (m, 1H), 4.27 – 4.19 (m, 1H), 1.97 (d, J = 7.0 Hz, 2H), 1.93 – 1.83 (m, 1H), 0.95 (d, J = 6.3 Hz, 6H).

13C NMR (75 MHz, CDCl$_3$): δ 182.49 (CHO), 144.08 (C), 140.79 (C), 135.55 (C), 127.04 (CH), 126.45 (C), 123.43 (CH), 121.13 (CH), 117.96 (CH), 111.14 (CH), 110.84 (CH$_2$), 49.05 (CH$_2$), 43.93 (CH$_2$), 26.31 (CH), 22.62 (CH$_3$).

HRMS (ESI-TOF): m/z calculated for C$_{22}$H$_{31}$N$_2$O ([M+H]$^+$) 339.2432, found 339.2431.

(E)-N,N-Diethyl-3-(1-(4-methyl-2-methylenepentyl)-1H-indol-2-yl)acrylamide (1r)

Prepared following the previously shown Horner–Wadsworth–Emmons procedure from S12 (see experimental procedure at page S7) (471 mg, 84% yield).

1H NMR (300 MHz, CDCl$_3$): δ 7.79 (d, J = 15.1 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.20 – 7.11 (m, 1H), 7.00 – 6.89 (m, 2H), 4.86 (s, 1H), 4.73 (s, 2H), 4.43 (s, 1H), 3.57 – 3.45 (m, 4H), 2.00 (d, J = 7.1 Hz, 2H), 1.96 – 1.85 (m, 1H), 1.32 – 1.20 (m, 6H), 1.00 (d, J = 6.3 Hz, 6H).

13C NMR (75 MHz, CDCl$_3$): δ 165.26 (C), 143.33 (C), 138.42 (C), 136.15 (C), 130.58 (CH), 127.52 (C), 122.99 (CH), 120.93 (CH), 120.27 (CH), 118.32 (CH), 111.82 (CH$_2$), 109.77 (CH), 102.20 (CH), 47.82 (CH$_2$), 43.59 (CH$_2$), 42.20 (CH$_2$), 41.08 (CH$_2$), 26.34 (CH), 22.51 (CH$_3$), 15.11 (CH$_3$), 13.22 (CH$_3$).

HRMS (ESI-TOF): m/z calculated for C$_{22}$H$_{31}$N$_2$O ([M+H]$^+$) 339.2432, found 339.2431.

(E)-N,N-Diethyl-3-(1-(2-methylenebutyl)-1H-indol-2-yl)acrylamide (1s)

This compound was prepared according the general procedure D using 2-(bromomethyl)but-1-ene instead of 2-(bromomethyl)-4-methylpent-1-ene (see the synthesis of S12 at page S14).

1H NMR (300 MHz, CDCl$_3$): δ 7.80 – 7.74 (m, 1H), 7.63 – 7.58 (m, 1H), 7.27 – 7.20 (m, 2H), 7.14 – 7.07 (m, 1H), 6.96 – 6.84 (m, 2H), 4.86 (d, J = 1.2 Hz, 1H), 4.75 (s, 2H), 4.44 (d, J = 1.0 Hz, 1H), 3.52 – 3.42 (m, 4H), 2.11 – 2.02 (m, 2H), 1.22 (dt, J = 16.7, 7.1 Hz, 6H), 1.12 (t, J = 7.4 Hz, 3H).

13C NMR (75 MHz, CDCl$_3$): δ 165.39 (C), 146.21 (C), 138.56 (C), 136.23 (C), 130.73 (CH), 127.58 (C), 123.07 (CH), 120.99 (CH), 120.34 (CH), 118.29 (CH), 109.92 (CH), 109.39 (CH$_2$),

S15
102.40 (CH), 48.19 (CH₂), 42.29 (CH₂), 41.19 (CH₂), 26.39 (CH₂), 15.18 (CH₃), 13.28 (CH₃), 11.97 (CH₃). HRMS (ESI-TOF): m/z calculated for C_{20}H_{27}N_{2}O ([M+H]⁺) 311.2119, found 311.2118.

(E)-N,N-Diethyl-3-(2-(2-methylenebutoxy)phenyl)acrylamide (1p)

This compound was prepared according the general procedure D using 2-hydroxybenzaldehyde and 2-(bromomethyl)but-1-ene as starting materials.

\[\text{H NMR (300 MHz, CDCl₃): } \delta 7.94 (d, J = 15.5 Hz, 1H), 7.48 (dd, J = 7.6, 1.8 Hz, 1H), 7.31 – 7.23 (m, 1H), 7.05 – 6.87 (m, 3H), 5.16 – 4.97 (m, 2H), 4.53 (s, 2H), 3.51 – 3.41 (m, 4H), 2.19 (q, J = 7.5 Hz, 2H), 1.25 – 1.15 (m, 6H), 1.10 (t, J = 7.5 Hz, 3H). \]

\[\text{C NMR (75 MHz, CDCl₃): } \delta 166.46 (C), 157.57 (C), 146.22 (C), 138.18 (CH), 130.42 (CH), 129.79 (CH), 124.81 (C), 120.80 (CH), 119.12 (CH), 112.41 (CH), 111.61 (CH₂), 71.42 (CH₂), 42.34 (CH₂), 41.12 (CH₂), 26.11 (CH₂), 15.18 (CH₃), 13.28 (CH₃), 11.97 (CH₃). \]

HRMS (ESI-TOF): m/z calculated for C_{18}H_{26}NO₂ ([M+H]⁺) 288.1958, found 288.1958.

(E)-N,N-Diethyl-3-(2-((4-methyl-2-methylenepentyl)oxy)phenyl)acrylamide (1q)

This compound was prepared according the general procedure D using 2-hydroxybenzaldehyde and 2-(bromomethyl)-4-methylpent-1-ene as starting materials.

\[\text{H NMR (300 MHz, CDCl₃): } \delta 7.91 (d, J = 15.5 Hz, 1H), 7.44 (dd, J = 7.6, 1.7 Hz, 1H), 7.27 – 7.17 (m, 1H), 7.05 – 6.80 (m, 3H), 5.06 (dd, J = 64.4, 1.5 Hz, 2H), 4.46 (s, 2H), 3.48 – 3.38 (m, 4H), 2.03 – 2.00 (m, 2H), 1.83 – 1.71 (m, 1H), 1.25 – 1.11 (m, 6H), 0.88 (d, J = 6.5 Hz, 6H). \]

\[\text{C NMR (75 MHz, CDCl₃): } \delta 166.32 (C), 157.45 (C), 143.34 (C), 138.02 (CH), 130.30 (CH), 129.63 (CH), 124.78 (C), 120.72 (CH), 119.13 (CH), 113.71 (CH₂), 112.38 (CH), 70.90 (CH₂), 43.05 (CH₂), 42.23 (CH₂), 40.97 (CH₂), 26.23 (CH₂), 22.50 (CH₂), 15.06 (CH₃), 13.26 (CH₃). \]

HRMS (ESI-TOF): m/z calculated for C_{20}H_{30}NO₂ ([M+H]⁺) 316.2272, found 316.2271.

Procedure E for preparation of precursors 5a and 5b (exemplified for the synthesis of 5b)

\[\text{N,N-Diethyl-3-hydroxybenzamide (S13)} \]

3-Hydroxybenzoic acid (5.0 g, 36.2 mmol) was placed in a flask equipped with a reflux condenser. Thionyl chloride (20 mL, 270 mmol) and a few drops of DMF were added and the mixture was refluxed for 4 hours. The reaction was allowed to

S16
cool to rt and the excess of SOCl₂ was carefully removed with a rotary evaporator equipped with an intermediate cooled trap (Et₂O – N₂ bath). The crude acid chloride was dissolved in CH₂Cl₂ (72 mL) and Et₃N (15.26 mL, 108.6 mmol) was added. The mixture was cooled in an ice-water bath and Et₂NH (13.9 mL, 133.9 mmol) was added dropwise. The reaction was stirred for 19 hours at rt, concentrated and the resulting crude mixture was purified via flash column chromatography (1:2 to 3:1 EtOAc: Hex) to provide the amide product as yellow solid (6.50 g, 95% yield). The NMR and MS analysis were consistent with those previously published.[10]

N,N-Diethyl-3-(2-methylenebutoxy)benzamide (5b)

2-(Bromomethyl)but-1-ene (463 mg, 3.1 mmol) was added dropwise to a solution of N,N-diethyl-3-hydroxybenzamide (S13, 500 mg, 2.59 mmol) and K₂CO₃ (430 mg, 3.1 mmol) in DMF (3 mL). The mixture was stirred 20 hours at rt, diluted with Et₂O (10 mL) and washed with water (3 x 15 mL). The organic phase was dried, concentrated and chromatographed to yield 5b as colorless oil (278 mg, 41%). **¹H NMR** (300 MHz, CDCl₃): δ 7.28 – 7.21 (m, 1H), 6.93 – 6.86 (m, 3H), 5.02 (d, J = 37.6 Hz, 2H), 4.45 (s, 2H), 3.58 – 3.11 (m, 4H), 2.12 (q, J = 7.4 Hz, 2H), 1.25 – 1.01 (m, 9H). **¹³C NMR** (75 MHz, CDCl₃): δ 170.98 (C), 158.80 (C), 146.20 (C), 138.56 (C), 129.52 (CH), 118.53 (CH), 115.76 (CH), 112.61 (CH), 110.98 (CH₂), 71.03 (CH₂), 43.22 (CH₂), 39.15 (CH₂), 25.85 (CH₂), 14.20 (CH₃), 12.90 (CH₃), 12.02 (CH₃). **HRMS** (ESI-TOF): m/z calculated for C₁₅H₂₄NO₂ ([M+H]⁺) 262.1801, found 262.1802.

N,N-Diethyl-3-((2-methylallyl)oxy)benzamide (5a)

This compound was prepared according the general procedure E using 3-bromo-2-methylprop-1-ene as alkylating agent. **¹H NMR** (300 MHz, CDCl₃): δ 7.29 – 7.22 (m, 1H), 6.94 – 6.87 (m, 3H), 5.08 – 4.94 (m, 2H), 4.41 (s, 2H), 3.58 – 3.14 (m, 4H), 1.80 (s, 3H), 1.27 – 1.00 (m, 6H). **¹³C NMR** (75 MHz, CDCl₃): δ 170.99 (C), 158.77 (C), 140.65 (C), 138.58 (C), 129.55 (CH), 118.60 (CH), 112.86 (CH₂), 112.66 (CH), 71.83 (CH₂), 43.29 (CH₂), 39.26 (CH₂), 19.43 (CH₃), 14.30 (CH₃), 12.98 (CH₃). **HRMS** (ESI-TOF): m/z calculated for C₁₅H₂₂NO₂ ([M+H⁺]⁺) 248.1645, found 248.1645.

Synthesis of N,N-Diethyl-1-(3-methylbut-3-en-1-yl)-1H-pyrrole-3-carboxamide (5c).
N,N-Diethyl-1H-pyrrole-3-carboxamide (S14)

Et$_2$NH (2.14 mL, 20.7 mmol) was added to a solution of 1H-pyrrole-3-carboxylic acid (2.0 g, 18.0 mmol), EDC.HCl (5.17 g, 27.0 mmol) and Et$_3$N (7.5 mL, 53.9 mmol) in CH$_2$Cl$_2$ (72 mL, 0.25 M). The resulting mixture was stirred for 16 h and then water (50 mL) was added. The layers were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (2 x 50 mL). The combined organic layers were dried and concentrated to yield a crude residue that was purified by column chromatography (1:1 to 9:1, EtOAc : Hexane) to yield S14 as a pale yellow solid (1.88 g, 63% yield).

1H NMR (300 MHz, CDCl$_3$): δ 10.40 (s, 1H), 6.97 – 6.92 (m, 1H), 6.61 – 6.57 (m, 1H), 6.34 – 6.30 (m, 1H), 3.52 (q, J = 7.1 Hz, 4H), 1.20 (t, J = 7.1 Hz, 6H).

13C NMR (75 MHz, CDCl$_3$): δ 167.87 (C), 121.01 (CH), 118.98 (C), 118.22 (CH), 108.31 (CH), 41.75 (CH$_2$), 13.82 (CH$_3$).

HRMS (ESI): m/z calculated for C$_9$H$_{15}$N$_2$O ([M+H]$^+$) 167.1178, found 167.1179.

N,N-Diethyl-1-(3-methylbut-3-en-1-yl)-1H-pyrrole-3-carboxamide (5c)

Prepared following a modified procedure from Schreiber and coworkers.[11] 3-methylbut-3-en-1-yl 4-methylbenzenesulfonate (694 mg, 2.9 mmol) was slowly added to a solution of N,N-diethyl-1H-pyrrole-3-carboxamide (300 mg, 1.80 mmol) and cesium carbonate (1.35 g, 4.14 mmol) in anhydrous DMF (4.5 mL, 0.4 M). The reaction mixture was stirred at 85 ºC for 16 hours, allowed to cool to rt and water (30 mL) was added. The mixture was extracted with Et$_2$O (5 x 10 mL). The organic phase was dried, concentrated and the crude residue was purified by flash chromatography (1:3 to 2:1 AcOEt : Hexane) to yield 5c as clear oil (402 mg, 96% yield).

1H NMR (500 MHz, CDCl$_3$): δ 7.04 – 7.01 (m, 1H), 6.56 – 6.52 (m, 1H), 6.29 – 6.26 (m, 1H), 4.78 – 4.76 (m, 1H), 4.66 (s, 1H), 3.94 (t, J = 7.4 Hz, 2H), 3.49 (q, J = 7.1 Hz, 4H), 2.44 (t, J = 7.4 Hz, 2H), 1.71 (s, 3H), 1.18 (td, J = 7.1, 1.5 Hz, 6H).

13C NMR (126 MHz, CDCl$_3$): δ 166.58 (C), 141.77 (C), 123.59 (CH), 120.36 (CH), 119.32 (C), 112.66 (CH$_2$), 108.78 (CH), 48.41 (CH$_2$), 41.43 (CH$_2$), 39.45 (CH$_2$), 22.41 (CH$_3$), 13.79 (CH$_3$).

HRMS (ESI-TOF): m/z calculated for C$_{14}$H$_{23}$N$_2$O ([M+H]$^+$) 235.1806, found 235.1805.

Synthesis of N,N-Diethyl-1-(3-methylbut-3-en-1-yl)-1H-indole-3-carboxamide (5d).

Following a modified reported procedure,[12] Indole (1.17 g, 10.0 mmol, 1.0 equiv) was added in portions to a NaH (560 mg, 14.0 mmol, 1.4 equiv) suspension in DMF (25 mL, 0.4 M), at 0ºC. The reaction mixture was then...
warmed to 50 °C to ensure complete deprotonation. Subsequently, it was cooled to 0 °C and 3-methyl-3-butenyl methanesulfonate[13] was added dropwise. (CAUTION, the reaction is very exothermic!) The ice bath was removed and the reaction mixture was allowed to slowly warm up and stirred overnight at rt. After quenching with water, the aqueous phase was extracted with hexane (4 x 20 mL), the combined organic layers were washed with brine, dried, filtered and the organic phases were concentrated to yield a crude residue that was purified by flash chromatography (hexane–EtOAc = 99:1) to afford the product as a colorless oil (690 mg, 37% yield). The data was consistent with that previously described.[12]

1-(3-Methylbut-3-en-1-yl)-1H-indole-3-carboxylic acid (S16)

To a solution of 1-(3-Methylbut-3-en-1-yl)-1H-indole (S15, 690 mg, 3.72 mmol, 1 equiv) in CH\textsubscript{2}Cl\textsubscript{2} (5.0 mL, 0.75 M) at 0 °C was added dropwise trifluoroacetic anhydride (0.79 mL, 5.59 mmol). The solution was stirred at rt for 1h, and the volatile components were removed in a rotary evaporator under vacuum: The crude product was carried to the next step without further purification. To a solution of 2,2,2-Trifluoro-1-(1-(3-methylbut-3-en-1-yl)-1H-indol-3-yl)ethan-1-one (1.04 g, 3.72 mmol) in MeOH (3.7 mL, 1 M), was added an aqueous solution of KOH (3.7 mL, 5M). The mixture was stirred at rt for 1h, at this point, the mixture was extracted with EtOAc (3 x 10 mL). The organic layer was dried with Na\textsubscript{2}SO\textsubscript{4} and the solvent was removed. The pure product (825 mg, 97% yield) was obtained as white solid after column chromatography (1:3 to 2:1, EtOAc:Hexane). The data was consistent with the previous described.[14]

\begin{align*}
\text{N,N-Diethyl-1-(3-methylbut-3-en-1-yl)-1H-indole-3-carboxamide (5d)}
\end{align*}

To a solution of 1-(3-Methylbut-3-en-1-yl)-1H-indole-3-carboxylic acid (S16, 825 mg, 3.60 mmol, 1.0 equiv), in CH\textsubscript{2}Cl\textsubscript{2} (58 mL, 0.06 M) and DMF (2.9 mL, 1.25M), EDC.HCl (897 mg, 4.68 mmol, 1.3 equiv), HOBT (606 mg, 3.96 mmol, 1.1 equiv) and triethylamine (1.6 mL, 11.52 mmol, 3.2 equiv) were added. The mixture was stirred 20 minutes and diethylamine (0.43 mL, 4.14 mmol, 1.15 equiv) was added. The resulting mixture was stirred at 40 °C for 4 h and at rt for 16 hours. The reaction was poured into water and the organic layer was separated. The aqueous phase was extracted with EtOAc (3 x 20 mL) The combined organic layers were washed with Na\textsubscript{2}SO\textsubscript{4} and the solvent was evaporated. The crude product was purified by column chromatography (1:2 to 3:1, AcOEt:Hexane). The indole derivative was obtained as beige solid (645 mg, 63 %). 1H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta \) 7.74 (d, \(J = 7.8 \) Hz, 1H), 7.32 – 7.27 (m, 2H), 7.23 – 7.10 (m, 2H), 4.77 – 4.61 (m, 2H), 4.17 (t, \(J = 7.3 \) Hz, 2H), 3.55 – 3.47 (m, 4H), 2.48 (t, \(J = 7.4 \) Hz, 2H), 1.72 (s, 3H), 1.20 – 1.13 (m, 6H). 13C NMR (75 MHz, CDCl\textsubscript{3}): \(\delta \) 166.81 (C), 141.84 (C), 135.56 (C), 128.26 (CH), 126.98 (C), 122.29 (CH),
121.08 (CH), 120.60 (CH), 112.91 (CH), 110.52 (CH), 45.08 (CH), 41.34 (CH), 37.98 (CH), 22.47 (CH), 13.96 (CH).

Synthesis of ketones, ester and acid 1c, 1u, 1v, and 1w.

(E)-8-Methylene-dodec-3-en-2-one (1c)

![Chemical structure of 1c]

5-Methylenenonanal (700 mg, 4.54 mmol) was added to a solution of 1-(triphenyl-λ₅-phosphaneylidene)propan-2-one (1.7 g, 5.45 mmol, 1.2 equiv) in CHCl₃ (18 mL, 0.25 M) The mixture was stirred for 20 hours at rt, the solvent was removed, and the crude residue was purified by column chromatography (1:10, Et₂O:Hexane) to afford (E)-8-methylene-dodec-3-en-2-one as clear oil (514 mg, 58% yield). ¹H NMR (300 MHz, CDCl₃): δ 6.79 (dt, J = 16.0, 6.9 Hz, 1H), 6.06 (dt, J = 15.9, 1.5 Hz, 1H), 4.73 – 4.67 (m, 2H), 2.26 – 2.16 (m, 5H), 2.00 (dt, J = 13.9, 7.8 Hz, 4H), 1.65 – 1.53 (m, 2H), 1.44 – 1.23 (m, 4H), 0.88 (t, J = 7.1 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 190.47 (C), 149.16 (C), 148.25 (CH), 131.53 (CH), 109.32 (CH₂), 35.73 (CH₂), 35.50 (CH₂), 32.13 (CH₂), 30.06 (CH₂), 26.93 (CH₃), 26.19 (CH₂), 22.55 (CH₂), 14.07 (CH₃).

MS (ESI): ([M+H]⁺) 195.2

(E)-7-Methylene-1-phenylundec-2-en-1-one (1w)

Prepared following the procedure for the synthesis of 1c, using 1-phenyl-2-(triphenyl-λ₅-phosphaneylidene)ethan-1-one as Wittig reagent. ¹H NMR (300 MHz, CDCl₃): δ 7.90 (d, J = 7.4 Hz, 2H), 7.53 – 7.45 (m, 1H), 7.40 (t, J = 7.4 Hz, 2H), 7.10 – 6.98 (m, 1H), 6.86 (d, J = 15.4 Hz, 1H), 4.71 (d, J = 6.6 Hz, 2H), 2.33 – 2.22 (m, 2H), 2.07 – 1.94 (m, 4H), 1.70 – 1.56 (m, 2H), 1.44 – 1.23 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 190.47 (C), 149.44 (CH), 148.95 (C), 137.90 (C), 132.48 (CH), 128.41 (CH), 125.95 (CH), 109.21 (CH₂), 35.58 (CH₂), 35.41 (CH₂), 32.32 (CH₂), 29.91 (CH₂), 26.15 (CH₂), 22.41 (CH₂), 13.94 (CH₃).

MS (ESI): ([M+H]⁺) 257.2

Ethyl (E)-7-methyleneundec-2-enoate (1u)

Prepared following the procedure for the synthesis of 1c, using ethyl 2-(triphenyl-λ₅-phosphaneylidene)acetate as Wittig reagent. ¹H NMR (300 MHz, CDCl₃): δ 6.95 (dt, J = 15.5, 6.9 Hz, 1H), 5.81 (d, J = 15.7 Hz, 1H), 4.70 (d, J = 8.2 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 2.23 – 2.14 (m, 2H), 2.05 – 1.94 (m, 4H), 1.64 – 1.52 (m, 2H), 1.44 –
1.21 (m, 7H), 0.89 (t, J = 7.0 Hz, 3H). $^1{\text{H}}$ NMR (300 MHz, CDCl$_3$): δ 11.60 (s, 1H), 7.09 (dt, J = 15.6, 7.0 Hz, 1H), 5.84 (dt, J = 15.6, 1.6 Hz, 1H), 4.76 – 4.68 (m, 2H), 2.29 – 2.18 (m, 2H), 2.08 – 1.96 (m, 4H), 1.68 – 1.55 (m, 2H), 1.45 – 1.25 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 172.41 (C), 152.25 (CH), 149.18 (C), 121.02 (CH), 109.41 (CH$_2$), 35.77 (CH$_2$), 35.51 (CH$_2$), 32.01 (CH$_2$), 30.11 (CH$_2$), 26.02 (CH$_2$), 22.61 (CH$_2$), 14.12 (CH$_3$). MS (ESI): ([M+H]$^+$) 197.1

(E)-7-Methyleneundec-2-enoic acid (1v).

LiOH (42 mg, 0.178 mmol, 2 equiv) in water (3.3 mL) was added to a solution of ethyl (E)-7-methyleneundec-2-enoate (1u, 200 mg, 0.89 mmol, 1 equiv) in MeOH (1.6 mL) and THF (4 mL), and the reaction mixture was stirred at 45 ºC for 20 hours. Then, HCl (10 %) was added until a pH of 1-2 was reached. After extraction with EtOAc (3 x 10 mL), the organic layer was dried and the solvent removed. The pure product (156 mg, 89% yield) was obtained as white solid after column chromatography (1:3 to 1:1, AcOEt:Hexane).

13C NMR (75 MHz, CDCl$_3$): δ 166.81 (C), 149.27 (C), 149.15 (CH), 121.59 (CH), 109.27 (CH), 60.24 (CH$_2$), 35.76 (CH$_2$), 35.50 (CH$_2$), 31.88 (CH$_2$), 30.09 (CH$_2$), 26.16 (CH$_2$), 22.58 (CH$_2$), 14.38 (CH$_3$), 14.09 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{14}$H$_{24}$NaO$_2$ ([M+Na]$^+$) 247.1662, found 247.1669.
Procedure for the Iridium-catalyzed intramolecular hydrocarbonation reaction

Ir(cod)$_2$BArF (0.05 equiv), d^5ppe (0.05 equiv), the carboxamide precursor (typically 50 -200 mg, 1.0 equiv) and the appropriate solvent [dioxane or 1,2-DCE (0.124 M)] were sequentially added to a Schlenk tube under Argon. The reaction mixture was then stirred at the appropriate temperature [100 °C for dioxane or 140 °C for 1,2-DCE (in a sealed tube)]. After 19 h, the reaction mixture was concentrated and the crude residue was purified by flash chromatography on silica gel (typically 1:20 to 1:10 EtOAc : Hexanes) to afford the cyclic product.

(Z)-2-(2-Butyl-2-methylcyclopentylidene)-N,N-diethylacetamide (2a)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a pale yellow oil (91% yield). 1H NMR (300 MHz, CDCl$_3$): δ 5.82 (t, $J = 2.1$ Hz, 1H), 3.51 – 3.20 (m, 4H), 2.48 – 2.38 (m, 2H), 1.77 – 1.38 (m, 8H), 1.28 – 1.22 (m, 2H), 1.20 (s, 3H), 1.15 – 1.08 (m, 6H), 0.85 (t, $J = 7.0$ Hz, 3H).

13C NMR (75 MHz, CDCl$_3$): δ 167.81 (C), 161.80 (C), 114.45 (CH), 46.18 (C), 42.57 (CH$_2$), 40.70 (CH$_2$), 39.15 (CH$_2$), 38.51 (CH$_2$), 36.88 (CH$_2$), 27.37 (CH$_2$), 25.44 (CH$_3$), 23.60 (CH$_2$), 22.68 (CH$_2$), 14.34 (CH$_3$), 13.99 (CH$_3$), 12.90 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{16}$H$_{30}$NO ([M+H]$^+$) 252.2322, found 252.2322.

(Z)-2-(2-Butyl-2-methylcyclopentylidene)-1-(pyrrolidin-1-yl)ethan-1-one (2b)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 15 % EtOAc/Hexanes) as a yellow pale oil (44 %). 1H NMR (400 MHz, CDCl$_3$): δ 5.84 (s, 1H), 3.50 – 3.34 (m, 4H), 2.51 – 2.36 (m, 2H), 1.95 – 1.81 (m, 4H), 1.78 – 1.71 (m, 2H), 1.71 – 1.57 (m, 4H), 1.49 – 1.42 (m, 1H), 1.27 – 1.24 (m, 5H), 1.14 – 1.04 (m,
1H NMR (101 MHz, CDCl$_3$): δ 166.55 (C), 163.63 (C), 114.80 (CH), 46.20 (C), 40.93 (CH$_2$), 38.19 (CH$_2$), 37.74 (CH$_2$), 27.39 (CH$_2$), 25.59 (CH$_3$), 23.61 (CH$_2$), 22.86 (CH$_2$), 14.36 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{16}$H$_{28}$NO ([M+H]$^+$) 250.2167, found 250.2165.

(Z)-2-(2,2-Dimethylcyclopentylidene)-N,N-diethylacetamide (2d)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a pale yellow oil (80% yield). 1H NMR (500 MHz, CDCl$_3$):

δ 5.81 (t, J = 2.1 Hz, 1H), 3.38 (q, J = 7.1 Hz, 2H), 3.32 (q, J = 7.1 Hz, 2H), 2.47 (td, J = 7.3, 2.1 Hz, 2H), 1.67 – 1.59 (m, 2H), 1.56 (t, J = 6.4 Hz, 2H), 1.22 (s, 5H), 1.14 – 1.10 (m, 7H). 13C NMR (126 MHz, CDCl$_3$): δ 167.99 (C), 161.21 (C), 114.67 (CH), 44.76 (CH$_2$), 42.86 (C), 42.69 (CH$_2$), 39.18 (CH$_3$), 36.05 (CH$_2$), 26.88 (CH$_3$), 22.44 (CH$_2$), 14.06 (CH$_3$), 12.90 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{13}$H$_{24}$NO ([M+H]$^+$) 210.1851, found 210.1852.

(Z)-N,N-Diethyl-2-(2-isobutyl-2-methylcyclopentylidene)acetamide (2e)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a pale yellow oil (93% yield). 1H NMR (300 MHz, CDCl$_3$):

δ 5.81 – 5.78 (m, 1H), 3.52 – 3.38 (m, 1H), 3.37 – 3.21 (m, 3H), 2.48 – 2.41 (m, 2H), 1.80 – 1.72 (m, 1H), 1.70 – 1.57 (m, 4H), 1.54 – 1.40 (m, 2H), 1.23 (s, 3H), 1.15 – 1.08 (m, 6H), 0.93 – 0.83 (m, 6H). 13C NMR (75 MHz, CDCl$_3$): δ 167.99 (C), 162.65 (C), 114.37 (CH), 47.05 (CH$_2$), 46.52 (C), 42.54 (CH$_2$), 41.06 (CH$_2$), 39.10 (CH$_2$), 36.51 (CH$_2$), 25.51 (CH), 25.34 (CH$_3$), 25.24 (CH$_3$), 24.85 (CH$_3$), 22.52 (CH$_2$), 13.87 (CH$_3$), 12.77 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{16}$H$_{30}$NO ([M+H]$^+$) 252.2322, found 252.2322.

(Z)-N,N-Diethyl-2-(2-isopropyl-2-methylcyclopentylidene)acetamide (2f)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a yellow oil (96% yield). 1H NMR (300 MHz, CDCl$_3$):

δ 5.88 – 5.85 (m, 1H), 3.47 – 3.23 (m, 4H), 2.53 – 2.25 (m, 3H), 1.82 – 1.70 (m, 1H), 1.67 – 1.50 (m, 2H), 1.36 – 1.27 (m, 1H), 1.24 (s, 3H), 1.17 – 1.07 (m, 6H), 0.86 – 0.75 (m, 6H). 13C NMR (75 MHz, CDCl$_3$): δ 167.72 (C), 162.70 (C), 114.01 (CH), 49.76 (C), 42.38 (CH$_2$), 39.04 (CH$_2$), 38.70 (CH$_2$), 35.01 (CH$_2$), 33.13 (CH), 25.43 (CH$_3$), 22.90 (CH$_2$), 18.54 (CH$_3$), 17.89 (CH$_3$), 13.92 (CH$_3$), 12.74 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{16}$H$_{28}$NO ([M+H]$^+$) 238.2161, found 238.2165.
(Z)-2-(2-Benzyl-2-methylcyclopentylidene)-N,N-diethylacetamide (2g)

Carried out in refluxing Dioxane. The product was isolated by flash chromatography (5 to 10 \% EtOAc/Hexanes) as yellow oil (94\% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.20 – 7.10 (m, 5H), 5.87 (t, \(J = 1.6\) Hz, 1H), 3.40 – 3.28 (m, 3H), 3.02 – 2.88 (m, 2H), 2.43 – 2.25 (m, 2H), 1.82 – 1.68 (m, 1H), 1.53 – 1.42 (m, 2H), 1.28 – 1.19 (m, 2H), 1.15 (s, 3H), 1.14 - 1.06 (m, 6H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 167.92 (C), 162.01 (C), 139.98 (C), 130.92 (CH), 127.84 (CH), 125.94 (CH), 115.07 (CH), 47.06 (C), 44.31 (CH\(_2\)), 42.64 (CH\(_2\)), 40.08 (CH\(_2\)), 39.35 (CH\(_2\)), 36.76 (CH\(_2\)), 24.79 (CH\(_3\)), 22.28 (CH\(_2\)), 14.01 (CH\(_3\)), 12.88 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{19}\)H\(_{28}\)NO ([M+H]\(^+\)) 286.2164, found 286.2165.

(Z)-N,N-Diethyl-2-(2-methyl-2-phenylcyclopentylidene)acetamide (2h)

Carried out in 1,2-DCE at 140 °C (in a sealed tube). The product was isolated by flash chromatography (5 to 15 \% EtOAc/Hexanes) as white solid (83\% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.33 – 7.28 (m, 2H), 7.22 (t, \(J = 7.7\) Hz, 2H), 7.11 – 7.06 (m, 1H), 5.92 (t, \(J = 2.1\) Hz, 1H), 3.22 – 3.13 (m, 2H), 2.86 – 2.74 (m, 2H), 2.72 – 2.65 (m, 2H), 2.09 – 2.01 (m, 1H), 1.89 – 1.73 (m, 3H), 1.71 (s, 3H), 1.02 (t, \(J = 7.2\) Hz, 3H), 0.63 (t, \(J = 7.2\) Hz, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 166.66 (C), 161.78 (C), 148.08 (C), 127.65 (CH), 126.93 (CH), 125.44 (CH), 116.16 (CH), 50.86 (C), 47.71 (CH\(_2\)), 42.10 (CH\(_2\)), 38.83 (CH\(_2\)), 36.08 (CH\(_2\)), 24.73 (CH\(_3\)), 23.08 (CH\(_2\)), 13.89 (CH\(_3\)), 12.59 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{18}\)H\(_{26}\)NO ([M+H]\(^+\)) 272.2005, found 272.2009.

(Z)-N,N-Diethyl-2-(2-methylcyclopentylidene)acetamide (2i)

Carried out in 1,2-DCE at 140 °C (in a sealed tube). The product was isolated by flash chromatography (2 to 10 \% EtOAc/Hexanes) as a yellow pale oil (38\% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 5.96 – 5.94 (m, 1H), 3.51 – 3.28 (m, 5H), 2.56 – 2.43 (m, 1H), 2.41 – 2.29 (m, 1H), 1.92 – 1.82 (m, 1H), 1.77 – 1.65 (m, 1H), 1.64 – 1.53 (m, 1H), 1.47 – 1.38 (m, 1H), 1.18 – 1.11 (m, 6H), 1.06 (d, \(J = 7.0\) Hz, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 167.18 (C), 165.21 (C), 112.54 (CH), 42.41 (CH\(_2\)), 39.93 (CH\(_2\)), 36.53 (CH), 35.17 (CH\(_2\)), 34.98 (CH\(_3\)), 23.29 (CH\(_2\)), 19.98 (CH\(_3\)), 14.59 (CH\(_3\)), 13.28 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{12}\)H\(_{22}\)NO ([M+H]\(^+\)) 196.1697, found 196.1696.

(Z)-2-(2-Butyl-2-methylcyclopentylidene)-N,N-diethylpropanamide (2j)

98\% yield. \{NOTE: The presence of two rotamers is clearly observed in the \(^1\)H and \(^{13}\)C NMR spectra. This was further confirmed by performing the spectra at different temperatures\} \(^1\)H NMR (300 MHz, CDCl\(_3\), rt): \(\delta\) 3.71 – 3.53 (m, 1H), 3.49 – 3.36 (m, 1H), 3.23 – 3.05 (m, 2H), 2.38 – 2.17 (m, 2H), 1.71 (s, 3H), 1.66 – 1.44 (m, 5H), 1.32 – 1.07 (m, 14H), 0.84 (t, \(J = 7.0\) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 172.80 (C), 172.68 (C), 14.59 (CH\(_3\)), 13.28 (CH\(_3\)), 12.59 (CH\(_3\)), 116.16 (CH), 50.86 (C), 47.71 (CH\(_2\)), 42.10 (CH\(_2\)), 38.83 (CH\(_2\)), 36.08 (CH\(_2\)), 24.73 (CH\(_3\)), 23.08 (CH\(_2\)), 13.89 (CH\(_3\)), 12.59 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{12}\)H\(_{22}\)NO ([M+H]\(^+\)) 196.1697, found 196.1696.
149.69 (C), 148.77 (C), 121.98 (C), 121.91 (C), 46.11 (C), 46.07 (C), 42.61 (CH₂), 42.40 (CH₂), 40.73 (CH₂), 39.80 (CH₂), 21.73 (CH₂)*, 19.04 (CH₃), 19.01 (CH₃), 14.36 (CH₃), 14.33 (CH₃), 13.91 (CH₃), 13.81 (CH₃), 12.29 (CH₃). HRMS (ESI-TOF): m/z calculated for C₁₇H₃₂NO (M+H)+ 266.2479, found 266.2478.

\[(E)-2-(2,2-Dimethyl-2,3-dihydro-1H-inden-1-ylidene)-N,N-diethylacetamide (2k)\]

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a yellow solid (99% yield). \(^1\)H NMR (300 MHz, CDCl₃): \(\delta 7.38 \) (d, \(J = 7.3 \) Hz, 1H), 7.23 – 7.09 (m, 3H), 6.32 (s, 1H), 3.46 – 3.27 (m, 5H), 2.79 (s, 2H), 1.34 (s, 6H), 1.16 – 1.04 (m, 6H). \(^{13}\)C NMR (75 MHz, CDCl₃): \(\delta 167.72 \) (C), 158.03 (C), 144.54 (C), 140.50 (C), 129.39 (CH), 126.69 (CH), 125.43 (CH), 121.15 (CH), 112.14 (CH), 49.06 (C), 44.28 (CH₂), 42.80 (CH₂), 39.35 (CH₂), 27.31 (CH₃), 14.09 (CH₃), 12.87 (CH₃). HRMS (ESI-TOF): m/z calculated for C₁₇H₂₄NO (M+H)+ 258.1852, found 258.1852.

\[(E)-2-\text{(2-Butyl-2-methyl-2,3-dihydro-1H-inden-1-ylidene)}-N,N-diethylacetamide (2l)\]

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a pale yellow oil (99% yield). \(^1\)H NMR (500 MHz, CDCl₃): \(\delta 7.47 \) (d, \(J = 7.6 \) Hz, 1H), 7.31 – 7.19 (m, 3H), 6.46 (s, 1H), 3.53 – 3.34 (m, 4H), 3.05 (d, \(J = 16.5 \) Hz, 1H), 2.74 (d, \(J = 16.5 \) Hz, 1H), 1.89 (ddd, \(J = 13.0, 11.9, 4.5 \) Hz, 1H), 1.75 (ddd, \(J = 13.1, 12.1, 4.4 \) Hz, 1H), 1.40 (s, 3H), 1.31 – 1.23 (m, 3H), 1.20 (t, \(J = 7.1 \) Hz, 6H), 1.17 – 1.10 (m, 1H), 0.85 (t, \(J = 7.2 \) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl₃): \(\delta 167.60 \) (C), 158.12 (C), 145.12 (C), 141.02 (C), 129.48 (CH), 126.65 (CH), 125.33 (CH), 120.85 (CH), 112.07 (CH), 47.61 (C), 45.71 (CH₂), 41.5 (br, CH₂), 39.37 (CH₂), 27.56 (CH₃), 26.46 (CH₂), 23.51 (CH₂), 14.25 (CH₃), 13.52 (CH₃). HRMS (ESI-TOF): m/z calculated for C₂₀H₃₀NO (M+H)+ 300.2322, found 300.2322.

\[(E)-\text{N,N-Diethyl-2-(2-isobutyl-2-methyl-2,3-dihydro-1H-inden-1-ylidene)acetamide (2m)}\]

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a colorless oil (99% yield). \(^1\)H NMR (300 MHz, CDCl₃): \(\delta 7.48 – 7.42 \) (m, 1H), 7.31 – 7.17 (m, 3H), 6.42 (s, 1H), 3.51 – 3.34 (m, 4H), 3.10 (d, \(J = 16.6 \) Hz, 1H), 2.79 (d, \(J = 16.6 \) Hz, 1H), 1.90 – 1.70 (m, 2H), 1.70 – 1.55 (m, 1H), 1.40 (s, 3H), 1.18 (t, \(J = 7.2 \) Hz, 6H), 0.86 (t, \(J = 6.5 \) Hz, 6H). \(^{13}\)C NMR (75 MHz, CDCl₃): \(\delta 167.59 \) (C), 158.80 (C), 145.22 (C), 140.97 (C), 129.48 (CH), 126.68 (CH), 125.32 (CH), 120.89 (CH), 111.98 (CH), 48.35 (CH₂), 47.75 (C), 46.49 (CH₂), 41.0 (br, CH₂), 26.87 (CH₃), 25.70 (CH), 25.04 (CH₃), 24.69 (CH₃), 13.48 (CH₃). HRMS (ESI-TOF): m/z
calculated for C\(_{20}\)H\(_{30}\)NO ([M+H]\(^+\)) 300.2322, found 300.2322; m/z calculated for C\(_{20}\)H\(_{29}\)NONa ([M+Na]\(^+\)) 322.2143, found 322.2141.

(E)-2-(2-(Cyclohexylmethyl)-2-methyl-2,3-dihydro-1H-inden-1-ylidene)-N,N-diethylacetamide (2n)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a colorless oil (98% yield). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.47 – 7.44 (m, 1H), 7.29 – 7.25 (m, 1H), 7.24 – 7.19 (m, 2H), 6.41 (s, 1H), 3.51 – 3.33 (m, 4H), 3.09 (d, \(J = 16.5\) Hz, 1H), 2.78 (d, \(J = 16.5\) Hz, 1H), 1.80 – 1.71 (m, 2H), 1.69 – 1.51 (m, 5H), 1.40 (s, 3H), 1.33 – 1.25 (m, 1H), 1.19 (t, \(J = 7.1\) Hz, 6H), 1.16 – 1.05 (m, 3H), 1.02 – 0.89 (m, 2H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 167.57 (C), 158.90 (C), 145.14 (C), 140.88 (C), 129.43 (CH), 126.61 (CH), 125.33 (CH), 120.90 (CH), 111.81 (CH), 47.73 (C), 46.53 (CH\(_2\)), 42.02 (br, N-CH\(_2\)), 40.25 (br, N-CH\(_2\)), 35.44 (CH\(_2\)), 35.29 (CH), 35.16 (CH\(_2\)), 26.86 (CH\(_3\)), 26.62 (CH\(_2\)), 26.43 (CH\(_3\)), 13.47 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{23}\)H\(_{34}\)NO ([M+H]\(^+\)) 340.2634, found 340.2635.

(E)-2-(2,2-Dimethyl-3,4-dihydronaphthalen-1(2H)-ylidene)-N,N-diethylacetamide (2o)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (10 to 20 % EtOAc/Hexanes) as an orange pale oil (92% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.53 – 7.47 (m, 1H), 7.22 – 7.14 (m, 2H), 7.14 – 7.08 (m, 1H), 6.23 (s, 1H), 3.43 (dq, \(J = 18.7, 7.1\) Hz, 4H), 2.82 (t, \(J = 6.5\) Hz, 2H), 1.69 (t, \(J = 6.5\) Hz, 2H), 1.26 (s, 6H), 1.20 – 1.11 (m, 6H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 169.44 (C), 148.62 (C), 137.87 (C), 136.47 (C), 128.46 (CH), 127.85 (CH), 126.27 (CH), 126.20 (CH), 118.73 (CH), 42.78 (CH\(_2\)), 39.20 (CH\(_2\)), 38.77 (CH\(_2\)), 36.35 (CH\(_2\)), 29.81 (C), 27.14 (CH\(_3\)), 26.83 (CH\(_2\)), 13.78 (CH\(_3\)), 12.34 (CH\(_3\)). HRMS (ESI-TOF): m/z calculated for C\(_{18}\)H\(_{26}\)NO ([M+H]\(^+\)) 272.2010, found 272.2009.

(E)-N,N-Diethyl-2-(3-ethyl-3-methylchroman-4-ylidene)acetamide (2p)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a yellow oil (82 % yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.48 (dd, \(J = 8.0, 1.6\) Hz, 1H), 7.19 (ddd, \(J = 8.4, 7.2, 1.6\) Hz, 1H), 6.90 (ddd, \(J = 8.2, 7.2, 1.3\) Hz, 1H), 6.83 (dd, \(J = 8.2, 1.3\) Hz, 1H), 6.37 (s, 1H), 3.94 (d, \(J = 11.1\) Hz, 1H), 3.79 (d, \(J = 11.1\) Hz, 1H), 3.62 – 3.41 (m, 2H), 3.40 – 3.26 (m, 2H), 1.83 – 1.70 (m, 1H), 1.61 – 1.47 (m, 1H), 1.20 – 1.12 (m, 9H), 0.91 (t, \(J = 7.5\) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 168.75 (C), 154.58 (C), 143.34 (C), 129.91 (CH), 125.72 (CH), 121.46 (C), 121.03 (CH), 117.12 (CH), 116.35 (CH), 73.83 (CH\(_2\)), 42.83 (CH\(_2\)), 38.99 (CH\(_2\)).
38.52 (C), 28.17 (CH₂), 19.02 (CH₃), 13.85 (CH₃), 12.41 (CH₃), 8.66 (CH₃). HRMS (ESI-TOF): m/z calculated for C₁₈H₂₆NO₂ ([M+H]+) 288.1959, found 288.1958.

E-N,N-Diethyl-2-(3-isobutyl-3-methylchroman-4-yldene) acetamide (2q)

Carried out in refluxing Dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as yellow pale oil (90 %). **¹H NMR**

(400 MHz, CDCl₃): δ 7.43 (dd, J = 8.0, 1.5 Hz, 1H), 7.22 – 7.17 (m, 1H), 6.93 – 6.87 (m, 1H), 6.82 (dd, J = 8.1, 1.3 Hz, 1H), 6.29 (s, 1H), 3.90 (d, J = 11.0 Hz, 1H), 3.79 (d, J = 11.0 Hz, 1H), 3.63 – 3.53 (m, 1H), 3.52 – 3.41 (m, 1H), 3.37 – 3.25 (m, 2H), 1.98 – 1.87 (m, 1H), 1.67 (dd, J = 14.3, 6.6 Hz, 1H), 1.34 (dd, J = 14.2, 4.5 Hz, 1H), 1.21 (s, 3H), 1.19 – 1.13 (m, 6H), 0.90 (d, J = 6.7 Hz, 3H), 0.82 (d, J = 6.6 Hz, 3H). **¹³C NMR** (101 MHz, CDCl₃): δ 168.67 (C), 154.37 (C), 144.18 (C), 129.93 (CH), 126.08 (CH), 121.92 (C), 121.04 (CH), 116.85 (CH), 116.59 (CH), 75.42 (CH₂), 44.62 (CH₂), 42.81 (CH₂), 39.05 (CH₂), 38.61 (C), 25.52 (CH), 24.51 (CH₃), 24.14 (CH₃), 19.96 (CH₃), 13.87 (CH₃), 12.47 (CH₃). HRMS (ESI-TOF): m/z calculated for C₂₀H₃₀NO₂ ([M+H]+) 316.2275, found 316.2271.

(E)-N,N-Diethyl-2-(2-isobutyl-2-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-ylidene)acetamide (E-2r) and **(Z)-N,N-Diethyl-2-(2-isobutyl-2-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-ylidene)acetamide (Z-2r)**

Carried out in refluxing dioxane, the products were isolated by flash chromatography (5 to 20 % EtOAc/Hexanes) as dark brown oil [90% combined yield, E / Z = 1:1]. **E-2r**: NMR data of E-2r was deduced from a 3.9 : 1 E / Z sample of 2r, obtained after careful column chromatography. **¹H NMR** (400 MHz, CDCl₃): δ 7.53 (d, J = 7.9 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.10 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.02 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 6.47 (s, 2H), 4.12 (d, J = 10.1 Hz, 1H), 3.82 (d, J = 10.1 Hz, 1H), 3.44 – 3.30 (m, 4H), 2.07 (dd, J = 13.9, 6.3 Hz, 1H), 1.75 (dd, J = 14.0, 6.0 Hz, 1H), 1.62 – 1.57 (m, 1H), 1.51 (s, 3H), 1.16 – 1.10 (m, 6H), 0.83 – 0.77 (m, 6H). **¹³C NMR** (101 MHz, CDCl₃): δ 166.29 (C), 148.97 (C), 143.83 (C), 133.64 (C), 132.77 (C), 121.95 (CH), 121.51 (CH), 120.23 (CH), 113.33 (CH), 109.96 (CH), 92.08 (CH), 56.64 (CH₂), 51.80 (C), 47.54 (CH₂), 42.88 (CH₂) 39.90 (CH₂), 26.39 (CH), 25.77 (CH₃), 24.69 (CH₃), 24.38 (CH₃), 14.33 (CH₃), 13.08 (CH₃). HRMS (ESI-TOF): m/z calculated for C₂₂H₃₈N₂O ([M+H]+) 339.2434, found 339.2431.

Z-2r: NMR data of Z-2r was deduced from a 1 : 3.5 E / Z sample of 2r, obtained after careful column chromatography. **¹H NMR** (400 MHz, CDCl₃): δ 7.55 (d, J = 8.1 Hz, 1H), 7.17 (d, J = 8.5 Hz, 1H), 7.10 (ddd, J = 8.2, 6.7, 1.1 Hz, 1H), 7.04 (s, 1H), 6.99 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 5.86 (s, 1H), 4.06 (d,
$J = 10.1$ Hz, 1H), 3.80 (d, $J = 10.1$ Hz, 1H), 3.50 – 3.31 (m, 4H), 1.68 – 1.61 (m, 1H), 1.58 (t, $J = 5.7$ Hz, 2H), 1.34 (s, 3H), 1.21 – 1.07 (m, 6H), 0.86 – 0.80 (m, 6H). 13C NMR (101 MHz, CDCl$_3$): δ 166.75 (C), 148.74 (C), 139.17 (C), 133.56 (C), 133.00 (C), 122.43 (CH), 122.33 (CH), 119.90 (CH), 112.01 (CH), 109.71 (CH), 100.50 (CH), 54.13 (CH$_2$), 51.78 (C), 50.42 (CH$_2$), 42.91 (CH$_2$), 40.24 (CH$_2$), 28.11 (CH), 25.44 (CH$_3$), 25.01 (CH$_3$), 24.76 (CH$_3$), 14.80 (CH$_3$), 13.45 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{22}$H$_{31}$N$_2$O ([M+H]$^+$) 339.2433, found 339.2431.

(E)-N,N-Diethyl-2-(2-ethyl-2-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-ylidene)acetamide (E-2s) and (Z)-N,N-Diethyl-2-(2-ethyl-2-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-ylidene)acetamide (Z-2s)

Carried out in refluxing Dioxane. The products were separately isolated by flash chromatography (5 to 20 % EtOAc/Hexanes) [E-2s: 43 % yield and Z-2s: 43% yield].

**E-2s: 1H NMR (400 MHz, CDCl$_3$) δ 7.59 (d, $J = 8.0$ Hz, 1H), 7.25 (d, $J = 7.7$ Hz, 1H), 7.19 – 7.13 (m, 1H), 7.08 (ddd, $J = 8.1$, 7.0, 1.1 Hz, 1H), 6.55 (s, 1H), 6.52 (s, 1H), 4.09 (d, $J = 10.1$ Hz, 1H), 3.83 (d, $J = 10.1$ Hz, 1H), 3.49 – 3.38 (m, 4H), 2.22 – 2.11 (m, 1H), 1.95 – 1.84 (m, 1H), 1.55 (s, 3H), 1.22 – 1.15 (m, 6H), 0.83 (t, $J = 7.4$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$): δ 166.34 (C), 148.12 (C), 143.90 (C), 133.64 (C), 132.71 (C), 121.95 (CH), 121.50 (CH), 120.21 (CH), 113.57 (CH), 109.94 (CH), 91.98 (CH), 55.35 (CH$_2$), 52.15 (C), 42.91 (CH$_2$), 39.85 (CH$_2$), 31.57 (CH$_2$), 25.11 (CH$_3$), 14.34 (CH$_3$), 13.04 (CH$_3$), 9.43 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{20}$H$_{27}$N$_2$O ([M+H]$^+$) 311.2118, found 311.2118; m/z calculated for C$_{20}$H$_{27}$N$_2$O Na ([M+Na]$^+$) 333.1941, found 333.1937.

**Z-2s: 1H NMR (400 MHz, CDCl$_3$): δ 7.61 (d, $J = 8.0$ Hz, 1H), 7.22 (d, $J = 9.1$ Hz, 1H), 7.16 (ddd, $J = 8.1$, 6.8, 1.1 Hz, 1H), 7.11 (s, 1H), 7.05 (ddd, $J = 8.1$, 6.8, 1.2 Hz, 1H), 5.90 (s, 1H), 4.04 (d, $J = 10.1$ Hz, 1H), 3.83 (d, $J = 10.1$ Hz, 1H), 3.55 – 3.50 (m, 2H), 3.43 – 3.36 (m, 2H), 1.72 (q, $J = 7.4$, 6.9 Hz, 2H), 1.39 (s, 3H), 1.26 – 1.14 (m, 6H), 0.88 (t, $J = 7.4$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$): δ 166.74 (C), 148.13 (C), 139.35 (C), 133.59 (C), 132.96 (C), 122.44 (CH), 122.35 (CH), 119.88 (CH), 111.88 (CH), 109.70 (CH), 100.47 (CH), 53.22 (CH$_2$), 51.87 (C), 42.97 (CH$_2$), 40.33 (CH$_2$), 34.40 (CH$_2$), 26.82 (CH$_3$), 14.81 (CH$_3$), 13.47 (CH$_3$), 9.15 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{20}$H$_{27}$N$_2$O ([M+H]$^+$) 311.2116, found 311.2118.
Control experiments related to the formation of E / Z isomers of 2r and 2s

Control experiments carried out for the cyclizations of 1r and 1s suggest that these mixtures are the result of an isomerization of the initially formed e-isomer (E- 2r, E-2s), presumably mediated by the Ir(I) catalyst (Scheme S1, eq. a). The isomerization is also observed during the isolation process in the contact to silica-gel (Scheme S1, eq. b).

Scheme S1. Isomerization experiments of 2s.

N,N-Diethyl-3,3-dimethyl-2,3-dihydrobenzofuran-4-carboxamide (6a)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as yellow oil (82 % yield). 1H NMR (500 MHz, CDCl$_3$): δ 7.12 (td, J = 7.8, 2.6 Hz, 1H), 6.79 (dd, J = 8.0, 2.6 Hz, 1H), 6.69 (dd, J = 7.5, 2.6 Hz, 1H), 4.25 – 4.21 (m, 1H), 4.17 – 4.13 (m, 1H), 4.03 – 3.96 (m, 1H), 3.21 – 3.03 (m, 3H), 1.40 (s, 3H), 1.28 (s, 3H), 1.24 – 1.19 (m, 3H), 1.09 – 1.04 (m, 3H). 13C NMR (126 MHz, CDCl$_3$): δ 169.31 (C), 159.56 (C), 133.01 (C), 131.05 (C), 128.52 (CH), 117.57 (CH), 110.30 (CH), 84.44 (CH$_2$), 42.70 (CH$_2$), 42.64 (C), 38.01 (CH$_2$), 27.54 (CH$_3$), 24.31 (CH$_3$), 13.76 (CH$_3$), 12.34 (CH$_3$).

HRMS (ESI-TOF): m/z calculated for C$_{15}$H$_{21}$NO$_2$ ([M+H]$^+$) 248.1644, found 248.1645.

N,N,3-Triethyl-3-methyl-2,3-dihydrobenzofuran-4-carboxamide (6b)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as yellow oil (92 % yield). 1H NMR (400 MHz, CDCl$_3$): 1H NMR (300 MHz, CDCl$_3$, at 60 ºC): δ 7.09 (td, J = 7.8, 1.6 Hz, 1H), 6.75 (dd, J = 8.1, 0.7 Hz, 1H), 6.65 (dd, J = 7.6, 0.8 Hz, 1H), 4.34 (d, J = 8.5 Hz, 1H), 4.08 (d, J = 8.5 Hz, 1H), 3.54 (br, 2H), 3.23 – 3.09 (m, 2H), 1.89 – 1.60 (m, 2H), 1.34 (s, 3H), 1.28 – 1.21 (m, 3H), 1.15 – 1.06 (m, 3H), 0.81 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl$_3$, at 60 ºC): δ 169.59 (C), 160.89 (C), 134.02 (C), 131.07 (C), 128.23 (CH), 118.27 (CH), 110.16 (CH), 82.06 (CH$_2$), 46.98 (C), 43.25 (CH), 38.67 (CH$_2$), 32.37 (CH$_2$), 24.55 (CH$_2$), 13.94 (CH$_3$), 12.64 (CH$_3$), 9.04 (CH$_3$). HRMS (ESI-TOF): m/z calculated for C$_{16}$H$_{24}$NO$_2$ ([M+H]$^+$) 262.1799, found 262.1802.
N,N-Diethyl-1,1-dimethyl-2,3-dihydro-1H-pyrrolizine-7-carboxamide (6c)

Carried out in refluxing dioxane. The product was isolated by flash chromatography (10 to 30 % EtOAc/Hexanes) as light brown solid (95% yield). ¹H NMR (300 MHz, CDCl₃): δ 6.38 (d, J = 2.8 Hz, 1H), 6.16 (d, J = 2.8 Hz, 1H), 3.92 (t, J = 6.9 Hz, 2H), 3.49 (q, J = 7.1 Hz, 4H), 2.28 (t, J = 6.9 Hz, 2H), 1.40 (s, 6H), 1.17 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 167.85 (C), 146.94 (C), 112.15 (CH), 111.39 (CH), 109.94 (C), 45.16 (CH₂), 44.78 (CH₂), 41.42 (CH₂), 39.68 (C), 26.92 (CH₃), 13.86 (CH₃). HRMS (ESI-TOF): m/z calculated for C₁₄H₂₃N₂O ([M+H]+) 235.1805, found 235.1805.

N,N-Diethyl-1,1-dimethyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-9-carboxamide (6d)

Carried out in 1,2-DCE at 140 ºC. The product was isolated by flash chromatography (10 to 20 % EtOAc/Hexanes) as a pale yellow oil (99% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.40 (dt, J = 7.8, 1.1 Hz, 1H), 7.22 (dt, J = 8.0, 1.1 Hz, 1H), 7.16 – 7.12 (m, 1H), 7.12 – 7.07 (m, 1H), 4.10 (t, J = 6.8 Hz, 2H), 3.62 – 3.45 (m, 4H), 2.44 – 2.41 (m, 2H), 1.50 (s, 6H), 1.22 – 1.11 (m, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 167.42 (C), 152.91 (C), 131.29 (C), 129.99 (C), 121.03 (CH), 120.07 (CH), 119.73 (CH), 109.76 (CH), 102.67 (C), 44.31 (CH₂), 42.69 (CH₂), 39.58 (C), 27.02 (CH₃), 14.00 (CH₃). HRMS (ESI-TOF): m/z calculated for C₁₈H₂₅N₂O ([M+H]+) 285.1961, found 285.1961. (NOTE: This compound was also characterized at 60 ºC in CDCl₃, in order to more clearly show the amide carbons, which sometimes are not fully visible at rt due to the existence of rotamers. ¹H NMR (300 MHz, CDCl₃) δ 7.41 (dd, J = 8.0, 1.5 Hz, 1H), 7.23 – 7.19 (m, 1H), 7.17 – 7.06 (m, 2H), 4.09 (t, J = 6.9 Hz, 2H), 3.55 (q, J = 7.1 Hz, 4H), 2.43 (t, J = 7.0 Hz, 2H), 1.51 (s, 6H), 1.18 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.51 (C), 152.87 (C), 131.57 (C), 130.32 (C), 121.13 (CH), 120.18 (CH), 119.86 (CH), 109.78 (CH), 103.10 (C), 44.52 (CH₂), 42.71 (CH₂), 41.30 (CH₂), 39.67 (C), 27.15 (CH₃), 13.99 (CH₃).
Assays for the development of an enantioselective version

Table S2. Preliminary screening of an asymmetric catalyst for the hydrocarbonation of 1a.[a]

<table>
<thead>
<tr>
<th>entry</th>
<th>L</th>
<th>X</th>
<th>Solvent</th>
<th>Temp (°C)</th>
<th>time (h)</th>
<th>Yield (%)</th>
<th>er</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>40</td>
<td>88:12</td>
</tr>
<tr>
<td>2</td>
<td>L2</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>72</td>
<td>84:16</td>
</tr>
<tr>
<td>3</td>
<td>L3</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>74</td>
<td>79:21</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>65</td>
<td>68:32</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>70</td>
<td>51:49</td>
</tr>
<tr>
<td>6</td>
<td>L6</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>68</td>
<td>65:35</td>
</tr>
<tr>
<td>7</td>
<td>L7</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>61</td>
<td>52:48</td>
</tr>
<tr>
<td>8</td>
<td>L8</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>34</td>
<td>90:10</td>
</tr>
<tr>
<td>9</td>
<td>L9</td>
<td>BArF</td>
<td>dioxane</td>
<td>reflux</td>
<td>19</td>
<td>30</td>
<td>85:15</td>
</tr>
<tr>
<td>10</td>
<td>L1</td>
<td>BArF</td>
<td>dioxane</td>
<td>80</td>
<td>19</td>
<td>34</td>
<td>90:10</td>
</tr>
<tr>
<td>11[c]</td>
<td>L2</td>
<td>BArF</td>
<td>dioxane</td>
<td>80</td>
<td>19</td>
<td>30</td>
<td>85:15</td>
</tr>
<tr>
<td>12</td>
<td>L3</td>
<td>BArF</td>
<td>dioxane</td>
<td>80</td>
<td>19</td>
<td>80</td>
<td>82:18</td>
</tr>
<tr>
<td>13[b]</td>
<td>L1</td>
<td>BF₄</td>
<td>dioxane</td>
<td>80</td>
<td>48</td>
<td>95</td>
<td>80:20</td>
</tr>
<tr>
<td>14[b]</td>
<td>L3</td>
<td>BF₄</td>
<td>dioxane</td>
<td>80</td>
<td>19</td>
<td>90</td>
<td>91:9</td>
</tr>
<tr>
<td>15[b]</td>
<td>L3</td>
<td>BF₄</td>
<td>1,2-DCE</td>
<td>60</td>
<td>7</td>
<td>70</td>
<td>87:13</td>
</tr>
<tr>
<td>16[d]</td>
<td>L3</td>
<td>BF₄</td>
<td>CH₂Cl₂</td>
<td>50</td>
<td>19</td>
<td>95</td>
<td>89:11</td>
</tr>
</tbody>
</table>

[a] 1a was added to a solution of [Ir(cod)₂X] (5 %) and L (5 %) in the solvent (125 mM) and the mixture was heated at the indicated temperature. Isolated yields. [b] Carried out at 250 mM (1a). [c] 67% conversion. [d] In a sealed tube.

Conditions for the determination of the er of 2a and HPLC traces of all entries of Table S2

Ar = 3,5-Me₂Ph, (S)-DM-SDP (L4)
Ar = Ph, (S)-SDP (L1)
(R,R,S)-Duaphos (L2)
Ar = Ph, (L7): (R)-Binap
Ar = 3,5-Me₂Ph, (L8): (R)-DM-Binap
Ar = 3,5-Me₂Ph, (R)-DM-Gaphos (L5)
Ar = 3,5-Me₂Ph, (R)-DM-Gaphos (L6)
Ar = 3,5-Me₂Ph, (R)-DM-Gepphos (L9)
(Z)-2-(2-Butyl-2-methylcyclopentylidene)-N,N-diethylacetamide (2a).

Enantiomeric ratios determined by chiral HPLC on Chiralpak IF3 at rt, (Hexane : iPrOH = 98:2, 1 ml/min).

Figure S1. HPLC trace and report of a racemic sample of 2a [Chiralpak IF3 at rt, (Hexane : iPrOH = 98:2, 1 ml/min)]

Figure S2. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)₂]BArF / L₁ at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 1.

Figure S3. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)₂]BArF / L₂ at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 2.

Figure S4. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)₂]BArF / L₃ at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 3.
Figure S5. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L4 at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 4.

Figure S6. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L5 at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 5.

Figure S7. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L6 at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 6.

Figure S8. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L7 at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 7.

Figure S9. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L8 at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 8.
Figure S10. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L9 at reflux (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 9.

Figure S11. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L1 at 80 ºC (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 10.

Figure S12. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L2 at 80 ºC (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 11.

Figure S13. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)2]BArF / L3 at 80 ºC (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 12.
Figure S14. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)₂]BF₄ / L₁ at 80 °C (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 13.

Figure S15 HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)₂]BF₄ / L₃ at 60 °C in 1,2-DCE (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 15, Supporting information.

Figure S16. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)₂]BF₄ / L₃ at 50 °C in CH₂Cl₂ (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table S2, entry 16, Supporting information.
Procedure for the enantioselective Ir-catalyzed intramolecular hydrocarbonation process

An oven dried schlenk tube equipped with a Teflon septum and magnetic stir bar was charged with L1 or L3 (5 mol%), Bis(1,5-cyclooctadiene)iridium(I) tetrafluoroborate (5 mol%), the amide substrate (1.0 equiv) and the solvent (dioxane or 1,2-DCE, 0.250 M). The reaction mixture was then stirred at 80 °C. After TLC indicated full conversion of the starting material, the reaction mixture was concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (typically 1:20 to 1:10 EtOAc : hexanes) afforded the desired product.

(Z)-2-(2-Butyl-2-methylcyclopentylidene)-N,N-diethylacetamide (2a)

Using the general procedure, dioxane and L3, (Z)-2-(2-butyl-2-methylcyclopentylidene)-N,N-diethylacetamide (2a) was obtained in 90 % yield and 91:9 er. Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IF3 at rt, (Hexane : iPrOH = 98:2, 1 ml/min).

Figure S17. HPLC trace and report of a racemic sample of 2a [Chiralpak IF3 at rt, (Hexane : iPrOH = 98:2, 1 ml/min)]
Figure S18. HPLC trace and report of a sample of 2a obtained from the reaction catalyzed by [Ir(cod)_2]BF_4 / L3 (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table 4, entry 5, main manuscript or Table S2, entry 14.

(Z)-N,N-Diethyl-2-(2-isobutyl-2-methylcyclopentylidene)acetamide (2e)

Using the general procedure, 1,2-DCE and L3, (Z)-N,N-diethyl-2-(2-isobutyl-2-methylcyclopentylidene)acetamide (2e) was obtained in 82 % yield and 91:9 er. Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IF3 at rt, (Hexane : iPrOH = 99:1, 1 ml/min).

Figure S19. HPLC trace and report of a racemic sample of 2e [Chiralpak IF3 at rt, (Hexane : iPrOH = 99:1, 1 ml/min)]

Figure S20. HPLC trace and report of a sample of 2e obtained from the reaction catalyzed by [Ir(cod)_2]BF_4 / L3 (Chiralpak IF3 at rt, Hexane : iPrOH = 99:1, 1 ml/min). Table 4, entry 8, main manuscript.
(Z)-2-(2-Benzyl-2-methylcyclopentylidene)-N,N-diethylacetamide (2g)

Using the general procedure, dioxane and L1 (10 mol%), (Z)-2-(2-benzyl-2-methylcyclopentylidene)-N,N-diethylacetamide (2g) was obtained after 48 hours in 81% yield and 83:17 er. Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IF3 at rt, (Hexane : iPrOH = 98:2, 1 ml/min).

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Peak} & \text{Retention Time} & \text{Type} & \text{Width} & \text{Area} & \text{Height} & \text{Area} \% \\
\text{#} & \text{[min]} & & \text{[min]} & \text{[mAU*s]} & \text{[mAU]} & \\
\hline
1 & 15.423 & MM & 0.3656 & 6156.83203 & 280.66541 & 49.6434 \\
2 & 18.152 & MM & 0.4099 & 6245.27832 & 253.94766 & 50.3566 \\
\hline
\end{array}
\]

Figure S21. HPLC trace and report of a racemic sample of 2g [Chiralpak IF3 at rt, (Hexane : iPrOH = 98:2, 1 ml/min)]

(E)-2-(2-Butyl-2-methyl-2,3-dihydro-1H-inden-1-ylidene)-N,N-diethylacetamide (2l)

Using the general procedure, dioxane and DM-SDP (L1, 10 %), (E)-2-(2-butyl-2-methyl-2,3-dihydro-1H-inden-1-ylidene)-N,N-diethylacetamide (2l) was obtained after 48 hours in 98% yield and 82:18 er. Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IF3 at rt, (Hexane : iPrOH = 99:1, 1 ml/min). **Note:** In this reaction, DM-SDP (L1) proved to be superior to BTFM-Garphos, which provided the product 2l in 95% yield and 61:39 er (5% catalyst, dioxane, 80 ºC for 19 h).

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Peak} & \text{Retention Time} & \text{Type} & \text{Width} & \text{Area} & \text{Height} & \text{Area} \% \\
\text{#} & \text{[min]} & & \text{[min]} & \text{[mAU*s]} & \text{[mAU]} & \\
\hline
1 & 15.458 & MM & 0.3776 & 5508.30713 & 245.11473 & 82.7551 \\
2 & 18.252 & MM & 0.4017 & 1147.64314 & 47.62255 & 17.2449 \\
\hline
\end{array}
\]

Figure S22. HPLC trace and report of a sample of 2g obtained from the reaction catalyzed by [Ir(cod)$_2$]BF$_4$ / L1 (Chiralpak IF3 at rt, Hexane : iPrOH = 98:2, 1 ml/min). Table 4, entry 9, main manuscript.
Figure S24. HPLC trace and report of a sample of 2l obtained from the reaction catalyzed by [Ir(cod)2]BF4 / L1 (Chiralpak IF3 at rt, Hexane : iPrOH = 99:1, 1 ml/min). Table 4, entry 10, main manuscript.

Figure S25. HPLC trace and report of a sample of 2l obtained from the reaction catalyzed by [Ir(cod)2]BF4 / BTFM-Garphos (Chiralpak IF3 at rt, Hexane : iPrOH = 99:1, 1 ml/min).

(E)-N,N-Diethyl-2-(2-isobutyl-2-methyl-2,3-dihydro-1H-inden-1-ylidene)acetamide (2m)

Using the general procedure, dioxane and DM-SDP (L1, 10 %), (E)-N,N-diethyl-2-(2-isobutyl-2-methyl-2,3-dihydro-1H-inden-1-ylidene)acetamide (2m) was obtained after 48 hours in 95 % yield and 91:9 er. Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IF3 at rt, (Hexane : iPrOH = 99:1, 1 ml/min). \(\text{Note:}\) In this reaction, DM-SDP (L1) proved to be superior to BTFM-Garphos, which provided the product 2m in 90% yield and 71:29 er (5% catalyst, dioxane, 80 °C for 19 h)).

Figure S26. HPLC trace and report of a racemic sample of 2m [Chiralpak IF3 at rt, (Hexane : iPrOH = 99:1, 1 ml/min)]

Figure S27. HPLC trace and report of a sample of 2m obtained from the reaction catalyzed by [Ir(cod)2]BF4 / L1 (Chiralpak IF3, rt, Hex.: iPrOH = 99:1, 1 ml/min). Table 4, entry 11, main manuscript.
(E)-2-(2-(Cyclohexylmethyl)-2-methyl-2,3-dihydro-1H-inden-1-ylidene)-N,N-diethylacetamide (2n)

Using the general procedure, dioxane and DM-SDP (L1, 10 %), (E)-2-(2-(cyclohexylmethyl)-2-methyl-2,3-dihydro-1H-inden-1-ylidene)-N,N-diethylacetamide (2n) was obtained after 48 hours in 90 % yield and 86:14 er. Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IF3 at rt, (Hexane : iPrOH = 99:1, 1 ml/min). (Note: In this reaction, DM-SDP (L1) proved to be superior to BTFM-Garphos, which provided the product 2n in 85% yield and a 66:34 er (5 mol% catalyst, Dioxane, 80 °C for 19 h)).
Determination of the Kinetic Isotope effect

In two different Schlenk flasks equipped with their respective stir ring bars, Ir(cod)\(_2\)BArF (24.7 mg, 0.019 mmol), dpp\(_{\text{F}}\)e (14.7 mg, 0.019 mmol) and 1\(k\) (100 mg, 0.389 mmol, Schlenk 1) or 1\(k'\) (101 mg, 0.389 mmol, Schlenk 2), were successively added under Argon. Dioxane (1.6 mL, each one) was then added and the flasks were sealed with rubber septa and placed in a pre-heated (70 °C) oil bath. Aliquots (300 \(\mu\)L) were taken at the times indicated in the Table S3 (for 1\(k\)) and Table S4 (for 1\(k'\)). The aliquots were filtered through a florisil pad and the volatiles were removed so that the the crude residues were taken and analyzed by \(^1\)H NMR.

Table S3. Conversions observed from the reaction of 1\(k\) (determined by \(^1\)H-NMR analysis).

<table>
<thead>
<tr>
<th>t (min)</th>
<th>2(k) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
</tr>
</tbody>
</table>

In the reaction, the rate experiment for 1\(k\) and 1\(k'\) is as follows:

\[y = 0.8x - 2.5 \]

\[R^2 = 0.98765 \]
Table S4. Conversions observed from the reaction of 1k' (determined by 1H-NMR analysis).

<table>
<thead>
<tr>
<th>t (min)</th>
<th>2k' (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>12.5</td>
</tr>
<tr>
<td>60</td>
<td>25</td>
</tr>
</tbody>
</table>

\[y' = 0.4407x' - 2.822 \]
\[R^2 = 0.97263 \]

KIE = (0.8)(0.4407) = 1.8

Transformation of the products into the corresponding ketone derivatives.

Synthesis of ketones 7a, 7g, 7m and 7q (exemplified for 7a).

2-Butyl-2-methylcyclopentan-1-one (7a)

A solution of NaIO₄ (89.3 mg, 0.42 mmol) in water (0.7 mL, 0.17 M) was added to a solution of RuCl₃ (3.7 mg, 0.018 mmol) in MeCN (0.9 mL, 0.13 M). This mixture was stirred 2 minutes and then a solution of the 2a (30 mg, 0.12 mmol) in EtOAc (0.9 mL, 0.13 M) was added. The mixture was stirred for 5-10 minutes until TLC indicates complete consumption of the starting material. MgSO₄ was added and the resulting heterogeneous mixture was washed with EtOAc. The combined organic phases were carefully evaporated and the crude residue was purified by column chromatography (1:10 Et₂O : Pentane) to yield 7a as a colorless oil (17 mg, 93% yield). ¹H NMR (500 MHz, CDCl₃): δ 2.32 – 2.13 (m, 2H), 1.93 – 1.82 (m, 3H), 1.73 – 1.63 (m, 1H), 1.42 – 1.23 (m, 5H), 1.17 – 1.07 (m, 1H), 0.98 (s, 3H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 223.95 (C), 48.43 (C), 37.85 (CH₂), 36.57 (CH₂), 35.81 (CH₂), 26.63 (CH₂), 23.43 (CH₂), 21.99 (CH₃), 18.85 (CH₂), 14.12 (CH₃). HRMS (APCI-FIA-TOF): m/z calculated for C₁₀H₁₉O ([M+H]+) 155.1431, found 155.1430.

2-Benzyl-2-methylcyclopentan-1-one (7g)

Colorless oil, 85% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.21 – 7.17 (m, 2H), 7.16 – 7.11 (m, 1H), 7.05 – 7.02 (m, 2H), 2.79 (d, J = 13.3 Hz, 1H), 2.52 (d, J = 13.3 Hz, 1H), 2.22 (ddd, J = 18.9, 8.4, 5.3 Hz, 1H), 1.98 (dt, J = 19.0, 8.6 Hz, 1H), 1.89 (dt, J = 13.0, 7.6 Hz, 1H), 1.76 – 1.62 (m, 2H), 1.59 – 1.53 (m, 1H), 0.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 223.39 (C), 138.12 (C), 130.38 (CH), 128.26 (CH), 126.50 (CH), 49.89 (C), 42.81 (CH₂), 38.13
(CH₂), 34.79 (CH₂), 22.84 (CH₃), 18.75 (CH₂). **HRMS** (ESI-TOF): m/z calculated for C₁₃H₁₆NaO ([M+Na]+) 211.1091, found 211.1093.

2-Isobutyl-2-methyl-2,3-dihydro-1H-inden-1-one (7m)

![Structure of 2-Isobutyl-2-methyl-2,3-dihydro-1H-inden-1-one (7m)](image)

Colorless oil, 66% yield. **¹H NMR** (400 MHz, CDCl₃): δ 7.76 (d, J = 7.6 Hz, 1H), 7.58 (td, J = 7.5, 1.2 Hz, 1H), 7.43 (dt, J = 7.7, 1.0 Hz, 1H), 7.39 – 7.34 (m, 1H), 3.21 (d, J = 17.2 Hz, 1H), 2.88 (d, J = 17.2 Hz, 1H), 1.69 – 1.61 (m, 2H), 1.59 – 1.50 (m, 1H), 1.19 (s, 3H), 0.90 (d, J = 6.4 Hz, 3H), 0.78 (d, J = 6.5 Hz, 3H). **¹³C NMR** (101 MHz, CDCl₃): δ 211.70 (C), 152.82 (C), 136.06 (C), 134.85 (CH), 127.50 (CH), 126.70 (CH), 124.46 (CH), 49.25 (C), 46.57 (CH₂), 40.61 (CH₂), 25.48 (C), 25.33 (CH₃), 24.94 (CH₃), 23.75 (CH₃). **HRMS** (ESI-TOF): m/z calculated for C₁₄H₁₉O ([M+H]+) 203.1430, found 203.1430.

3-Isobutyl-3-methylchroman-4-one (7q)

![Structure of 3-Isobutyl-3-methylchroman-4-one (7q)](image)

Colorless oil, 87% yield. **¹H NMR** (400 MHz, CDCl₃): δ 7.89 (dd, J = 7.9, 1.8 Hz, 1H), 7.46 (ddd, J = 8.4, 7.2, 1.8 Hz, 1H), 7.02 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 6.95 (dd, J = 8.4, 1.1 Hz, 1H), 4.27 (d, J = 11.5 Hz, 1H), 4.13 (d, J = 11.5 Hz, 1H), 1.77 – 1.67 (m, 1H), 1.61 (dd, J = 6.0, 2.1 Hz, 2H), 1.18 (s, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.83 (d, J = 6.5 Hz, 3H). **¹³C NMR** (101 MHz, CDCl₃): 197.41 (C), 161.12 (C), 135.56 (CH), 127.92 (CH), 121.56 (CH), 120.15 (C), 117.66 (CH), 75.62 (CH₂), 45.19 (CH), 42.86 (CH₂), 24.82 (CH₃), 24.69 (CH₃), 24.34 (CH), 18.70 (CH₃). **HRMS** (ESI-TOF): m/z calculated for C₁₄H₁₉O₂ ([M+H]+) 219.1378, found 219.1380.
Cycloisomerization of 1t to afford the isomerized indene product 2t'

Carried out following the general procedure, in Dioxane at reflux for 19 h. The product (2t') was isolated by flash chromatography (5 to 10 % EtOAc/Hexanes) as a pale yellow oil (99 % yield). (E)-N,N-Diethyl-2-(2-methyl-2-(3-methylbut-2-en-1-yl)-2,3-dihydro-1H-inden-1-ylidene) acetamide (2t')

1H NMR (300 MHz, CDCl3): δ 7.46 (dd, J = 8.1, 1.6 Hz, 1H), 7.29 – 7.17 (m, 3H), 6.44 (s, 1H), 5.09 – 5.02 (m, 1H), 3.51 – 3.32 (m, 4H), 3.04 (d, J = 16.4 Hz, 1H), 2.65 (d, J = 16.4 Hz, 1H), 2.61 – 2.43 (m, 2H), 1.63 (s, 3H), 1.59 (s, 3H), 1.40 (s, 3H), 1.21 – 1.13 (m, 6H).

13C NMR (75 MHz, CDCl3): δ 167.61 (C), 157.90 (C), 145.09 (C), 140.87 (C), 133.33 (C), 129.41 (CH), 126.60 (CH), 125.43 (CH), 121.54 (CH), 120.98 (CH), 112.22 (CH), 48.21 (C), 45.15 (CH2), 42.83 (CH2), 39.46 (CH2), 36.95 (CH2), 26.02 (CH3), 18.24 (CH3), 14.09 (CH3), 12.92 (CH3).

HRMS (ESI-TOF): m/z calculated for C21H30NO ([M+H]+) 312.2322, found 312.2322.

Assignment of structure of 2t' was based on the HMBC, HSQC, COSY and nOe experiments.

Figure S1. Significant nOe signals observed for 2t'

The following control experiments, carrying out the cyclization of 1t at lower temperatures indicate that the observed isomerization of the pendant double bond occurs in the reaction media, after the initial formation of the expected, non-isomerized, product 2t.

Table S3. Control experiments related to the cycloisomerization of 1t (ref. 21, main manuscript)

<table>
<thead>
<tr>
<th>entry</th>
<th>Temperature</th>
<th>time (h)</th>
<th>Conversion</th>
<th>2t (%)</th>
<th>2t' (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60 ºC</td>
<td>1</td>
<td>55%</td>
<td>55</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>100 ºC</td>
<td>1</td>
<td>70%</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>100 ºC</td>
<td>18</td>
<td>100%</td>
<td>-</td>
<td>99</td>
</tr>
</tbody>
</table>
Mechanistic probe: NMR spectra of D-2t', resulting from the cycloaddition of D-1t (related to Scheme 3, eq. 2, main manuscript)

As can be seen in the following Figures, deuteration of D-2t' is only observed at the methyl group of the quaternary stereocenter (signal at 1.40 ppm). While in 2t' the signal for this methyl group integrates for 3H, that of D-2t' corresponds to 2H. Accordingly, 1H-NMR spectra of D-2t' shows that deuterium is only located at this particular methyl group (1.40 ppm).

1H-NMR

Figure S 14. 1H-NMR and 2H-NMR of 2t' and D-2t'.
Figure S15. Amplified NMR window between 1.8 and 0.9 ppm (2t' and D-2t')

References

1b
NMR at 60 °C
$E:Z = 3.9 : 1$
\[Z-2r \]

\[E-2r \]

\[E : Z = 1 : 3.5 \]
At 60°C

![Chemical structure of 6b]

![NMR spectra]

![NMR spectra]