Model-based optimization biofilm based systems performing autotrophic nitrogen removal using the comprehensive NDHA model

Borja Valverde-Pérez1, Yunjie Ma1, Martin Morset1, Carlos Domingo-Félez1, Miguel Mauricio-Iglesias2, Barth F. Smets1

1METlab, Department of Environmental Engineering, Technical University of Denmark, Building 115, DK-2800, Lyngby, Denmark (bvape@env.dtu.dk; yuma@env.dtu.dk; mmorset@gmail.com; cadf@env.dtu.dk; bfsm@env.dtu.dk)
2Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain (miguel.mauricio@usc.es)

Abstract
Completely autotrophic nitrogen removal (CANR) can be obtained in single stage biofilm-based bioreactors. However, their environmental footprint is compromised due to elevated N₂O emissions. We developed novel spatially explicit biochemical process model of biofilm based CANR systems that predicts N₂O dynamics and stripping, using the biological NDHA model coupled with a simple and robust pH calculator. In this work we present two case studies: i) membrane aerated biofilm reactor (MABR) with focus on model calibration; and ii) granular system with focus on process optimization.

Keywords
Biofilm; nitrous oxide; scenario analysis; model calibration; optimization

INTRODUCTION
Alternatives based on autotrophic ammonium oxidation have been implemented as more energy and resource efficient processes than conventional nitrification/denitrification based BNR (biological nitrogen removal) processes for nitrogen removal from ammonium-rich/organic-carbon-poor residual streams (Lackner et al., 2014). Single-stage nitritation/anammox systems rely on two central microbial functional guilds, aerobic and anaerobic ammonium oxidizers (AOB, AnAOB), but also contain aerobic nitrite oxidizing bacteria (NOB) and heterotrophic bacteria (HB). Optimal conditions for autotrophic nitrogen removal, such as low and transient dissolved oxygen (DO) and the presence of nitrite, may promote emissions of nitrogen oxides (NₓO), of which N₂O is known as both a stratospheric ozone depleting and a greenhouse gas with 300 times higher radiative forcing than carbon dioxide. Documented N₂O emissions from single-stage partial nitritation/anammox systems (PN/A; 0.1-10 % of the removed nitrogen ammonium) have been higher than those measured from conventional BNR processes, potentially offsetting the benefit associated with their energy savings. In the present study we aim to use the comprehensive NDHA model to predict performance of biofilm based completely autotrophic nitrogen removal (CANR) systems and optimize the processes by achieving maximum nitrogen removal at lowest N₂O emission rates.

MATERIALS AND METHODS
Modelling approach
The simulation model presented by Vangsgaard et al. (2013), which includes microbial growth of AOB, NOB, AnAOB and HB and pH influence on the microbial activity, is extended to model
processes relevant to N₂O production and consumption. Specifically, AOB related processes (two autotrophic pathways) are modelled as suggested by Domingo-Félez and Smets (2016) whilst denitrification by HB is modelled as suggested by Hiatt and Grady (2008). Consistent with experimental studies, the biological model considers NO as the direct precursor of N₂O in all three biologically-driven pathways. This model can describe all relevant NO and N₂O production pathways with fewer parameters than other biological models, thereby simplifying the calibration of the biofilm simulation model. A pH calculation algorithm, which is based on 3 mass balances, 5 acid-base equilibria and a global charge balance, is implemented to estimate pH profiles in the granule as well as pH in the bulk liquid. The resulting system of 9 non-linear algebraic equations are combined and solved using the Brent-Dekker method, which ensures convergence to a solution even with poor initial guess. The model is implemented and solved in Simulink environment in MATLAB R2016b (The MathWorks, Natick, MA).

Case studies

Both studies are based on laboratory scale reactors growing autotrophic nitrogen removing biofilms fed with synthetic ammonia rich organic carbon depleted wastewaster.

Membrane Aerated Biofilm Reactor (MABR). 0.8 L MABRs were operated with continuous feeding under intermittent aeration (Ma et al., 2017). Bulk N concentrations, microprofiles (pH, DO and N₂O) within biofilm and N₂O emissions (bulk and offgas phases) were used for model calibration. Calibrated parameters were selected via local sensitivity analysis.

Granular Biofilm Reactor. 4 L continuous stirred tank reactor operated with constant aeration. For process optimization, different granule sizes and bulk pH levels were evaluated and the N and O₂ loads were optimized via scenario analysis.

RESULTS

Membrane-aerated Biofilm Reactor. Based on local sensitivity analysis a 2 steps calibration procedure was applied. Kinetic parameters, including \(\mu_{AOB,AMO} \) and \(K_{I,FA,AOB} \), were first calibrated to fit bulk N concentrations and pH values. Then \(\eta_{NIR} \) (anoxic reduction factor for NO₂ reduction by AOB) and \(K_{NH2OH,AOB} \) were calibrated to predict N₂O production. The model predicts reasonably well the reactor performance (only N₂O profile in biofilm is presented – Fig. 1a). Individual contribution of each N₂O production pathway to total emission in MABRs indicated that heterotrophs could be key contributors to N₂O production within the counter-diffusion biofilm. Thus, process optimization by controlling frequency and length of aeration phase should aim at minimizing nitrite concentrations within the biofilm by promoting anammox growth over heterotrophs in the anoxic parts of the biofilm (optimization not shown due to space constraints).

Granular Biofilm Reactor. Simulation results showed close agreement with lab-scale data without further calibration, predicting 87% of nitrogen removal, out of which 2.1% was emitted as N₂O (vs. 1.1% by Blum et al., 2017 under the same operational conditions). Therefore, we used the default parameter set for process model optimization (Fig.2a&b for granule radius 500µm and bulk pH 7.5). Based on scenario analysis it is preferable to operate at low ammonia load, as above 400 mg-N L⁻¹ d⁻¹ N₂O emissions considerably increase. Furthermore, the O₂ should be supplied at a ratio of 2 mg-O per mg-N for maximum nitrogen removal, but ensuring the system is not inhibited by ammonia, as this could enhance N₂O emissions from the system (Fig. 2b). Similar analysis was performed at different pH and granule sizes, which suggested optimal operational conditions should sustain a granule radius of 500µm, pH controlled at 7.5 and supply of O₂ to N ratio of 1.8 with a relatively low nitrogen load (i.e., 400 mg-N L⁻¹ d⁻¹) to ensure minimal N₂O emissions (Fig. 2c).
Figure 1. (a) Experimental (dots) and predicted (line) N₂O within biofilm during aeration phase; (b) predicted contribution to N₂O production/consumption by different pathways; (c) lab scale.

Figure 2. (a) Performance optimization for radius 500µm and bulk pH 7.5; (b) impact O₂ to N loading ratio on process performance; (c) nitrogen removal efficiency and N₂O emission factor as function of bulk pH (left) and granule radius (right); (d) laboratory scale reactor.

REFERENCES

