This is the accepted manuscript of the following article: Mallo, N., Lamas, J., de Felipe, A.P., Sueiro, R.A., Fontenla, F. & Leiro, J.M. (2016). Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects. Experimental Parasitology, 169, 59-68. doi: 10.1016/j.exppara.2016.07.012. © <Ano> Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Title: Role of H+-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: physiological effects

Article Type: Research Paper

Keywords: Philasterides dicentrarchi; intracellular pH; calcium; ATP; H+-PPase; osmoregulation

Corresponding Author: Dr. Jose Manuel Leiro Vidal, Ph.D.

Corresponding Author's Institution: University of Santiago de Compostela

First Author: Natalia Mallo

Order of Authors: Natalia Mallo; Jesús Lamas; Ana Paula De Felipe; Rosa Ana Sueiro; Francisco Fontenla; Jose Manuel Leiro Vidal, Ph.D.

Abstract: The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anfizoid and marine euryhaline ciliate P. dicentarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPI), Ca2+ and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H+-PPase) that pumps H+ through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca2+ storage). We evaluated the effects of Ca2+ and ATP on H+-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPI and inorganic molecules that affect osmolarity. Addition of PPI led to acidification of the intracellular compartments, while the addition of ATP, CaC12 and bisphosphonates analogous of PPI and Ca2+ metabolism regulators led to alkalinization and a decrease in H+-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca2+ accumulation and downregulation of H+-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment.
Highlights

- The existence of acidocalcisome-like structures in a ciliate parasite is proposed
- ATP and Ca^{2+} regulate the enzymatic activity of H^{+}-pyrophosphatase
- The regulation of intracellular pH is key to the survival of the parasite
- Disruption of pH homeostasis can be a chemotherapeutic target
Role of H⁺-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: physiological effects

Natalia Malloᵃ, Jesús Lamasᵇ, Ana-Paula DeFelipeᵃ, Rosa-Ana Sueiroᵃᵇ, Francisco Fontenlaᵇ, José-Manuel Leiroᵃ⁺

ᵃLaboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
ᵇDepartamento de Biología Celular y Ecología e Instituto de Acuicultura, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.

Short title: Intracellular pH homeostasis and osmoregulation in a scuticociliate parasite
Corresponding author:
José M. Leiro, Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, c/ Constantino Candeira s/n, 15782, Santiago de Compostela (A Coruña), Spain; Tel: 34981563100; Fax: 34881816070; E-mail: josemanuel.leiro@usc.es

Abstract
The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anfizoic and marine euryhaline ciliate *P. dicentarchi*. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPI), Ca$^{2+}$ and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. *P. dicentarchi* possesses a pyrophosphatase (H$^+$-PPase) that pumps H$^+$ through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca$^{2+}$ storage). We evaluated the effects of Ca$^{2+}$ and ATP on H$^+$-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPI and inorganic molecules that affect osmolarity. Addition of PPI led to acidification of the intracellular compartments, while the addition of ATP, CaCl$_2$ and bisphosphonates analogous of PPI and Ca$^{2+}$ metabolism regulators led to alkalinization and a decrease in H$^+$-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca$^{2+}$ accumulation and downregulation of H$^+$-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for
maintaining the intracellular pH homeostasis necessary for survival of ciliates and their
adaptation to salt stress, which they will presumably face during the endoparasitic
phase, in which the salinity levels are lower than in their natural environment.

Keywords: *Philasterides dicentrarchi*; intracellular pH; calcium; ATP; H⁺-PPase;
osmoregulation.

1. Introduction

Philasterides dicentrarchi, a marine euryhaline scuticociliate, is a facultative
parasite initially described in cultured European seabass *Dicentrarchus labrax*
(Dragesco et al., 1995) and which causes serious mortalities in cultured turbot
Scophthalmus maximus (Iglesias et al., 2001). Like other ciliates, this species displays a
high capacity to adapt to changes in environmental osmolarity (Kaneshiro et al., 1969).
Maintenance of cell volume is a fundamental mechanism of cellular homeostatic that
must have arisen very early on in the evolution of cells (Maroulis et al., 2003). Parasitic
protozoans have developed several mechanisms to adapt to osmotic stress and possess
two organelles with an essential role in these adaptations: the acidic organelles
acidocalcisomes and the contractile vacuole complex (Rohloff and Docampo, 2008).
The main function of acidocalcisomes is storage of H⁺ and phosphorus, for use in
pyrophosphate (PPI) and polyphosphate (PolyP) metabolism, osmoregulation and
maintenance of pH and Ca²⁺ homeostasis (Docampo and Moreno, 2001; Moreno and
Docampo, 2009; Docampo and Moreno 2011; Docampo et al., 2013; Li et al., 2014).
Acidocalcisomes share some properties with plant vacuoles and have several pumps in
their membranes. Two of these pumps (V-H⁺-PPase and V- H⁺-ATPase) are H⁺
translocases (Hannaert et al., 2003), which participate in the conservation of acidic conditions required for Ca\(^{2+}\) retention (García et al., 1998; Bonansea et al., 2012).

Several pumps such as H\(^+\)-PPase, H\(^+\)-ATPase, Na\(^+\)/H\(^+\) and Ca\(^{2+}/\)H\(^+\) exchangers and Ca\(^{2+}\)-ATPase participate in or interfere with pH maintenance (Luo et al., 2001; Rodrigues et al., 2002; Saliba et al., 2003; Docampo et al., 2005).

In Paramecium, staining of acid compartments with pH sensitive fluorescent dyes has revealed the distribution of several acidic vesicles in the cellular cytoplasm and some acidosomes close to the cytostome (Wassmer et al., 2009). The presence of granules containing Ca\(^{2+}\) and Mg\(_2\)PPi has been reported in another ciliate, Tetrahymena pyriformis (Heinonen, 2003). The possibility that ciliates possess acidocalcisomes is suggested by the fact that they contain many proteins that are activated by Ca\(^{2+}\), particularly in the cortex and cilia (Kim et al., 2002; Kissmehl et al., 2006); however, these proteins have not yet been characterized in Philasterides.

In ciliates, the alveolar sacs are distributed along the inner side of the membrane, which is covered by locomotive cilia (Lynn and Corliss, 1991). As the entire cell is coated by cilia, substantial amounts of Ca\(^{2+}\) are required for ciliary motility and for intra- and extracellular signalling. The Ca\(^{2+}\) of alveolar sacs of ciliates, which have been identified as Ca\(^{2+}\) stores, is actively imported inside the alveoli, in an ATP and Mg\(_2\)-dependent process (Stelly et al., 1995; Sahoo et al., 2004; Plattner, 2014; 2015). In P. dicentrarchi, the alveolar sacs are of variable size, possibly reflecting changes in osmotic or ionic concentration across the membrane in response to environmental conditions (Paramá et al., 2006); the membranes of vacuoles and alveolar sacs of trophozoites possess H\(^+\)-PPase, a enzyme typically present in the acidocalcisomes of protozoan parasites (Mallo et al., 2015; 2016a).
In this study, we investigated the potential presence of acidocalcisome-like organelles in the scuticociliate *P. dicentrarchi* and analyzed the role of adenosine triphosphate (ATP) and Ca$^{2+}$ on intracellular acidification, H$^+$ translocating activity and H$^+$-PPase expression. We also evaluated the effect of osmolarity on the levels of expression of this enzyme, assessing the physiological implication of acidic intracellular compartments in osmoregulation of the ciliate.

2. Material and Methods

2.1. Experimental animals and parasites

Specimens of turbot, *Scophthalmus maximus*, of approximately 50 g body weight were obtained from a fish farm in Galicia. The fish were placed in 250L tanks with recirculating seawater at 17-18$^\circ$C under a photoperiod of 12h light/dark, and they were fed daily with commercial pellets (Skretting, Burgos, Spain). Before starting the experiments, fish were acclimated to the laboratory conditions for 2 weeks.

ICR CD-1 mice (Swiss) of age 8-10 weeks were purchased from Charles River Laboratories (U.S.A.) for use in the experiments. All experiments were carried out following the European Regulations on Animal Protection (Directive 86/609), the Declaration of Helsinki and/ or the Guide of Care and Use of Laboratory Animals adopted by the US National Institutes of Health (NIH). All experimental protocols were approved by the Institutional Animal Care and Use Committee of the University of Santiago de Compostela.

We obtained naturally infected turbot, showing signs of scuticociliatosis, from a fish farm in Galicia (NW Spain). Specimens of the ciliate *P. dicentrarchi* (isolate I1;
Budiño et al., 2011) were obtained aseptically from intraperitoneal cavity ascites of these turbot, as previously described (Iglesias et al., 2001). The ciliates were grown at 21°C in complete sterile L-15 medium (Leibovitz, PAA Laboratories GmbH, 10% salinity, pH 7.2) containing 90 mg/L of adenosine, cytidine and uridine, 150 mg/L guanosine, 5 g/L glucose, 400 mg/L of L-α-phosphatidylcholine, 200 mg/L Tween 80, 10% foetal calf serum, heat inactivated (FCS), and 10 mL/L of a solution containing antibiotics and antifungotics (100X) (100 units/ml penicillin G, 0.1 mg/mL streptomycin sulphate and 0.25 mg/mL amphotericin B; Sigma-Aldrich), as previously described (Iglesias et al., 2003). In some experiments, ciliates were grown in solutions of NaCl at the required concentration and with 10% FBS. In order to maintain the virulence of the ciliates, experimental infections were induced every 6 months by intraperitoneal injection of 200 µL of sterile physiological saline solution containing 5x10^5 ciliates. Ciliates were recovered from ascites fluid, as previously described (Paramá et al., 2003; Leiro et al., 2008).

2.2. pH sensitive fluorescent staining

Ciliates (2.5 x 10^5) were permeabilized with digitonin (DIG) to a final concentration of 6.6 µM and washed twice with PBS by centrifugation before being stained with a solution of 3 µM acridine orange (Sigma-Aldrich) or with 75 nM Lysotracker Red DND -99 solution (Life Technologies) (both fluorophores that accumulate selectively in acidic compartments) for 10 min. In some experiments, ciliates also incubated with 0.1 mM of the PPi analogous pamidronate (PAM, Sigma-Aldrich). The stained ciliates were observed in a fluorescence or in a confocal microscope with an excitation BP 546 nm dichroic mirror filter and FT 580 nm LP
emission 590 nm filter (for acridine orange) and a BP 450-490 nm filter and FT 510 nm and LP 520 nm filter (for Lysotracker Red DND-99).

2.3. Location and quantification of intracellular Ca\(^{2+}\)

Ciliates (2.5 x 10\(^5\)), permeabilized with DIG as described above, were washed twice with HBSS, by centrifugation, and resuspended in assay medium (1X HBSS, 20 mM HEPES and 2.5 mM probenecid) to a final concentration of 1.25 x 10\(^6\) ciliates/mL. The Ca\(^{2+}\) probe Fluo-4 NW (No-Wash, Fluo-4 NW Calcium Assay kit, Life Technologies) was added following manufacturer's instructions, and the fluorescence (Ex: 494nm, Em: 516nm) was visualized by fluorescence microscopy (Zeiss Axioplan, Germany).

For quantification of intracellular Ca\(^{2+}\), the ciliates were washed twice, by centrifugation, and resuspended in assay medium to a final concentration of 1.25 x 10\(^6\) ciliates/mL. The ciliates were then incubated with different treatments for 1 hour in 96-well microplates at 21\(^\circ\) C. The cell-permeable Ca\(^{2+}\) indicator probe, Fluo-4 NW, was added following the manufacturer’s instructions, and the fluorescence (Ex: 494nm, Em: 516nm) was measured in a fluorimeter (FLx800, BioTek USA). Negative controls without Ca\(^{2+}\) probe Fluo-4 NW were established (Takahashi et al., 1999; Paredes et al., 2008; Friedrich et al., 2014).

2.4. Production of recombinant H\(^+\)-PPase of \textit{P. dicentrarchi} in yeast cells

The total RNA in \textit{P. dicentrarchi} was purified with a Nucleospin RNA kit (Macherey-Nagel, Düren, Germany), following the manufacturer’s instructions. RNA was treated with DNAse I (DNAse I, RNAsse free, Thermo Scientific) and the
concentration and purity were estimated in a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, USA) by measurement at 260nm.

cDNA (25 µl/reaction) was synthesized with 1.25 mM random primer (Roche), 250µM of each deoxynucleoside triphosphate (dNTPs), 10mM dithiothreitol (DTT), 20U of RNAse inhibitor, 2.3mM MgCl₂ and 200U of reverse transcriptase of Moloney murine leukemia virus, (MMLV) (Promega), in buffer containing 30 mM Tris, 20 mM KCl (pH 8.3) and 2 µg RNA samples.

The PCR was carried out with gene-specific primers designed from a partial sequence of an H^{+}-PPase of *P. dicentrarchi* (Mallo et al., 2015) (forward/reverse primer pair 5’-AAAGAAGAAGGGGTACCTTTGGATAAAAGAattgatgtcaacgccccctt-3’ / 5’-TGGGACGCTCGACGGATCAGCGGCCGCTTAGTGGTGGTGGTGGTGGTGgggac cagaggtatcctttta-3’). The primers were designed and optimized using the *Saccharomyces* Genome Database (http://www.yeastgenome.org/) by including a hybridization region with the yeast YEpFLAG-1 plasmid (Eastman Kodak Company) (upper case letters) and a poly His region. The PCR reaction was performed as previous described: 95 °C for 5 min, 30 cycles of 94 °C for 1 min, 55 °C for 1.5 min and 72 °C for 2 min followed by a 7-min extension phase at 72 °C. PCR products were purified with the Gene Jet PCR Purification Kit (Fermentas, Life Sciences) according to the manufacturer’s instructions.

PCR purified products were cloned in the yeast expression vector YEpFLAG-1 (Eastman Kodak Company). This vector has a gene (TRP1) that completes tryptophan auxotrophy in the host cell (López-López et al., 2010). *Saccharomyces cerevisiae* cells (strain BJ 3505) were transformed by the lithium acetate method (Ito et al., 1983), with the YEpFLAG-1 linearized plasmid and EcoRI and SalI (Takara) digestion. The procedure involves co-transformation of yeast cells with the linearized empty plasmid
and the PCR-generated DNA fragment so that a recombination process occurs within the cell yielding a plasmid bearing the desired insert. Positive clones were selected using a free tryptophan complete medium (CM-Trp) containing glucose (20g/L), Yeast Nitrogen Base without amino acids (Sigma-Aldrich), adenine (40mg/L) and amino acids (40 mg/L each of histidine, leucine and tyrosine; 10 mg/L each of arginine, methionine and threonine 10mg/L; 60 mg/L of isoleucine and 40 mg/L of phenylalanine). Plasmidic DNA was purified with the Easy Yeast Plasmid Isolation Kit (Clonetech), following the manufacturer’s instructions, and was analyzed by sequencing (Sistemas Genómicos, Spain).

The *P. dicentrarchi* recombinant protein (rH^+^-PPase) was purified from transformed *Saccharomyces cerevisiae* cultures after 72 hours of growth in Yeast Peptone High Stability Expression Medium (an expression medium containing 1% glucose, 3% glycerol, 1% yeast extract and 8% peptone and that yields high plasmid stability), at 30ºC in an Erlenmeyer flask filled to approximately 20% of its volume with culture medium, with shaking at 250rpm (López-López, *et al*., 2010). A suitable volume of a pre-culture was added as the inoculum to yield an initial OD$_{600}$ of 0.1. The cell suspension was centrifuged at 7500 x g for 15 min and the cleared supernatant was purified by immobilized metal affinity chromatography on a pre-charged Ni-Sepharose Histrap column (ÄKTAprime plus, GE Healthcare Life Sciences), which was initially equilibrated with 25 mL of binding buffer (20 mM Na$_2$HPO$_4$, 0.5 M NaCl, 20 mM imidazole, pH 7.4). After equilibration, 100mL of the culture medium containing the protein was charged through the column, and the protein bound to the column was finally eluted in 10 mL of elution buffer (20 mM Na$_2$HPO$_4$, 0.5 M NaCl, 250 mM imidazole, pH 7.4) (Mallo *et al*., 2015). Elution fractions were collected and dialyzed overnight in 2 L of bidistilled water. The dialyzed sample was concentrated in an
Amicon Ultra centrifugal filter device (Millipore, USA) with a 10-kDa cut-off membrane before being analyzed in a 12.5% SDS-PAGE. The final protein concentration was calculated by the Bio-Rad Protein Assay, based on the Bradford method (Bradford, 1976).

2.5. Immunization and serum extraction

A group of five ICR (Swiss) CD-1 mice were immunized by i.p. injection with 200 µL per mouse of a 1:1 (v/v) mixture of Freund complete adjuvant (Sigma-Aldrich) and a solution containing 500 µg of purified rH⁺-PPase. The same dose of purified protein was prepared in Freund’s incomplete adjuvant and injected i.p in mice 15 and 30 days after the first immunization. The mice were bled via retrobulbar venous plexus 7 days after the secondary immunization (Piazzon et al., 2011) and the blood was left to coagulate overnight at 4º C before the serum was separated by centrifugation (2000 × g for 10 min), mixed 1:1 with glycerol and stored at −20ºC until use.

2.6. Transmission electronic microscopy (TEM)

Ciliates were collected by centrifugation at 1000 x g for 5 min. After fixation in 2.5% (v/v) glutaraldehyde in 0.1 M cacodylate buffer at pH 7.2, the ciliates were then washed several times with 0.1 M cacodylate buffer, post-fixed in 1% (w/v) OsO4, pre-stained in saturated aqueous uranyl acetate, dehydrated through an acetone series and embedded in Spurr’s resin. Semi-thin sections were then cut with an ultratome (Reichert-Jung, Ultracut E, Austria) and stained with 1% toluidine blue for examination in a light microscope. Ultrathin sections were stained in alcoholic uranyl acetate and lead citrate and viewed in a Philips CM12 transmission electron microscope (Philips, Eindhoven, Netherlands) at an accelerating voltage of 80 kV (Paramá et al., 2006).
2.7. Measurement of PPI-dependent H⁺-translocation

The fluorimetric test was carried out with acridine orange (a fluorescent cationic dye which is accumulated in acidic compartments) as an indicator of transmembrane pH difference in permeabilized ciliates (Rohloff and Docampo, 2006).

Ciliates (2.5 x 10⁵) were permeabilized with DIG as described above, and washed twice with PBS by centrifugation. They were then resuspended in assay buffer containing 100 mM KCl, 0.4M glycerol, 1 mM Tris-EGTA, and 5mM Tris-HCl, 1 mM PMSF and 1 ug/ml leupeptin (pH 8) and 2.5 µM acridine orange. The reaction was initiated by the addition of Tris-PPI (1 mM) to medium containing 1.3 mM MgSO₄. The kinetics of the decay in fluorescence was measured at 485/530 excitation/emission in a fluorimeter (Fluox800, BioTek, USA) (Zhen et al., 1997; Hill et al., 2000; Marchesini et al., 2000; Rodrigues et al., 2000; Mallo et al., 2015). In all cases, a negative control without pyrophosphate was established. The compounds used were added from stock solutions prepared in reaction buffer (Moreno et al., 2011). Because it acts as alkalinizer, NH₄Cl was added in a final control test, to confirm that the decrease in acridine orange fluorescence was due to accumulation in acidic compartments (Rodrigues et al., 1999b; Lemercier et al., 2002).

2.8. Immunofluorescence assay

For immunolocalization of H⁺-PPase, an immunofluorescence assay was performed following the protocol described previously (Mallo et al., 2015). Briefly, 5x10⁶ ciliates were centrifuged at 750 x g for 5 min, washed twice with Dulbecco’s phosphate buffered saline (DPBS, Sigma Aldrich) and fixed for 5 min in a solution of 4% formaldehyde in DPBS. Following fixation, ciliates were washed twice with DPBS, resuspended in a solution containing
0.1% Triton X-100 (PBT) for 3 min and then washed twice with DPBS. Ciliates were then incubated with 1% bovine serum albumin (BSA) for 30 min. After blocking, ciliates were incubated at 4°C overnight with a solution containing 1:100 dilutions of anti-rH±-PPase form recombinant yeast antibody. Then, ciliates were washed 3 times with DPBS followed by 1 h incubation, at room temperature; with a 1:100 dilution of FITC conjugated rabbit anti-mouse IgG-FITC antibody (Sigma). After three in DPBS, the samples were double stained with 0.8 mg/mL 4', 6-diamidine-2-phenylindole (DAPI; Sigma-Aldrich) in DPBS for 15 min at room temperature (Paramá et al., 2007). After three washes with DPBS samples were mounted in PBS-glycerol (1:1) and visualized by confocal microscopy (Leica TCS-SP2, LEICA Microsystems Heidelberg GmbH, Mannheim, Germany).

2.9. SDS-PAGE electrophoresis and Western blot

Enriched vesicle fractions (EVF) of the ciliates cultured for 6 hours with different treatments (no treatment, 1m MATP or 0.8mM CaCl₂) were obtained from 2.5×10⁵ trophozoites for each preparation. Ciliates were centrifuged and washed twice in PBS and once with assay buffer (100 mM KCl, 0.4 M glycerol, 1 mM Tris–EGTA and 5 mM Tris–HCL, pH 8.0) containing 1 mM PMSF and 1 μg/mL leupeptin. The cell pellet was homogenized in a Potter S homogenizer (Braum Biotech, USA) until lysis was greater than 90% (generally 30 s). The mixture was resuspended in 5 mL of assay buffer and centrifuged once at 750 g for 5 min (to remove unbroken cells). The resulting supernatant was centrifuged at 15 000 g for 10 min, and the pellet was resuspended in PBS with loading buffer (without DTT) (Mallo et al., 2015). Samples were separated by SDS-PAGE in 12.5% linear gels under non-reducing conditions. After electrophoresis, the gels were stained with Coomassie blue (Thermo Scientific Protein GelCode Blue Safe Stain; Thermo Fisher, USA) to determine the concentration of protein in each sample (Piazzón et al., 2008).
Simultaneously, one of the gels was transferred to a polyvinylidene fluoride (PVDF) membrane, at 15V for 35 min (0.45 μm, Millipore, USA) on a Trans-Blot SD transfer cell (Bio-Rad, USA. UU) embedded in transfer buffer containing 48 mM Tris, 29 mM glycine, 0.037% SDS and 20% methanol, pH 9.2. Membranes were stained with Ponceau S to verify transfer and incubated for 1.5 h at room temperature in Tris Buffer Saline (TBS; 50 mM Tris, 0.15 M NaCl, pH 7.4) containing 0.2% Tween 20 and 3% BSA. The membranes were then washed with TBS and incubated overnight at 4 °C with anti-H^+^-PPase form recombinant yeast antibody at a ratio of 1:100. The membranes were incubated for 1 hour at room temperature with the secondary antibody (goat anti-mouse Ig antibody, 1:1000, Dakopatts) and visualized with a chemiluminescent substrate based on luminol (ECL Western Blotting Substrate Pierce, Thermo Scientific, USA). Membranes were photographed with a FlourChem® FC2 imaging system (Alpha Innotech, USA). Band intensity was analyzed using the Total Lab image master program (Mallo et al., 2015).

2.10. Extraction of total RNA, reverse transcription and real-time polymerase chain reaction (qPCR)

Trophozoites were incubated for 2 hours with the different treatments (4, 8 and 37‰ NaCl, 1mM ATP 1mM and 0.8 mM CaCl_2). The total RNA from 10^7 cells/sample was isolated, treated with DNase I and used to generate cDNA, as already described. The qPCR reaction was performed with a reaction mixture already containing the assay buffer and dNTPs, Maxima SYBR Green qPCR Master Mix (Thermo Scientific). The primer pair for the genes under study was used at a final concentration of 300 nM, and 1μl of cDNA was added per well. The volume was completed with RNase free distilled H_2O to a final reaction volume of 10 μL/well. The mixtures were heated at 95 °C for 5
min, followed by 40 cycles of 10 s at 95 °C and 30 s at 60 °C. At the end of the process, melting curve analysis was carried out at 95 °C for 15 s, 55 °C for 15 s and 95 °C for 15 s. The specificity and the size of the PCR products obtained were confirmed by agarose gel electrophoresis at 2%. All reactions were carried out in a real time PCR system, Eco Real-time PCR system (Illumina). The relative quantification of gene expression was determined by the $2^{-\Delta\Delta C_{q}}$ method (Livak and Schmittgen, 2001), and the programme was used in accordance with minimum information guidelines for publishing real-time quantitative PCR experiments (Bustin et al., 2009). The following primer sequences of H^+,-PPase gene were used: forward/reverse, 5′-GCCTACGAAATGGTCGAAGA-3′/5′-GCATCGGTGTATTGCTCCAGA-3′. Gene expression was normalized with the β-tubulin reference gene from P. dicentrarchi (forward/reverse primer sequence, 5′-ACCGGGGAATCTTAAACAGG-3′/5′-GCCACCTTATCCGTCCACTA-3′) and the normalized data were expressed in relative arbitrary units. The values show the mean ± the standard error (SE) of three trials.

The primer pairs were designed and optimized with the Primer 3 Plus programme (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) with a Tm of 60 °C.

2.11. Statistical analysis

Results shown in the figures are expressed as means ± standard error. Significant differences ($P = 0.05$) were determined by analysis of variance (ANOVA) followed by Tukey – Kramer multiple comparisons test.

3. Results
3.1. Presence of Ca\(^{2+}\) and H\(^{+}\)-PPase in acidic intracellular compartments

Staining with the pH sensitive fluorescent dyes acridine orange and Lysotracker Red DND-99 (Fig 1, A1 and A2) revealed intracellular acidic compartments in DIG-permeabilized *P. dicentrarchi* trophozoites. Some important differences were observed in the staining patterns of ciliates from the same culture batch. Some trophozoites showed intense red fluorescent staining (acid pH) in the alveolar sacs, while others showed only weak green florescent staining (alkaline pH), which was most evident in the endocytic vacuoles (Fig. 1, A1). In the preparations stained only with acridine orange, some DIG-permeabilized trophozoites stained various colours (green/yellow/orange-red), indicating varying levels of pH in the endocytic vacuoles, ranging from alkaline (green fluorescence) to acidic (orange/red fluorescence) (Fig. 1, A1-a); however, when trophozoites are incubated with the bisphosphonate calcium metabolism regulator PAM, a complete alkalinization of endocytic vacuoles is produced (Fig. 1, A1-b). Likewise, the distribution of acidic alveolar sacs coincides with the distribution of cilia (Fig. 1, A2).

In the trophozoites, Ca\(^{2+}\) was primarily located in the alveolar sacs and some internal vacuoles (Fig. 1B). The staining patterns obtained with acid dyes and the Ca\(^{2+}\) probe were both consistent with the pattern of immunostaining obtained using a recombinant anti-H\(^{+}\)-PPase, with labelling of both internal vacuoles and alveolar sacs located under the kinetia (Fig. 1C).

Examination by electron microscopy revealed spherical electro-dense structures inside the alveolar sacs and also spread through the cytoplasm in the interior of the cytoplasmic vacuoles (Fig. 2A). At the ultrastructural level, a close association between the inner membrane of alveolar sacs and the immediately underlying mitochondria was observed (Fig. 2B).
3.2. Regulatory effect of ATP and Ca\(^{2+}\) on the H\(^{+}\)-translocating activity

An assay of proton pumping activity was performed to investigate the effect of PPI and ATP on H\(^{+}\)-translocation activity and acidification of intracellular compartments, including the alveolar sacs, in \(P.\) dicentrarchi. Addition of PPI to DIG-permeabilized trophozoites induced translocation of H\(^{+}\) and the acidification of intracellular compartments (Fig. 3A); however, the presence of ATP (0.01, 0.25, 0.5 and 1 mM) did not affect intracellular acidification, indicating that ATP does not stimulate H\(^{+}\)-translocation (Fig. 3B). In samples in which PPI-driven H\(^{+}\) translocation was observed, this activity was inhibited by addition of 0.5 or 1 mM ATP (Fig. 3 C), producing intracellular alkalinization. Addition (via a stock solution of 0.8 mM CaCl\(_2\)) of Ca\(^{2+}\) (a known H\(^{+}\)-PPase inhibitor), or the bisphosphonate analogous PAM at 0.1 mM, inhibited the H\(^{+}\)-translocating activity (Fig. 3D).

3.3. Role of ATP and Ca\(^{2+}\) in H\(^{+}\)-PPase protein and gene expression

Western blots of the vesicle-enriched fractions treated with Ca\(^{2+}\) (0.8mM CaCl\(_2\)) and 1mM ATP revealed a significant decrease in the band intensity, measured by densitometry software program, indicating a decrease in H\(^{+}\)-PPase expression relative to the untreated controls (Fig. 4 A, B).

The relative H\(^{+}\)-PPase gene expression in \(P.\) dicentrarchi was quantified by RT-qPCR of cDNA from ciliates cultivated with the different treatments for 2 hours. Both treatments (CaCl\(_2\) and ATP) induced a significant decrease in H\(^{+}\)-PPase expression (Fig. 4C).

3.4. Effects of salinity on H\(^{+}\) translocating activity and intracellular Ca\(^{2+}\) levels
NaCl and KCl were used as sources of Na\(^+\) and K\(^+\), both of which are present in seawater, to study the effects of salinity on the H\(^+\) translocation activity in *P. dicentrarchi*. H\(^+\) pumping activity was induced by adding P Pi in different buffers during sample preparation and, in one of these, NaCl replaced the KCl in the standard translocation assay buffer (100 mM KCl, 0.4 M glycerol, 1 mM Tris-EGTA, and 5 mM Tris-HCl, 1 mM PMSF and 1\(\mu\)g/ml leupeptin, pH 8), at the same concentration (100 mM). Acidification only occurred when buffer containing KCl was used, and NaCl had an inhibitory effect on the H\(^+\) translocation activity (Fig. 5A). With the aim of reversing the effect of NaCl, the same concentration of KCl was added, in an attempt to induce H\(^+\) translocation. However, the activity was not recovered. When NaCl was added to the sample displaying H\(^+\) pumping activity that was prepared in buffer containing KCl, addition of NaCl again resulted in alkalinization.

To analyze the effect of salinity and P Pi on intracellular Ca\(^{2+}\) levels, ciliates were cultured for 24 hours in saline solutions of 4 and 8 ‰, conditions considered hypo-osmotic for these marine ciliates whose natural osmolarity is the 37 ‰. After the DIG-permeabilization and the addition of 1 mM P Pi, the ciliates were incubated for 30 min. The Ca\(^{2+}\) probe (Fluo-4 NW) was then added and the fluorescence (Ex: 494nm, Em: 516nm) was measured after 1 hour. Addition of P Pi caused a significant decrease in internal Ca\(^{2+}\) levels in both cases (Fig. 5B). The Ca\(^{2+}\) levels were lower under hypo-osmotic conditions (Fig. 5B).

4. Discussion

Ciliates are among the most abundantly distributed protozoa in the marine environment, and around 60 scuticociliate species have been described (Wang *et al.*, 2008). The capacity of ciliates to adapt to changes in salinity and pH is essential to
enable littoral colonization (Nisbet, 1984). Vacuoles and other acidic organelles play an essential role in this capacity, including storage, sequestration of toxic compounds and maintenance of turgor (Pittman et al., 2011). Studies of plant vacuoles have shown that regulation of vacuole acidification is crucial for secretory and endocytic routes (Baltscheffsky et al., 1999; Gaxiola et al., 2007). Moreover, pH homeostasis in intracellular compartments is essential under pathological conditions, and the enzymes involved may therefore be good chemotherapeutic targets (Martínez et al., 2002; López and Segura Latorre, 2008). As cells must be compartmentalized in unicellular organisms, in the present study we mainly focused on Ca\(^{2+}\) regulation and acidic stores to identify potential targets involved in bioenergetics, which can be modulated in infected fish. The *P. dicentrarchi* H\(^{+}\)-PPase is located in the membranes of endocytic vacuoles and alveolar sacs (both acidic compartments), as demonstrated by acridine orange and Lysotracker Red staining and which is consistent with our previous observations (Mallo et al., 2015; 2016a). H\(^{+}\)-PPase promotes acidification of these compartments and could therefore interfere in the adaptive response of the ciliate to maintaining osmoregulation and pH homeostasis, by performing similar functions as in acidocalcisomes (Docampo et al., 2005; Pan et al., 2011; Mallo et al., 2015). In the present study, we also observed a wide variation in the pH of alveolar sacs and endocytic vacuoles, which probably reflects the role that these cellular compartments play in regulating intracellular pH, as occurs with acidocalcisomes in other protozoan parasites (Docampo et al., 2013).

Some electron-dense deposits were observed in the cytosolic region and alveolar sacs, where the H\(^{+}\)-PPase enzyme is located (Mallo et al., 2015). The same distribution pattern was observed for Ca\(^{2+}\), with the Fluo-4 NW probe. These electron-dense deposits are also characteristic of acidocalcisomes (Miranda et al., 2000, 2004, 2008;
Soares-Medeiros et al., 2005), which share some of their features with alveolar sacs of *P. dicentrarchi*, such as their acidic origin, their function as Ca\(^{2+}\) stores and possession of some of the enzymes involved in acidification (e.g. H\(^{+}\)-PPase). Acridine orange staining and enzyme immunolocalization showed that some alveolar sacs are located under the cilia, indicating that they are involved in ciliary movement and/or bioenergetics (Plattner and Klauke, 2001).

The presence of enzymes and exchangers that cooperate in pH maintenance in acidocalcisomes, such as H\(^{+}\)-PPase, H\(^{+}\)-ATPase, Na\(^{+}\)/H\(^{+}\) and Ca\(^{2+}\)/H\(^{+}\) exchangers, may interfere in release of Ca\(^{2+}\) from internal stores via modification of pH due to H\(^{+}\) translocation and associated activity (Marchesini et al., 2000; Vercesi et al., 2000; Saliba et al., 2003; Moriyama et al., 2003).

Movement of H\(^{+}\) between intracellular membranes can be divided into two different categories: those coupled to ATP production and those with a purpose other than energy production, such as acidification (Rudnick, 1987). Sequencing of the complete genome of some ciliate species has led to identification of H\(^{+}\)-ATPase in organelle membranes of *Paramecium* (Plattner, 2010), and the main function of this ATPase seems to be osmoregulation and pH homeostasis (Van der Heyden and Docampo, 2002; Wassmer et al., 2005), i.e. similar functions to those of H\(^{+}\)-PPase. H\(^{+}\)-ATPase activity has been measured in different organisms by use of acridine orange as an indicator of acidification. Unlike in other organisms, addition of ATP inhibits H\(^{+}\) translocation in permeabilized specimens of *P. dicentrarchi*, resulting in alcalinization of vacuoles, as occurs with addition of NH\(_4\)Cl, used as a control for alcalinization at the end of all experiments as it eliminates H\(^{+}\) from acidic compartments (Docampo et al., 1995; Rodrigues et al., 1999a; Ruíz et al., 2001). H\(^{+}\)-ATPase has been described as a Ca\(^{2+}\) insensitive enzyme, unlike H\(^{+}\)-PPase (Rea et al., 1992), and total blockage of H\(^{+}\)
pumping activity by Ca$^{2+}$ may indicate that this activity does not take place through the H$^+$-ATPase route, as occurs in *P. dicentrarchi*. This phenomenon has also been observed in the trypanosomatid *Herpetomonas* (Soares Medeiros et al., 2005), in which ATP did not promote H$^+$ uptake. In *Streptococcus faecalis*, PPase is inhibited by ATP, which competes with PPI for chelation of Mg$^{2+}$ ions (Lahti and Lonnberg, 1985), in which Mg$_2$PPI is the main substrate. It is also possible that H$^+$-PPase activity is inhibited by excess Pi formed as a product of ATP metabolism (ADP + Pi), induced by excess ATP. Another possible explanation for the inability of ATP to induce H$^+$ translocation may be related directly to the DIG used in permeabilization of cells that could generate an alteration in cholesterol levels of intracellular compartments, causing incapability to measure ATP-driven H$^+$ transport in DIG-permeabilized cells (Rodrigues et al., 2001). Inhibition of H$^+$-PPase by Ca$^{2+}$ has been described through formation of the CaPPI complex, which competes with the enzyme substrate or the Ca$^{2+}$ ion, mimicking Mg$^{2+}$ and inhibiting enzymatic activity (Maeshima, 1991; Rea et al., 1992). Moreover, H$^+$ release as a consequence of the addition of Ca$^{2+}$ in *P. dicentrarchi* suggests that an exchanger of Ca$^{2+}$/H$^+$ takes place in the membranes of acidic compartments as occurs in the trypanosomatid *Herpetomonas* (Soares Medeiros et al., 2005).

In *P. dicentrarchi*, NaCl enhances H$^+$ release, thus leading to the alkalinization of acidic compartments. Because H$^+$ translocation in the ciliate mainly occurs via H$^+$-PPase activity, NaCl may act as an inhibitor of this enzyme. Although this is not common in H$^+$-PPases (Fukuda et al., 2004), a subtype of H$^+$-PPase that is inhibited by Na$^+$ has recently been characterized; however, this phenomenon has been only observed in prokaryotes and is believed to be an evolutionary remnant (Luoto et al., 2013; 2015). Similar observations have been made in the trypanosomatid parasite *Herpetomonas*, in
which NaCl-mediated inhibition of PPI-dependent H⁺ uptake has been detected (Soares Medeiros et al., 2005), and also in *Leishmania donovani*, in which NaCl does not stimulate H⁺ translocation (Sen et al., 2009). The NaCl probably reverses acidification, as occurs in the parasite *T. gondii*, because of the presence of a Na⁺/H⁺ exchanger. The effect of Na⁺ was observed independently of the addition of PPI, indicating that the effect on acidification is not related to that promoted by PPI. NaCl was added during preparation of the sample in KCl buffer, indicating that the observed effect was not due to changes in osmolarity (Rohloff et al., 2011).

As ATP and Ca²⁺ induced alkalinization of compartments in *P. dicentrarchi*, their effect on H⁺-PPase expression was evaluated, and it was found that they inhibited both protein and gene expression. ATP and Ca²⁺ probably inhibit expression and activity of the H⁺-PPase in the ciliate. If the Ca²⁺-ATPase pump is present in the ciliate, any excess ATP and Ca²⁺ could interact with Ca²⁺ and Na⁺ exchangers, so that H⁺-PPase activity would not be required for H⁺ translocation.

Regulation of Ca²⁺ has been investigated in depth in *Paramecium* and has been implicated in multiple functions and cell survival. Maintenance of acidification is responsible for Ca²⁺ retention in acidic compartments such as acidocalcisomes. The contractile vacuole of *Paramecium* and *Dictyostelium discoideum* also appears to be important in regulating the internal Ca²⁺ concentration (Stock et al., 2002, Pittman et al., 2011; Martínez-Higuera et al., 2013). In *Trypanosoma*, the Ca²⁺-ATPase, H⁺-ATPase and H⁺-PPase enzymes are suggested as being responsible for Ca²⁺ accumulation in acidocalcisomes (Docampo and Moreno, 2001; De Souza et al., 2002).

As salinity may modulate Ca²⁺ channels in *P. dicentrarchi* and the H⁺-PPase enzyme interferes with acidification of the Ca²⁺ compartment, different concentrations of NaCl and PPI were added to study how these compounds interfere in intracellular Ca²⁺
regulation. PPi downregulates Ca\(^{2+}\) levels, which could be explained as upregulation of H\(^+\)-PPase activity. Addition of PPi, with the consequent generation of excess H\(^+\) inside the vacuole, may activate Na\(^+\)/H\(^+\) exchange, thus eliminating Ca\(^{2+}\) from the stores via Ca\(^{2+}\)/H\(^+\) exchange and producing an increase in cytosolic Ca\(^{2+}\), as described in another organisms (Bonansea et al., 2012). In the plant pathogen *Phytophthora infestans*, addition of PPi stimulates Ca\(^{2+}\) transport (Okorokov et al., 1978). Saline conditions lead to alkanilization of the vacuoles, and NaCl may therefore act at the Na\(^+\)/H\(^+\) exchange level, coupled to Ca\(^{2+}\)/H\(^+\) transport, to downregulate Ca\(^{2+}\) levels at low concentrations of NaCl.

In conclusion, our findings confirm the existence in *P. dicentrarchi* of Ca\(^{2+}\) acidic store organelles, which appear to have similar functions to the acidocalcisomes described in Apicomplexan parasites (i.e. modulation of Ca\(^{2+}\) levels and osmolarity). Regulation of the intracellular pH of these compartments may represent a new target for development of chemotherapeutic treatments against scuticociliatosis (Mallo et al., 2016b). This has already been done in other parasites e.g. disruption of pH regulation in the parasite acidocalcisome has been used in developing antimalarial agents (Docampo and Moreno, 2008; Van Schalkwyk, et al., 2010).

Acknowledgements

This study was financially supported by grants AGL2014-57125-R and AGL2014-53190-REDC from the Ministerio de Economía y Competitividad (Spain), by grant GPC2014/069 from the Xunta de Galicia (Spain), and by PARAFISHCONTROL project. This project has received funding from the *European Union’s Horizon 2020 research and innovation programme* under grant agreement No. 634429. This publication reflects the views only of the authors, and the European Commission cannot
be held responsible for any use which may be made of the information contained therein.

References

The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276, 46196–46203.

Figures

Figure 1: Distribution of calcium and acidic compartments in *P. dicentrarchi*. A1 and A2) Intracellular acidic compartments stained with acridine orange and Lysotracker Red 99-DND. In A1, intense fluorescent staining of the alveolar sacs with the dyes Lysotracker and acridine orange is observed (arrowheads). The frame a) shows a *P. dicentrarchi* trophozoite dyed only with acridine orange showing differences in intensity of fluorescence and colour (red/orange/yellow/green) in the endocytic vacuoles (arrows). The frame b) shows a trophozoite treated with the pyrophosphate analogous and regulator of the Ca\(^{2+}\) metabolism, pamidronate (PAM) at 0.1 mM where a green fluorescent labeling of the vesicles stained with acridine orange is observed indicating its alkali state (arrows). In A2, staining of alveolar sacs with Lysotracker/acridine orange is consistent with the ciliary pattern in kinetia (arrowheads). B) The Fluo 4-NW Calcium probe revealed the calcium stores distributed in alveolar sacs (arrowheads) and endocytic internal vacuoles (arrows). C) Immunolocalization of H\(^+\)-PPase with recombinant anti-H\(^+\)-PPase labelling of alveolar sacs (arrowheads) and some internal vacuole membranes (arrows) of the ciliate. Bar scale = 10 \(\mu\)m.

Figure 2: Transmission electron microscope (TEM) photomicrograph of a *P. dicentrarchi* trophozoite. A) Panoramic view of an ultrathin section showing alveolar sacs beneath the plasma membrane and containing a spherical electron-dense body (arrows). The presence of electron-dense bodies was also observed in the interior of the cytoplasmic vacuoles (arrowheads). B) Enlargement of the surface of a trophozoite with an electron dense body (arrow) in the interior of
alveolar sacs (as). Mitochondria (m) are also observed in close contact with the inner membrane of the alveolar sacs. N = nucleus.

Figure 3: Effect of ATP and Ca\(^{2+}\) on H\(^{+}\) translocating activity. H\(^{+}\) translocation activity in the presence and absence of PPi (A), ATP (B), PPi and ATP (C) and Ca\(^{2+}\) or pamidronate –PAM–(D). The concentrations used (indicated) were achieved by addition of stock solutions prepared in assay buffer. The results show the mean values ± standard error (n=5) of the variation (Δ) in fluorescence. Asterisks indicate statistically significant differences (*P < 0.05; **P < 0.01).

Figure 4: Effect of ATP and Ca\(^{2+}\) on H\(^{+}\)-PPase protein and gene expression. A) Western blot showing the recognition pattern of an H\(^{+}\)-PPase (rH\(^{+}\)-Ppase) recombinant polyclonal antibody against ciliate vesicle enriched samples in non-reducing conditions (without DTT). Ciliates were incubated with 1mM ATP (lane 2) or with 0.8 mM CaCl\(_2\) (lane 3) for 6h. Lane 1 corresponds to the control. Mw: molecular weight marker proteins. B) The band intensity of Western blot assay (in arbitrary units) was measured with Total Lab, and statistical comparisons were made relative to the control. C) H\(^{+}\)-PPase gene expression levels in ciliates treated for 24 hours with 1 mM ATP and 0.8 mM CaCl\(_2\). Expression was analyzed by RT-qPCR. The *P. dicentrarchi* β-tubulin was used as reference gene. As shown in both cases, calcium and ATP induced a decrease in gene expression. The bars in the graphs show the results as mean ± standard error (n= 5). Asterisks indicate the statistically significance * P < 0.05, ** P < 0.01.

Figure 5: A) Effect of NaCl and KCl (100 mM) on the H\(^{+}\) translocating activity induced by PPi. The results show the mean values ± standard error (n=5) of the variation (Δ) in fluorescence. B) Effect of salinity and PPi on calcium levels. Ciliates were
incubated for 24 hours in saline solutions of 4 and 8 %. 1 mM PPi was then added and the ciliates were incubated for a further 1 h. The calcium probe (Fluo-4 NW) was then added and after 1 hour, fluorescence (Ex: 494 nm, Em: 516 nm) was measured, in arbitrary units (AU). Bars represent the mean (± standard error; n= 5) and letters indicate statistically significance between groups (*P< 0.05, **P< 0.01).