
This is the accepted manuscript of the following article:  Blanco-Abad, V., 
Noia, M., Valle, A., Fontenla, F., Folgueira, I., & De Felipe, A. et al. (2018). 
The coagulation system helps control infection caused by the ciliate 
parasite Philasterides dicentrarchi in the turbot Scophthalmus maximus 
(L.). Developmental & Comparative Immunology, 87, 147-156. doi: 
10.1016/j.dci.2018.06.001. © <Ano> Elsevier B.V. This manuscript version 
is made available under the CC-BY-NC-ND 4.0 license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

http://creativecommons.org/licenses/by-nc-nd/4.0/


The coagulation system helps control P. dicentrarchi infection in the 

turbot Scophthalmus maximus (L.)

Blanco-Abad, V. 1; Noia, M. 1; Valle, A. 1; Fontenla, F. 1; Folgueira, I. 2; De Felipe, 

A.P. 2; Pereiro, P.3; Leiro, J. 2; Lamas, J. 1*

1Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de 

Compostela, 15782 Santiago de Compostela, Spain

2Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis 

Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

3Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain

Running title

The turbot coagulation system and P. dicentrarchi 

*Correspondence: Jesús Lamas, Departamento de Biología Funcional, Edificio CIBUS, 

R. Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain. Email: 

jesus.lamas@usc.es. 



Abstract

Many studies have shown that coagulation systems play an important role in the 

defence against pathogens in invertebrates and vertebrates. In vertebrates, particularly in 

mammals, it has been established that the coagulation system participates in the 

entrapment of pathogens and activation of the early immune response. However, 

functional studies investigating the importance of the fish coagulation system in host 

defence against pathogens are scarce. In the present study, injection of turbot 

(Scopthalamus maximus) with the pathogenic ciliate Philasterides dicentrarchi led to 

the formation of macroscopic intraperitoneal clots in the fish. The clots contained 

abundant, immobilized ciliates, many of which were lysed. We demonstrated that the 

plasma clots immobilize and kill the ciliates in vitro. To test the importance of plasma 

clotting in ciliate killing, we inhibited the process by adding a tetrapeptide known to 

inhibit fibrinogen/thrombin clotting in mammals. Plasma tended to kill P. dicentrarchi 

slightly faster when clotting was inhibited by the tetrapeptide, although the total 

mortality of ciliates was similar. We also found that kaolin, a particulate activator of the 

intrinsic pathway in mammals, accelerates plasma clotting in turbot. In addition, PMA-

stimulated neutrophils, living ciliates and several ciliate components such as cilia, 

proteases and DNA also displayed procoagulant activity in vitro. Injection of fish with 

the ciliates generated the massive release of neutrophils to the peritoneal cavity, with 

formation of large aggregates in those fish with live ciliates in the peritoneum. We 

observed, by SEM, numerous fibrin-like fibres in the peritoneal exudate, many of which 

were associated with peritoneal leukocytes and ciliates. Expression of the CD18/CD11b 

gene, an integrin associated with cell adhesion and the induction of fibrin formation, 

was upregulated in the peritoneal leukocytes. In conclusion, the findings of the present 

study show that P. dicentrarchi induces the formation of plasma clots and that the fish 

coagulation system may play an important role in immobilizing and killing this parasite.
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1. Introduction

The coagulation system plays an important role in homeostasis and also in the 

defence against pathogens in invertebrates and vertebrates. The blood clots formed 

generate a competent barrier that prevents the spread of pathogens into the circulation 

(Sun, 2006). This system, which appeared early on in evolution and has been 

demonstrated in invertebrates such as the horseshoe crab (Limulus polyphemus) 

(Iwanaga and Kawabata, 1998), is considered one of the major defence systems in 

invertebrates  (Iwanaga and Lee, 2005). The mammalian coagulation system consists of 

a cascade of enzyme activation events that culminate in the formation of a fibrin clot. 

The blood clotting cascade can be triggered by two major routes, known as the tissue 

factor pathway and the contact pathway (Smith et al., 2015). The former of these, also 

known as the the extrinsic pathway, functions in normal haemostasis and probably also 

in many types of thrombosis. The contact pathway, also known as the intrinsic pathway, 

is triggered when plasma comes into contact with certain types of surfaces (Smith et al., 

2015). Tissue factor is the major initiator of the extrinsic pathway in mammals, which is 

mainly expressed by cell vessel walls and is released when the vessel wall is disrupted 

(Gaertner and Massberg, 2016). The contact system can be activated by non-

physiological and physiological compounds such as kaolin, dextran sulphate, 

polyphosphate, neutrophil extracellular traps (NETs), nucleic acids and collagen, and 

also by pathogens such as bacteria and viruses (Nickel and Renné, 2012; Long et al., 

2016). Interestingly, deficiencies in the contact pathway factors lead to prolonged 

clotting times in vitro, but do not cause bleeding complications in vivo (Maas and 

Renné, 2012). 

During bacterial infections, the coagulation system cooperates with the immune 

system to eliminate the invading pathogens. Studies in the horseshoe crab have shown 

that the coagulin blood clot immobilizes microbes and acts together with plasma 

components to destroy clot-entrapped microbes (Isakova and Armstrong, 2003). In 

mammals, activation of the tissue factor pathway is considered part of the host defence 

to infection, and a protective role against certain pathogens has been described (van der 

Poll and Herwald, 2014). Many bacterial species have been shown to activate the 

contact pathway by different mechanisms (Nickel and Renné, 2012). The contact 

pathway acts synergistically by entrapping bacteria with fibrin and enhancing 

proinflammatory signalling, which suggests that coagulation is important in preventing 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Iwanaga%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9727083
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kawabata%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9727083


the spread of the invading pathogen (Frick et al., 2006; Loof et al., 2014; Nordahl et al., 

2005). 

Knowledge of the coagulation system in fish is rather limited. Although most 

coagulation factors found in mammals appear to occur in teleosts such as zebrafish 

(Danio rerio) and puffer fish (Fugu rubripes) (Davidson et al., 2003; Doolittle, 2015; 

Weyand and Shavit, 2014), some genes involved in the contact system, such as factor 

XII and prekallikrein, have not been found in fish (Doolittle, 2011). It has been 

suggested that the cascade equivalent to the plasma kallikrein-kinin system in mammals 

is absent in teleosts (Wong and Takei, 2013). Nonetheless,  both the intrinsic and 

extrinsic coagulation pathways have been described in zebrafish (Jagadeeswaran and 

Sheehan, 1999). However, as far as we know, there is no information available about 

the role of the coagulation system in defence against pathogens in fish. 

Philasterides dicentrarchi is an opportunistic histophagous ciliate that causes 

severe mortalities in cultured fish worldwide (Harikrishnan et al., 2010). Ciliates 

probably penetrate the fish through lesions in the gills or the skin and then proliferate in 

internal organs, causing systemic infection (Paramá et al., 2003). Fish infected 

experimentally with P. dicentrarchi show an intense inflammatory response that affects 

most organs (Puig et al., 2007) as well as upregulation of many genes involved in the 

immune response (Pardo et al., 2012). The ciliate and some of its components induce 

strong activation of turbot leukocytes; however, their role in defence against this 

pathogen seems to be minor, at least in comparison with humoral factors (Piazzon et al., 

2011a, 2013). In this respect, fish complement appears to be a critical component in the 

defence against P. dicentrarchi, especially after activation of the classic pathway (Leiro 

et al., 2008; Piazzon et al., 2011a, 2013). In addition to complement, fish plasma also 

contains other soluble components, such as those forming part of the coagulation 

system, which may also have a role in controlling P. dicentrarchi infection. This study 

was undertaken to determine whether ciliates and their components can induce 

activation of the coagulation system and how coagulation affects the survival of P. 

dicentrarchi. 

2. Materials and methods

2.1. Ciliates

https://www.ncbi.nlm.nih.gov/pubmed/?term=Doolittle%20RF%5BAuthor%5D&cauthor=true&cauthor_uid=26437661
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jagadeeswaran%20P%5BAuthor%5D&cauthor=true&cauthor_uid=10575549
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sheehan%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=10575549
https://www.ncbi.nlm.nih.gov/pubmed/?term=Harikrishnan%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20211263


Specimens of the ciliate P. dicentrarchi (isolate I1; Budiño et al., 2011) were  

aseptically isolated from ascites of naturally infected turbot. The ciliates were 

maintained at 18 °C in complete sterile L-15 medium (Leibovitz, Sigma-Aldrich, pH 

7.2) containing  adenosine, cytidine and uridine (90 mg/L), guanosine (150 mg/L), 

glucose (5 g/L),  L-α-phosphatidylcholine (400 mg/L), Tween 80 (200 mg/L) and 10% 

heat inactivated foetal calf serum (Iglesias et al., 2003). The virulence of the ciliates was 

maintained by experimentally infecting samples of fish every 3 months by 

intraperitoneal injection, as previously described (Leiro et al., 2008). The ciliates were 

washed in L-15 medium by centrifugation (700 x g for 10 min) and resuspended in 

3.5% NaCl, and the concentration was estimated with a haemocytometer. Alternatively, 

ciliates were resuspended in 3.5% NaCl containing 1 mM phenylmethylsufonyl fluoride 

(PMSF, dissolved in ethanol) and ultrasound was applied to the ciliate suspension on a 

bed of ice, in order to totally lyse the cells. Live and lysed ciliates were used in different 

clotting experiments.

To obtain the cilia, the ciliate suspension was centrifuged at 700 x g for 10 min, 

and the pellet was resuspended in L-15 medium containing 2.6 mM of dibucaine and 

incubated for 10 min (Thompson et al., 1974). Deciliation was monitored by observing 

the ciliate suspension under phase contrast microscopy. Cilia were separated from the 

other ciliate components by differential centrifugation, as indicated by Adoutte et al., 

(1980). The ciliate suspension was centrifuged at 700 x g for 10 min to eliminate other 

cell components derived from broken ciliates. The supernatant was centrifuged again at 

15000 x g for 15 min and the pellet was resuspended in distilled water and stored at -80 
oC.  The protein content of the samples was determined by the Bradford assay, as 

indicated by Piazzon et al., (2008).

The P. dicentrarchi DNA was purified using the DNAesy Blood and Tissue Kit 

(Qiagen) following the manufacturer's instructions. The quality, purity and 

concentration of DNA were estimated by A260 measurement in a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies, USA.).

Ciliate proteases were purified on a bacitracin–Sepharose affinity column, as 

described by Piazzon et al., (2011b). Briefly, ciliates isolated from 0.5 L of P. 

dicentrarchi culture (about 105 ciliates/mL) were washed with PBS, resuspended in 5 

mL of equilibration buffer (100 mM CH3COONH4, pH 6·5), sonicated on ice until 

broken and filtered (0.22 μm). The ciliate samples were then applied to a bacitracin– 

CNBr-activated sepharose 4B (GE Healthcare, Madrid, Spain) XK 16/20 column 

http://www.sciencedirect.com/science/article/pii/S0014489416301576?via%3Dihub#bib4
http://onlinelibrary.wiley.com/doi/10.1111/jfd.12503/full#jfd12503-bib-0042


connected to a protein purification system (ÄKTAprime™plus; GE Healthcare, Madrid, 

Spain). The non-retained fraction was washed with the same buffer until the absorbance 

at 280 nm returned to basal levels. The proteases bound to the column were eluted with 

100 mM CH3COONH4, 1 M NaCl and 25% (v/v) 2-isopropanol, pH 6.5, until the OD at 

280 nm was basal. Samples were then dialysed and concentrated by ultrafiltration in 

Amicon® Ultra 10 K centrifugal filter devices (Millipore, Billerica, MA, USA) and 

finally stored in 0·15 M PBS at −80 oC until use.

2.2. Fish

Specimens of the turbot Scophthalmus maximus (L.), of approximately 50 g 

body weight, were obtained from a local fish farm. The fish were maintained at 16 oC in 

250-L tanks with aerated and recirculated sea water and fed daily with commercial 

pellets. The fish were acclimatized to the aquarium conditions for two weeks before the 

start of the experiments. All experimental protocols were approved by the Institutional 

Animal Care and Use Committee of the University of Santiago de Compostela (Spain). 

Before all procedures, the fish were anaesthetized with tricaine methanesulfonate 

(Sigma-Aldrich) (150 mg/L) and killed by pithing.

2.3. Collection of serum, plasma and leukocytes from fish blood

Fish blood was obtained by caudal venous puncture. Serum was obtained from 

blood that was allowed to clot for 2 h at room temperature before being centrifuged at 

3000 x g for 10 min. To obtain the plasma, one ml of blood was mixed with 100 µl of 

4% sodium citrate and centrifuged at 3000 x g for 10 min and at 4 oC. Plasma was 

carefully separated from the cells and used in the coagulation experiments. In some 

assays, serum and plasma were heated at 45 oC for 30 min. For separation of leukocytes, 

fish blood was diluted in L-15 medium (1:3, v:v) containing heparin (10 U ml−1) (Castro 

et al., 1999). The cell suspension was then layered onto a 30%/49% v/v Percoll gradient 

(GE Healthcare), as previously described (Castro et al., 1999). After centrifugation, the 

cells at the interface were collected, washed twice in cold L-15 and counted with a 

haemocytometer. Blood leukocytes (107 cells/ml) were then incubated in Eppendorf 

microtubes with phorbol 12-myristate 13-acetate (PMA) (1 µg/ml) in L-15 medium for 

4 h at room temperature to induce the formation of neutrophil extracellular traps 

(NETs). Control neutrophils were incubated with L-15 medium. NET formation was 

evaluated under fluorescence microscopy after the leukocyte samples were stained with 



SYTOX Green (Thermo Fisher Scientific) (1 μM in tris-buffered saline, TBS) for 30 

min and washed  carefully with TBS. 

2.4. Plasma clotting assays

Pooled fresh plasma from five fish was used in all assays. We tested the 

procoagulant activity of kaolin (0-200 μg/ml), P. dicentrarchi components, including   

live and lysed ciliates (0-1.3 x 106 cells/ml), cilia (0-8000 µg of protein/ml), DNA (0-

200 μg/ml), proteases (0-625 µg of protein/ml) and turbot neutrophils (control and 

treated with PMA, 0-5 x 107 cells/ml). With the exception of whole and lysed ciliates 

and turbot neutrophils, which were resuspended in respectively 3.5% NaCl or L-15 

medium, the other samples were diluted in distilled water. Controls containing 3.5% 

NaCl or L-15 medium were included in the experiment.

Assays were carried out in 2 ml round bottomed microcentrifuge tubes. Test 

samples (75 μl) and fresh plasma (45 μl) were added to the tubes and mixed. 

Coagulation was initiated by adding 75 μl of 40 mM CaCl2-solution to the tubes and 

mixing with the sample and plasma. Finally, the tubes were checked every 10 seconds 

and coagulation was confirmed by the presence of a rigid clot at the bottom. Results are 

expressed as mean clotting time for each sample relative to the clotting time for control 

samples.  

2.5. Morphological changes in the ciliates during clot formation

Aliquots (50 μl) of a mixture of ciliates (200 cells), fresh plasma and CaCl2 (at 

the concentrations mentioned above) were added to probe-clip press-seal incubation 

chambers (Sigma-Aldrich, Z359459). The changes in ciliate morphology and viability 

were monitored by differential interference contrast (DIC) microscopy for at least 30 

minutes. In some mixtures, CaCl2 was replaced with 3.5% NaCl and fresh plasma with 

heated plasma. 

2.6. Determination of plasma and serum killing activity in vitro

The killing activity of pooled fresh and heated plasma, fresh and heated serum 

and, alternatively, plasma treated with the tetrapeptide Gly-Pro-Arg-Pro (Sigma-

Aldrich) to prevent clotting (50 μg/mL final concentration), was evaluated in 96 well 

plates. In all experiments, plasma and serum were obtained from the same group of fish. 

Plasma and serum were heated to 45 oC for 30 minutes. Heating the plasma and serum 



inactivates complement and also the coagulation capacity of plasma. In some 

experiments, we used pooled plasma and serum from 5 immunized fish. The experiment 

was carried out under aseptic conditions. Ten µl of ciliates (250 ciliates in 3.5 % NaCl), 

9 µl of several dilutions of pooled fresh and heated serum or plasma in 3.5% NaCl, 5 µl 

of 3.5 % NaCl, and 15 µl of 40 mM CaCl2 in distilled water were added to each well 

(total 39 µl). In some assays, the tetrapeptide Gly-Pro-Arg-Pro  was added to  3.5 % 

NaCl. In addition, CaCl2 was also substituted with 3.5 % NaCl, to prevent clot 

formation. All components were used at room temperature. The killing activity of serum 

and plasma was determined by counting the number of dead ciliates per well at several 

different times. In all experiments triplicate samples were analysed, and the experiment 

was repeated three times. 

2.7. Determination of antibody levels in serum and plasma from immunized fish

To obtain immune serum and plasma, ten fish per group were injected twice, one 

month apart, with a vaccine containing P. dicentrarchi (isolate I1) and the adjuvant 

Montaine ISA 763 A or PBS, as previously described (Piazzon et al., 2008). One month 

after injection of the second dose, blood samples were obtained and antibody levels 

(IgM) were determined by double indirect-ELISA, following the protocol described by 

Piazzon et al., 2008. Serum and plasma obtained from two groups of five immunized 

fish were each pooled.

 
2.8. Analysis of clots and peritoneal exudate with light and scanning electron 
microscopy in experimentally infected fish 

Fish were injected intraperitoneally with 100 μl of PBS containing 106 ciliates. 

At 1, 3 and 6 h post injection, the clots were carefully removed from the peritoneal 

cavity and fixed in 10% buffered formalin, for analysis by light and fluorescence 

microscopy, or with cold 2% paraformadehyde and 1% glutaraldehyde in 0.1 M 

phosphate buffer, for analysis by scanning electron microscopy (SEM). For light and 

fluorescence microscopy, clots were cryoprotected with 30% sucrose in PBS, embedded 

in OCT compound (Tissue Tek, Torrance, CA), frozen with liquid nitrogen-cooled 

isopentane and sectioned on a cryostat. Sections were stained with 4',6-diamidino-2-

phenylindole (DAPI) (100 μM, 10 min) or haematoxylin and eosin (H&E). Other clots 

were added directly to slides and examined by differential interference contrast (DIC) 

microscopy. In addition, the peritoneal cavity was washed with cold L-15 medium and 



heparin (10 U ml−1). One drop of  cell suspension from each sample was placed on a 

slide and examined directly by DIC microscopy or was stained with SYTOX green and 

observed by fluorescence microscopy. Other samples were placed on a slide, dried with 

a hair drier and stained with Haemacolor (Merck) or diaminobenzidine (Sigma–Aldrich) 

(for peroxidase activity) (Kiernan, 1981). Alternatively, cell smears were fixed for 30 

min at 4 oC in 4% paraformaldehyde and 2% glutaraldehyde in 0.1 M phosphate buffer, 

pH 7.4, and postfixed for 30 min in 1% osmium tetroxide in the same buffer. The 

samples were then washed three times in dH2O, dehydrated with a series of graded ethyl 

alcohols, chemically dried with hexamethyldisilazane (HMDS) and sputter-coated with 

iridium, before finally being observed and photographed in an Ultra Plus Zeiss scanning 

electron microscope.

2.9. CD11b and CD18 gene expression in peritoneal cells

Thirty fish (five fish per group) were injected intraperitoneally with 100 μl of 

PBS or with PBS containing 106 ciliates. At 1, 3 and 6 h post injection, the peritoneal 

cavity was washed as indicated above. The cell suspensions thus obtained were washed 

twice with PBS, and the pellets obtained after centrifugation were frozen in liquid 

nitrogen and held at −80 oC until RNA extraction. RNA was extracted using the 

RNAeasy Mini kit (Qiagen) according to the manufacturer’s recommendations. 

Genomic DNA contamination was removed from RNA samples with DNase I (Thermo 

Scientific, Surrey, UK.). RNA quality and quantification were evaluated respectively in 

a Bioanalyzer (Bonsai Technologies) and in a NanoDrop® ND-1000 spectrophotometer 

(NanoDrop® Technologies Inc.), as indicated by Fontenla et al., (2016). cDNA was 

synthesized using the cDNA synthesis kit (NZYTech, Portugal) with 1 µg of sample 

RNA. qPCR was performed with gene-specific primers for the CD11b gene 

(forward/reverse primer pair CD11bF/CD11bR, 5´-AGGTTCATGGGAAGACTGGA-

3´/5´-ATTGGACCCTGCTGAAAAGA-3´), and for the CD18 gene (forward/reverse 

primer pair CD18F/CD18R, 5´-AGAACCACCCAGCGTCATAG-3´/5´-

TTGCCCACTTGGATTTCTTC-3´). Elongation factor 1-alpha (ef1-α) was used as a 

housekeeping gene for qPCR analysis, by including the forward/reverse primer pair 5′-

GGAGGCCAGCTCAAAGATGG-3′/5′-ACAGTTCCAATACCGCCGATTT-3′. The 

Primer 3Plus program was used with default parameters to design and optimize the 

primer sets. The qPCR reaction was performed with a NZY qPCR Green Master Mix 

(NZYTech, Portugal). The primer pair for the genes under study was used at a final 



concentration of 300 nM. The volume was completed with 1 μL of cDNA and RNase 

free distilled H2O to a final reaction volume of 10 μL/well. Quantitative PCR was 

conducted at 95 oC for 10 min, followed by 40 cycles at 95 oC for 15 s, 60 oC for 30 s, 

and 72 oC for 30 s, ending with a melting-curve analysis at 95 oC for 15 s, 55 oC for 15 s 

and 95 oC for 15 s. All quantitative PCRs were performed in a CFX Connect™ Real-

Time PCR Detection System (BioRad). The relative quantification of gene expression 

was determined by the 2−ΔΔCt method (Livak & Schmittgen, 2001) applied with software 

conforming to minimum information for publication of qRT-PCR experiments (MIQE) 

guidelines (Bustin et al., 2009). 

 
2.10. Statistics

Results shown in the figures are expressed as means ± standard error. Significant 

differences (P≤ 0.05) were determined by analysis of variance (ANOVA) followed by 

Tukey–Kramer multiple comparisons test.

3. Results

3.1. Intraperitoneal injection of P. dicentrarchi in turbot generates the formation of 
internal clots

In previous studies, we observed plasma clots in the peritoneal cavity of turbot 

injected intraperitoneally with the fish pathogen P. dicentrarchi. The clots contained 

ciliates, suggesting the involvement of the coagulation system in  fish defence against 

this ciliate. To confirm those observations, we injected 36 turbot (12 per sampling time) 

with ciliates and sampled them after 1, 3 and 6 h. Macroscopic clots of different sizes 

were observed in the peritoneal cavity of 34 of the fish (Fig. 1A, B), and no living 

ciliates were found in the peritoneal cavity of 14 of the fish at the different sampling 

times. The clots included areas with ciliates and areas with a mixture of peritoneal cells 

and ciliates (Figs. 2 and 3). The ciliates located inside the clots were immobilized and 

many of them were lysed (Fig. 4). Ciliates outside the clots were usually alive, although 

dead ciliates were also observed outside of the clots in the peritoneal cavity of some 

fish. 

3.2. Plasma clots immobilize and kill the ciliates in vitro

To determine the effects of fresh plasma on P. dicentrarchi, we mixed the 

ciliates with citrated plasma and then induced clotting by adding CaCl2 to the mixture. 

https://www.cambridge.org/core/journals/parasitology/article/presence-of-an-isoform-of-hpyrophosphatase-located-in-the-alveolar-sacs-of-a-scuticociliate-parasite-of-turbot-physiological-consequences/8BCD47CB6F8B1E501905BAD1642B8138/core-reader#ref7


Under these conditions, ciliates were gradually immobilized inside the clots and usually 

became increasingly elongated until cell death occurred (Fig. 5A, B). In the absence of 

clotting, plasma also killed the ciliate. In this case, as after incubation with serum, 

ciliates became rounded and finally lysed (Fig. 5C, D). We also evaluated the killing 

activity of serum and plasma from naive and immunized fish in the presence and 

absence of CaCl2. Plasma from naive fish disaplyed higher killing activity than serum. 

The addition of CaCl2 clearly increased the killing activity of both plasma and serum 

(Fig. 6A, B). The killing activity of plasma and serum from vaccinated fish (with 

specific IgM detectable by ELISA) was similar and much higher than in the samples 

from naive fish. Adding CaCl2  also increased the killing activity of both immune 

plasma and serum (Fig. 6C, D). In previous studies, we have shown that the killing 

activity of serum mainly involved complement. We  heated the serum in order to 

inactivate the complement; however, heating also inactivates plasma clotting and it is 

not possible to distinguish the killing due to complement and that due to clotting. To 

test the importance of plasma clotting in ciliate killing, we inhibited the process by 

adding the tetrapeptide Gly-Pro-Arg-Pro, which inhibits fibrinogen/thrombin clotting in 

mammals. We first determined the inhibitory concentrations of the tetrapeptide in 

plasma samples containing CaCl2 and then compared the killing activity of plasma with 

or without the tetrapeptide (at a final concentration of 50 μg/mL). Interestingly, the 

results show that plasma tended to kill P. dicentrarchi slightly faster when clotting was 

inhibited by the tetrapeptide, although the total mortality of ciliates was similar (Fig. 7).  

3.3. P. dicentrarchi, several ciliate components and PMA-stimulated neutrophils display 
procoagulant activity in vitro

As intraperitoneal injection of P. dicentrarchi generated the formation of clots in 

the peritoneal cavity of injected fish, we tested the capacity of whole ciliates or several 

ciliate components to induce plasma clotting in vitro. We first tested kaolin, a 

particulate activator that induces activation of the contact pathway in mammals, as an 

accelerator of plasma clotting in turbot. Pooled citrated plasma was previously mixed 

with kaolin, and  clotting was induced by adding CaCl2 to the mixture. The time until 

clotting was then determined. In the absence of kaolin, fresh turbot plasma clotted in 

about 5 min. The presence of kaolin greatly reduced the plasma clotting time, and 

clotting occurred within one minute at the maximum concentration used (200 µg/ml) 

(Fig. 8A). We then tested the procoagulant activity of living ciliates, ciliates lysed by 



sonication and several ciliate components (cilia, proteases and DNA). We found that 

living ciliates greatly reduced  the plasma clotting time, and this effect was observed at 

ciliate concentrations higher than 1x104 ciliates per mL (Fig. 8A). Lysed ciliates had a 

weaker effect than living ciliates, and a concentration of about 8x104 ciliates per mL 

was required before a reduction in clotting time was observed (Fig. 8A). Cilia and 

ciliate DNA also displayed procoagulant activity (Fig. 8B), and concentraions of 

respectively 60 µg/ml and 1.5 µg/ml were required to observe an effect on clotting. Low 

concentrations of ciliate proteases tended to increase the clotting time, and high 

concentration clearly reduced the plasma clotting time (Fig. 9A). Some studies have 

suggested that NETs can activate the intrinsic pathway of coagulation in mammals. We 

induced NETs in turbot blood neutrophils activated with PMA and tested the effect on 

plasma clotting. Concentrations of PMA-treated neutrophils higher than 2x105 cells per 

mL reduced the clotting time (Fig. 9B). By contrast, untreated neutrophils only showed 

some procoagulant activity at very high concentrations.

3.4. Living ciliates induced the formation of large aggregates of neutrophils in the 
turbot peritoneal cavity

The injection of ciliates generated a massive release of neutrophils to the 

peritoneal cavity. The presence of live ciliates in the peritoneal cavity tended to lead to 

aggregation of neutrophils and the formation of large groups of cells (Figs. 10A, B). In 

fish in which all the ciliates were killed, neutrophils were also very abundant in the 

peritoneal cavity, although they did not form large aggregates of cells (Fig. 11). In 

infected fish, in addition to the presence of clots, abundant microscopic fibrin-like fibres 

of different sizes were observed in the peritoneal exudate (Fig. 12). We observed, by 

SEM, numerous fibrin-like fibres in the exudate, many of which were associated with 

peritoneal leukocytes,  possibly neutrophils (Figs. 13A, B), and with ciliates (Fig. 13C). 

As we found that PMA-treated neutrophils accelerated coagulation, we looked 

for the presence of NETs in the neutrophil aggregates. We observed NETs in very few 

cells (Fig. 14) and no extracellular DNA in most of the free-living cells or cell 

aggregates. Finally, we determined the expression of α (CD11b) and β (CD18) integrin 

chains, which are genes associated with fibrin deposition on neutrophils and play an 

important role in cell adhesion in mammals. Interestingly, we observed a substantial 

increase in the expression of both genes in peritoneal cells of fish injected with P. 

dicentrarchi (Fig. 15).



4. Discussion

Blocking the entry of pathogens is important to prevent their dissemination 

throughout the body. The coagulation system has been shown to participate in immunity 

in invertebrates, and it is capable of immobilizing and killing bacteria (Iwanaga and 

Lee, 2005; Theopold et al., 2014); however, the genes involved in coagulation are not 

considered homologous to those found in vertebrates. In the present study, clots formed 

in the peritoneal cavity of turbot injected with P. dicentrarchi, as early as 1 h post 

injection, and many of the clots contained numerous immobilized ciliates. We also 

found that the coagulation system is important in the turbot defence against this 

pathogen. The presence of these clots at the injection site suggest that the ciliates 

activated the coagulation system and that this system, in addition to its role in 

haemostasis, may play a role in the defence against pathogens, as also found in 

mammals (Gaertner and Massberg, 2016). The mammalian coagulation system can be 

activated by two different pathways, both of which generate clot formation: the tissue 

factor (extrinsic) pathway, which becomes activated following damage to blood vessels, 

and the contact (intrinsic) pathway, which becomes activated after contact with anionic 

surfaces (Berends et al., 2014; Smith et al., 2015). Both extrinsic and intrinsic pathways 

are considered part of host defence against infection (van der Poll and Herwald, 2014). 

With the data obtained in the present study, we cannot determine which pathway 

became activated in turbot after injection with P. dicentrarchi and participated in clot 

formation. Although components of the extrinsic pathway have been found in fish 

genomes (Jiang and Doolittle, 2003), their role in the fish immune response has not yet 

been established. Unfortunately, there is not much information about the existence of a 

contact pathway in fish. This system contributes to host defence, via the 

proinflammatory kallikrein-kinin system, and coagulation, via the procoagulant intrinsic 

coagulation pathway. The principal initiator is factor XII (FXII), which becomes 

activated by bacterial surfaces, fungi and even viruses (Long et al., 2016). However, 

several components of the this pathway have not been identified in teleosts, including 

factor FXII and plasma kallikrein (Doolittle 2011; Wong and Takei, 2013;Yin et al., 

2016), and some authors have suggested that fish lack the intrinsic pathway (Papareddy 

et al., 2018). We have carried out some functional assays in order to shed more light on 

this subject. We induced plasma clotting in turbot by using some of the compounds also 

used in mammals to stimulate the contact pathway, such as kaolin, DNA and neutrophil 
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NETs (Kannemeier et al., 2007). We found that all of these compounds accelerated 

plasma clotting in vitro, suggesting the existence of a contact coagulation system in 

turbot.  As FXII and plasma kallikrein are absent in fish, the contact pathway must be 

activated by other compounds. A kalliklectin with structural similarities to mammalian 

plasma kallikreins and coagulation factor XI has been described in some fish species. It 

has been suggested that the mammalian enzymes may have originally emerged as a 

lectin and then evolved into molecules with protease activity after separation from 

common ancestors (Tsutsui et al., 2011). However, it is not known whether a lectin 

participates in the activation of a pathway alternative to the tissue factor pathway. 

Further work is required to establish which pathways are involved in the induction of 

clots by P. dicentrarchi in vivo. 

We also investigated the plasma coagulation activity induced by P. dicentrarchi 

and ciliate components. Interestingly, living ciliates are also good activators of this 

response, and they are more effective than lysed ciliates. Numerous pathogens, 

including bacteria, viruses, fungi and some parasites can activate the coagulation system 

in mammals (Nickel and Renné, 2012). As far as we know, the present study is the first 

to report the capacity of ciliates to induce plasma clotting in vertebrates. Because this 

process occurs relatively rapidly in vitro and at low ciliate concentrations, the clotting 

must be accelerated by something on the ciliate surface, and the movement of cilia may 

even have some effect. We found that cilia alone also displayed procoagulant activity, 

but at a much lower level than living ciliates. Other parasite components also reduced 

the clotting time in vitro; this is the case with P. dicentrarchi proteases, which are 

considered important virulence factors in this ciliate (Paramá et al., 2007a,b; Piazzon et 

al., 2011b). The pathogen proteases have diverse effects on plasma coagulation. Some 

bacteria escape fibrin(ogen) meshes by inducing proteolytic dissolution, while proteases 

from other species have the opposite effect (Dubin et al., 2013). Something similar 

occurs in parasites. Serine proteases from parasitic helminths display anticoagulation 

activity (Yang et al., 2015). Although overall the P. dicentrarchi proteases display 

procoagulant activity, other complex groups of proteases may be involved, and each 

may have different effects. 

In order to evaluate the importance of clotting in killing P. dicentrarchi, we 

treated the plasma with the tetrapeptide Gly-Pro-Arg-Pro, which inhibits fibrin 

polymerization in mammalian plasma (Pitkänen et al., 2017). We found that this 

tetrapeptide also inhibits plasma clotting in turbot. Interestingly, there was a delay in P. 



dicentrarchi killing in plasma samples in which clotting occurred relative to that in 

plasma treated with the tetrapeptide, in which clotting was inhibited. In previous 

studies, we have found that turbot complement is highly effective in killing P. 

dicentrarchi (Leiro et al., 2008; Piazzon et al., 2011a). Plasma clotting may restrict the 

movement of ciliates, but clotting may also restrict the access of complement 

components to the ciliates, thereby reducing the speed of ciliate killing by plasma. 

Moving ciliates probably come into contact with more complement than immobile 

ciliates. Nonetheless, clotting clearly blocks ciliate movement, and the space occupied 

by the ciliate gradually becomes smaller until cell death occurs. 

We know from previous studies that turbot complement, especially after 

activation by the classical pathway, is highly effective in killing P. dicentrarchi (Leiro 

et al., 2008). In the present study, we compared the killing activity of plasma and serum 

from naive and vaccinated fish. In naive fish, plasma displayed higher killing activity 

than serum in the absence of clotting. When clotting was induced in plasma, we found 

that the addition of calcium to plasma and serum from naive fish greatly increased the 

killing activity. Under these conditions, plasma also displayed higher killing activity 

than serum. It is not clear why the addition of calcium should increase the killing 

activity of naive serum. Previous studies have shown that calcium is required for 

activation of the classical complement pathway in fish, but not for the activation of the 

alternative pathway (Yano, 1992). Calcium chelation did not inhibit the killing activity 

of sea bream (Sparus aurata) serum through the alternative complement pathway 

(Sunyer and Tort, 1995). On the basis of these results, the addition of calcium to plasma 

from naive turbot should not affect the activity of the alternative complement pathway. 

However, we cannot rule out the activation of the classical pathway by natural 

antibodies present in plasma and serum. Differences in killing activity between plasma 

and serum from naive turbot in the presence of calcium may be associated with 

activation of the coagulation system, as it has been shown that components of this 

system can also trigger complement activation in mammals (Irmscher et al., 2018; 

Kaplan and Ghebrehiwet, 2010). Activation of the coagulation system in turbot may 

enhance complement activation on the ciliate surface, increasing killing. Differences in 

killing activity of serum and plasma from immunized fish were less evident than in 

samples from naive fish. The main reason for this may be that turbot complement is 

highly effective in killing P. dicentrarchi when activation occurs through the classical 

pathway (Leiro et al., 2008; Piazzon et al., 2011a), and the influence of the activation of 
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coagulation system on this activity may be more difficult to detect. All of these aspects 

must be evaluated in future research, to confirm or rule out the interactions between 

complement and the coagulation system in fish and their influence on killing activity of 

pathogens. 

In addition to the formation of plasma clots, we found that a large number of 

neutrophils were released to the peritoneal cavity as a consequence of i.p. injection of P. 

dicentrarchi. These neutrophils were highly stimulated and formed very large cell 

aggregates. In addition to neutrophils, we observed abundant fibrin-like fibres in the 

peritoneal exudate. The fibres were often associated with neutrophils and ciliates. In 

response to infectious stimuli, neutrophils can release serine proteases and also NETs, 

which help to kill the pathogens. NETs and serine proteases promote coagulation and 

fibrin deposition and prolong lysis of clots (Longstaff et al., 2013; Martinod and 

Wagner, 2016; Pheiler et al., 2017). Stimulation of teleost neutrophils leads to 

production of NETs (Havixbeck and Barreda, 2015). In the present study, we found that 

injection of P. dicentrarchi induces the formation of NETs in some of the neutrophils 

that formed part of the aggregates. However, as this process only affected some 

neutrophils, and most of them did not show alterations compatible with NETs, it 

probably does not explain the large amount of fibrin-like fibres generated in the 

peritoneal exudate. We observed strong upregulation of the expression of CD11b and 

CD18 in the peritoneal leukocytes from infected turbot. The findings of mammalian 

studies have suggested that fibrin deposition on neutrophils is markedly reduced by 

antibodies against the integrin CD11b/CD18 (also known as CR3 or Mac-1) (Goel and 

Diamond, 2001). CD11b/CD18 can bind to several molecules, including fibrin(ogen) 

(Flick et al., 2004), and CD11b displays procoagulant activity (Gorbet and Sefton, 

2001). Peritoneal nodules have been shown to form in  the peritoneal cavity of 

vaccinated turbot (Noia et al., 2014) and also in mice injected with aluminium 

hydroxide (Munks et al., 2010). In the latter, fibrinogen was critical for nodule 

formation, and the process involved CD11b+ cells. In addition, neutrophils were the 

primary cell type involved in fibrin formation (Munks et al., 2010). All of these aspects 

must be investigated in greater detail; however, on the basis of the findings in mammals 

and  the presence of numerous fibrin-like fibres associated with turbot leukocytes, it 

appears that clotting in the turbot peritoneal cavity after injection of P. dicentrarchi may 

be influenced by the presence of the integrin CD11b/CD18 in peritoneal leukocytes and 

particularly in neutrophils. 
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In conclusion, the findings of the present study show an interaction between P. 

dicentrarchi and the fish coagulation system: the ciliate can induce clotting, which in 

turn affects the viability of the ciliate. To analyse these interactions in greater detail, 

new tools must be developed to enable evaluation of the response at the molecular level. 
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Figures

Fig. 1. Plasma clots (arrow) obtained from the peritoneal cavity of infected turbot at 1h 

(A) and at 6 h (B) post injection. 

Fig. 2. Cryostat section of a plasma clot stained with DAPI, showing areas of ciliates 

(yellow arrow) and areas of fish cells (orange arrow).

Fig. 3. Haematoxylin and eosin (H&E) stained section of a plasma clot showing an area 

rich in ciliates (arrows).

Fig. 4. Plasma clot containing numerous ciliates (arrows), some of them lysed or with  

altered morphology (yellow arrows). Some ciliates with normal morphology are also 

observed outside the clot (red arrow). DIC microscopy.

Fig. 5. Sequence of images showing P. dicentrarchi in a plasma clot generated in vitro 

(A and B). Note the changes in ciliate morphology. Ciliates became elongated and 

finally fragmented. DIC microscopy. A ciliate incubated with citrated plasma without 

CaCl2, which showed spherical morphology before undergoing lysis (C), and a control 

ciliate (D) are also observed. Light microscopy.  

Fig. 6. Ciliate mortality (%) after incubation of P. dicentrarchi with naive or immune 

plasma and serum, in the presence and absence of CaCl2, for 30 min, 1 or 3 h. When 

naive fish were used, plasma generated higher killing activity than serum in the 

presence (A) and absence of CaCl2 (B). In immune fish, the killing activity of serum 

and plasma increased substantially, but with no differences in killing activity (C and D).

https://www.ncbi.nlm.nih.gov/pubmed/25748703


Fig. 7. Ciliate mortality (%) after incubation of P. dicentrarchi with plasma, in the 

presence or absence of the tetrapeptide Gly-Pro-Arg-Pro (50 μg/mL). When CaCl2 was 

added, the presence of peptide increased plasma killing activity during the first 30 min 

of incubation. The peptide alone had no effect on ciliate mortality (not shown in the 

graph). *P<0.05 compared with plasma and CaCl2.

Fig. 8. The procoagulant activity of kaolin, living ciliates and ciliate components in 

pooled turbot plasma. The procoagulant activity of living and lysed ciliates (A) and of 

cilia and ciliate DNA (B) is compared with the activity of kaolin. Results are shown as 

the clotting time (s) for each experimental sample concentration relative to that 

observed for the control samples (0 s, blue arrows). A negative or positive value 

indicates that the clotting time of experimental samples was respectively lower or higher 

than that of the control samples. 

Fig. 9. Procoagulant activity of kaolin, ciliate proteases, neutrophils or neutrophils 

preincubated with PMA. The procoagulant activity of ciliate proteases (A) and of 

neutrophils and neutrophils preincubated with PMA (B) was compared with the kaolin 

activity. Results are shown as the clotting time (s) for each concentration of test sample 

relative to that of the control sample (0 s, blue arrows). Negative and positive values 

indicate that the clotting time in the test samples was respectively lower or higher than 

in the control samples.

Fig. 10. Turbot peritoneal cells 6 h after injection with P. dicentrarchi. A) Several large 

neutrophil aggregates (blue arrows) are observed. These fish contained living ciliates in 

the peritoneal cavity. Ciliates (red arrow). B) Detail of neutrophil aggregates with 

several ciliates feeding on them. Ciliates contain several phagocytosed, peroxidase-

positive neutrophils. Smear of peritoneal fluid stained with peroxidase-haematoxylin. 

Fig. 11. Turbot peritoneal cells 6h after injection with P. dicentrarchi. The fish 

contained dead ciliates in the peritoneal cavity. Numerous neutrophils (peroxidase 

positive cells, blue arrows) were observed but not aggregated. Smear of peritoneal fluid 

stained with peroxidase-haematoxylin.

Fig. 12. Smear of turbot peritoneal fluid 1 h after injection with P. dicentrarchi and 

showing abundant fibrin-like fibres (arrows). Neutrophil aggregate (N). Peroxidase-

haematoxylin. 



Fig. 13. Scanning electron microscopy images of peritoneal exudate from turbot 6 h 

after injection with P. dicentrarchi. A) Numerous fibres are observed between the cells 

(arrows) and some are attached to peritoneal leukocytes. B) Several fibres are attached 

to a peritoneal leukocyte (arrows) or, C) to a ciliate (arrows). 

Fig. 14. Peritoneal cell aggregate obtained 6 h after injection of fish with P. dicentrachii  

and stained with SYTOX Green. The morphology of very few cells was compatible 

with release of NETs (arrow) and most cells did not have extracellular DNA. 

Fluorescence microscopy. 

Fig. 15. Expression profiles of CD11b and CD18 in peritoneal cells 1, 3 and 6 after 

injection with P. dicentrarchi or PBS. The expression was calculated relative to the ef1-

α mRNA level. Data are means±SEM for five fish. The asterisks denote statistically 

significant differences(P<0.05) between fish injected with PBS (C, control group) and 

fish injected with ciliates (I).
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