Rhodium-catalyzed annulation of ortho-alkenylanilides with alkynes: Formation of unexpected naphthalene adducts

Andrés Seoane,a Cezar Comanescu,a,b Noelia Casanova,a Rebeca García-Fandiño, Xabier Diz,a José L. Mascareñas,*** Moisés Gulias***

Abstract: o-Alkenyl-N-triflylanilides undergo Rh(III)-catalyzed oxidative annihilations with alkynes to produce different types of naphthalanides, in a process which involves the cleavage of two C-H bonds. Remarkably, in addition to formal dehydrogenative (4C+2C) cycloadducts, the reaction also produces variable amounts of isomeric naphthalanides whose formation requires a formal migration of the alkenyl moiety from the ortho to the meta position of the anilide. Also interestingly, the annulation reaction can be efficiently carried out in the absence of external oxidants, such as Cu(OAc)2.

The activation of C-H bonds by transition metal complexes has become a versatile and widely used tool for the construction of C-C and C-heteroatom bonds from non-functionalized precursors. In addition to simple functionalizations, it is also possible to achieve oxidative annihilations, which provide a practical way for assembling different types of cycles, specially heterocycles, through a concomitant C-H and X-H activation (X= heteroatom). These transformations usually require the presence an external oxidant, normally a copper or silver salt, or a built-in N-O or N-N bond. Recently we have reported that 2-alkenylphenols can react with alkynes upon treatment with Cp*Rh(III) catalysts to give either oxepines or spirocyclic products. These reactions have been proposed to involve an initial activation of the terminal C-H bond of the alkene, followed by migratory insertion of C-O or C-C reductive elimination (A, Scheme 1). An appealing extension of this chemistry consists of the use of anilides instead of phenols, as this could allow to build azacyclic products. In this context, we recently found that o-alkenyl-N-nosylanilides can react with alkynes to give interesting indolines, albeit obtaining an efficient reaction required the use of a Rh(III) catalyst equipped with an electron deficient cyclopentadienyl ligand.

Herein we demonstrate that o-alkenyl-N-triflylanilides can productively react with alkynes in the presence of Cp*Rh(III) catalysts, but instead of indolines or benzazepine products, the reactions provide naphthalene adducts, formally arising from a dehydrogenative carbo-anuillaryation process. This type of [4C+2C] annihilations involving a double C-H cleavage of unactivated substrates, are essentially unknown. Curiously, in addition to cycloadducts resulting from direct annihilations, we also observe variable amounts of rearranged isomeric adducts whose formation requires a formal 1,2-migration of the alkenyl group. Indeed, depending on the structure of the alkyl partner, these rearranged isomers can even become the major product. Also, interestingly, while most related oxidative couplings or annihilations involving C-H activations require external chemical oxidants, our process can be efficiently achieved in a catalytic manner, under air, without such additives, therefore simplifying the experimental protocol and improving the atom economy of the process.

Our work started by checking the reactivity of 2-propanylanilides equipped with different substituents at the nitrogen. The assays were carried out using catalytic amounts of [Cp*RhCl]2 (Cp* = pentamethycyclopentadienyl) and 0.5 equiv of Cu(OAc)2·H2O, in acetonitrile, under an air atmosphere, in presence of 1 equiv of diphenylacetylene. Anilides with acetyl, trifluoroacetyl, and Boc groups, as well as the parent aniline, failed to give meaningful amounts of any relevant product, with most of the starting amine being recovered after heating at 82 °C for 16 h. While the N-losyl and nosyl derivatives gave traces of reaction adducts (GC-MS), the introduction of a trifluoromethanesulfonil (Tf) group in the nitrogen (1a) allowed to isolate cycloadducts that were identified as the naphthalenides 3aa and 4aa (entry 1), albeit the overall yield of the reaction was low.

While the presence of 3aa might be explained in terms of a dehydrogenative (4+2) annulation, the observation of 4aa was surprising, as its formation necessarily involves the cleavage and formation of carbon-carbon bonds. After screening several solvents, we found that in THF at 66 °C the overall yield is very good (84%, entry 3). As might be expected, in the absence of Cu(OAc)2, the reaction does not take place (entry 4); however, if NaOAc is added, the transformation is again operative, and takes place with a very good overall yield (entry 5). This result

The activation of C-H bonds by transition metal complexes has become a versatile and widely used tool for the construction of C-C and C-heteroatom bonds from non-functionalized precursors. In addition to simple functionalizations, it is also possible to achieve oxidative annihilations, which provide a practical way for assembling different types of cycles, specially heterocycles, through a concomitant C-H and X-H activation (X= heteroatom). These transformations usually require the presence an external oxidant, normally a copper or silver salt, or a built-in N-O or N-N bond. Recently we have reported that 2-alkenylphenols can react with alkynes upon treatment with Cp*Rh(III) catalysts to give either oxepines or spirocyclic products. These reactions have been proposed to involve an initial activation of the terminal C-H bond of the alkene, followed by migratory insertion of C-O or C-C reductive elimination (A, Scheme 1). An appealing extension of this chemistry consists of the use of anilides instead of phenols, as this could allow to build azacyclic products. In this context, we recently found that o-alkenyl-N-nosylanilides can react with alkynes to give interesting indolines, albeit obtaining an efficient reaction required the use of a Rh(III) catalyst equipped with an electron deficient cyclopentadienyl ligand.

Herein we demonstrate that o-alkenyl-N-triflylanilides can productively react with alkynes in the presence of Cp*Rh(III) catalysts, but instead of indolines or benzazepine products, the reactions provide naphthalene adducts, formally arising from a dehydrogenative carbo-anuillaryation process. This type of [4C+2C] annihilations involving a double C-H cleavage of unactivated substrates, are essentially unknown. Curiously, in addition to cycloadducts resulting from direct annihilations, we also observe variable amounts of rearranged isomeric adducts whose formation requires a formal 1,2-migration of the alkenyl group. Indeed, depending on the structure of the alkyl partner, these rearranged isomers can even become the major product. Also, interestingly, while most related oxidative couplings or annihilations involving C-H activations require external chemical oxidants, our process can be efficiently achieved in a catalytic manner, under air, without such additives, therefore simplifying the experimental protocol and improving the atom economy of the process.

Our work started by checking the reactivity of 2-propanylanilides equipped with different substituents at the nitrogen. The assays were carried out using catalytic amounts of [Cp*RhCl]2 (Cp* = pentamethycyclopentadienyl) and 0.5 equiv of Cu(OAc)2·H2O, in acetonitrile, under an air atmosphere, in presence of 1 equiv of diphenylacetylene. Anilides with acetyl, trifluoroacetyl, and Boc groups, as well as the parent aniline, failed to give meaningful amounts of any relevant product, with most of the starting amine being recovered after heating at 82 °C for 16 h. While the N-losyl and nosyl derivatives gave traces of reaction adducts (GC-MS), the introduction of a trifluoromethanesulfonil (Tf) group in the nitrogen (1a) allowed to isolate cycloadducts that were identified as the naphthalenides 3aa and 4aa (entry 1), albeit the overall yield of the reaction was low.

While the presence of 3aa might be explained in terms of a dehydrogenative (4+2) annulation, the observation of 4aa was surprising, as its formation necessarily involves the cleavage and formation of carbon-carbon bonds. After screening several solvents, we found that in THF at 66 °C the overall yield is very good (84%, entry 3). As might be expected, in the absence of Cu(OAc)2, the reaction does not take place (entry 4); however, if NaOAc is added, the transformation is again operative, and takes place with a very good overall yield (entry 5). This result
suggests that the copper(II) salt works more as an acetate source than as an oxidant, and the air atmosphere is enough for ensuring the redox balance of the process.

As it is shown in the scheme 2, symmetrical diarylacetylenes, either electron-rich (2b) or electron-poor (2c), provided the expected naphthalamides in good overall yields (90-95%) and isomeric ratios of up to 4.6:1. On the other hand, unsymmetrical alkyl-arylatedynes such prop-1-yn-1-ylbenzene (2d) or cyclopentylbenzene (2e) led to only one of the possible regioisomers, for each of the adducts. With aliphatic alkylnes, the reaction also takes place, but remarkably, we observed a total change in selectivity so that the rearranged products 4 become majoritary. Thus, using 4-octyne (2f) as coupling partner the naphthalamides 3af, 4af were isolated in a 1:10 ratio with a total yield of 63%; while in the reaction with hexyne (2g) the selectivity was even better (Table 2).

We also explored the scope with other alkenyl triflylamides bearing different substitutents at the internal position of the olefin, using 4-octyne as reaction partner. As shown in the table 3, naphthalamides 4bf, 4cf and 4df were obtained in good yields (66–90%) and up to >20:1 selectivity (Scheme 3). Curiously, the unsubstituted vinylanilide 1e failed to provide the products, being mostly recovered after 16 h. Importantly, the reaction can be reproduced at a larger scale (1 mmol), as demonstrated for the case of 4bf, which was obtained in an excellent 74% yield after 16 h.

The reaction is compatible with other aromatic rings equipped with either electron rich or electron poor substituents. Thus, methyl and methoxy substituted substrates in ortho to the nitrogen led to the corresponding naphthalamides (4ff, 4gf) in 60 and 75% yield respectively with a selectivity of up to 15:1. Substituents in para to the alkene (4hf, 4if, 59-61% yield) and to the amide (4jf, 75% yield, 15:1 ratio) are also tolerated.

Mechanistically, the above annulations present several intriguing features which range from the C-H activation step to the formation of the rearranged adducts of type 4. Treatment of substrate 1a with [Cp*RhCl2]2 in dichloromethane with slight...
excess of NaOAc for 3 h, at room temperature, allowed to isolate a solid product that was crystalized and identified as the rhodium complex A. This compound consists of a catonlic dimeric Rh(III) species in which two chloride ligands are replaced by a κ^2-acetate with the deprotonated anilide acting as counterion. When this complex was treated with 1 equivalent of KOtBu, a τ-allyl derivative B was formed after 6 h. This complex can be also formed directly by treatment of 1a with stoichiometric amounts of [Cp*RhCl2]2 and sodium acetate in THF, although in lower yield.

The isolation of complex B suggests that it might be an intermediate in the catalytic cycle, however heating B with the alkyne 2a in THF at reflux did not give the cycloadduct. Conversely, τ-allyl complex B presents catalytic activity, which suggests that it can revert to an active catalytic species.

On these bases, we hypothesized that the cycloaddition requires the activation of the alkyl C-H bond, which according to DFT calculations takes place through a classical CMD mechanism (activation barrier: 15.5 kcal/mol from intermediate C). This process contrasts with the non-concerted metatation/deprotonation proposed for the Rh(III)-promoted activation of 2-alkenylphenols (see supporting information for more details). Likely, the presence of a trityl group in the nitrogen decreases its electron donating character in comparison to that of the hydroxyl group of alkenylphenols, and this favors a CMD process. The calculations confirmed the viability of an allylic activation to give complex B, albeit the activation barrier is higher [\(\Delta G^\ddagger (TS_2-TS_1) = +6.9 \text{ kcal/mol}\)]. However, the resulting τ-allyl product is more stable, which could explain why we isolated it.

This information suggests that the catalytic process might start with the activation of the alkyl C-H bond to give rhodacycle I. Rhodium-rollover with a second C-H activation, would give intermediate II, which by alkyne migratory insertion and reductive elimination yields products 3 (Path a, Scheme 4). However, how do we explain the formation of naphthalenes 4? Intermediate I might alternatively evolve by migratory insertion of the alkyne to give intermediate III, which upon a formal [1,3]-reductive elimination provides spirocycles of type IV (path b). Indeed, DFT calculations confirmed the energetic feasibility of these steps, with present barriers lower than that of the C-H activation step to give II' (path a, see the supporting information for details).

The computational data also revealed that these Rh(I)-spirocyclic complexes can readily progress into the cyclopropyl tricyclic intermediates Va or Vb, with a clear kinetic preference for the formation of Vb when R = Pr (Figure 1). Likely, the presence of the propyl substituents generates a more sterically congested transition state structure in the path to Va.

![Scheme 3. DFT calculations of the C-H activation step. Energetic values are with respect to 1a.](image)

![Scheme 4. Hypothesis for the formation of both naphthalene isomers.](image)
The lower activation barrier to Vb is consistent with the preferred experimental formation of the rearranged adducts 4. Aromatization through ring expansion generates the naphthalamides VI featuring a rhodium hydride complex.

In consonance with these mechanisms and with the involvement of rhodium complexes in the different steps, we observed that the characteristics of the Cp ligand influence the ratio of products. Thus, reaction with electron deficient rhodium complex [CpCF3RhCl2], led to the corresponding adducts in a 3.5:1 ratio (Scheme 6, eq 1), while with the bulky rhodium complex Rh1 we observed a 1.5:1 mixture of isomers (eq 2). With regard to the reoxidation step, it might involve a redox reaction between the Rh hydride in the product and AcOH or the starting triflimide. In this context we have observed that a well-defined Rh hydride precatalyst replicates the catalytic activity observed with [Cp*RhCl2] (Scheme 6, eq 3).4

Acknowledgements

This work has received financial support from Spanish grants (SAF2016-76689-R and CTQ2016-77047-P), the Consellería de Cultura, Educación e Ordenación Universitaria (ED431C 201711-041, 2015-C082 and Centro Singular de Investigación de Galicia accreditation 2016-2019, ED431G/09) the European Regional Development Fund (ERDF), and the European Research Council (Advanced Grant No. 340055). R. G.-F. thanks Spanish Government MINECO for the Ramon y Cajal (RYC- RYC-2016-20335) contract. The orejo-cinca network CTQ2016-81797-REDG is kindly acknowledged. All calculations were carried out at Centro de Supercomputación de Galicia (CESGA).

Keywords: C-H activation • rhodium • annulation • anilide • naphthylamine

[10] This product is also observed when running the reaction in i-PrOH under air, which is consistent with the formation Rh-hydride species, and the oxidation of i-PrOH to acetone.
[11] The addition of substrate 1e to a standard reaction mixture containing 1a inhibits the annulation process, which suggest that 1e somehow deactivates the catalyst.

Rhodium-catalyzed annulation of ortho-alkenylanilides with alkynes: Formation of unexpected naphthalene adducts

- Formal double C-H activation/annulation process
- Formal cleavage and formation of C-C bonds
- No external oxidizing additives required
- Easy set up
- Atom economy entry to naphthylamines