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Abstract: Mixed-culture fermentations are recognised as suitable processes to valorise organic wastes and 

convert them into added-value products. One of the main issues of these processes is that the stoichiometry 

of the fermentations is highly dependent on operational conditions such as the pH or the concentrations of 

the different substrates. In this work we developed a mathematical model for the production of volatile 

fatty acids from wastes featuring high concentrations of carbohydrates and proteins. The model reproduces 

experimental results, predicting the tendencies of the product spectrum when varying pH values and at 

different proportions of carbohydrates and proteins in the feeding. This model can be the core of a tool for 

the computer-aided design of mixed-culture fermentations.  
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1. INTRODUCTION 

Anaerobic mixed-culture fermentations (MCF) are processes 

yielding a mixture of volatile fatty acids (VFA), which are 

valuable on their own as chemicals. Alternatively, VFA can be 

used as substrate in subsequent bioprocesses to yield high 

added-value products (e.g. bioplastics) in a biorefinery 

production scheme (Agler et al., 2011). In this way, MCF are 

postulated as valid processes to valorise organic residues. 

Using mixed cultures of microorganisms gives the process 

substantial economic and operational advantages (e.g. no need 

for sterilisation and therefore the possibility of continuous 

processes) but also poses additional challenges in comparison 

with the use of pure cultures. The behaviour of mixed cultures 

is still not well controlled, which makes the design of 

processes based on MCF a difficult task. One of the main 

limitations of the process is that the product spectrum varies 

significantly with the operational conditions (pH, HRT, 

feeding). Although this opens the possibility of directing the 

process by varying these conditions, it also makes process 

design and optimisation only possible at the expense of a large 

number of experimental trials. In this sense, metabolic energy-

based models have been able to explain mechanistically the 

product spectrum of MCF and can be useful tools for 

predicting the stoichiometry of MCF (González-Cabaleiro et 

al., 2015). This modelling approach assumes that the selective 

pressure in energy-constrained environments favours those 

microorganisms capable of harvesting the maximum energy 

from the substrate. As a consequence, the expected product 

spectrum would be governed by pathways associated with a 

high ATP yield. Glucose and protein MCF were successfully 

simulated using this approach (González-Cabaleiro et al., 

2015; Regueira et al., submitted for publication). The effect of 

pH on the product spectrum was of special interest since it has 

a major effect on the outcome of such processes and it is one 

of the few design variables that we can manipulate. 

This work is framed in the ERA-IB-2 project BIOCHEM, with 

the goal of proposing a design methodology for the conversion 

of different fractions of organic wastes (i.e. carbohydrates, 

proteins and lipids) into VFA. Usually, real organic wastes are 

composed of more than one fraction as for example dairy or 

certain canning industry wastes, which feature carbohydrates 

and proteins. It was shown in the aforementioned protein model 

that the different amino acids (AA) competed for shared 

resources (i.e. electron equivalents) and that their relative 

concentrations were a key factor determining the outcome of 

these interactions. Our hypothesis is that glucose and protein 

fractions would also interact with each other in a co-substrate 

fermentation. As a result, the stoichiometry of the process would 

be different than the addition of the monofermentation 

stoichiometries of glucose and protein.  

The objective of this work is to develop a metabolic model for 

the production of VFA from the cofermentation of protein and 

glucose by mixed cultures of microorganisms. We intend to 

predict the stoichiometry of VFA production at different pH 

values and at different proportions of glucose and protein. The 

goal of such a model is twofold: i) to give insight on the 

degradation mechanisms and on the interactions between the 

different substrates and ii) to be used as a design tool for MCF-

based processes that convert wastes rich in protein and 

carbohydrates into VFA. 

2. MODEL DESCRIPTION 

The model is based on the dynamic mass balances (1-4) of the 

different compounds (states) in a continuous stirred tank 

reactor (CSTR), following the framework described by 

González-Cabaleiro et al. (2015) for glucose MCF. There are 

68 states: 24 intracellular compounds, 40 extracellular 



 

 

     

 

compounds in the bulk reactor, 4 gaseous compounds and 

biomass. The system comprises three compartments: 

intracellular volume (Vx), reactor volume (Vr), extracellular 

volume (reactor bulk, Vliq) and gas head space (Vgas). The mass 

balances for each of the compartments are defined by the 

following equations (1-4). 

Intracellular compounds 

𝑑𝑆𝑖

𝑑𝑡
= 𝑅𝑖 + 𝑅𝑇,𝑖 (1) 

Where Si is the concentration (mol Lx
-1), Ri and RT,i are, 

respectively, the reaction rate and intra-extra cellular transport 

rate (mol Lx
-1 h-1).  

Extracellular compounds 

𝑑𝑆𝑘

𝑑𝑡
= 𝐷𝑙𝑖𝑞 · (𝑆𝐾,𝑖𝑛 − 𝑆𝑘) + 𝑅𝑇,𝑘 (2) 

Where Sk is the concentration (mol Lliq
-1), Dliq is the liquid 

dilution rate (h-1) RT,j is the intra-extra cellular transport rate 

(mol Lliq
-1 h-1). 

Biomass 

𝑑𝑆𝑋

𝑑𝑡
= −𝐷𝑙𝑖𝑞 · 𝑆𝑋 + 𝑅𝑎𝑛𝑎 − 𝑅𝑑𝑒𝑐𝑎𝑦  (3) 

Where SX is the biomass concentration (mol Lr
-1) and Rana and 

Rdecay are the anabolism and decay rate (mol Lr
-1 h-1). 

Gas compounds 

𝑑𝐺𝑚

𝑑𝑡
= −𝐷𝑔𝑎𝑠 · 𝐺𝑚 + 𝑅𝑇,𝑚 (4) 

Where Gm is the concentration (mol Lgas
-1), Dgas is the 

headspace dilution rate (h-1) and RT,m is liquid-gas transport 

rate (mol Lgas
-1 h-1). 

Protein hydrolysis is omitted in the model and is directly 

considered a mixture of AA. Therefore, the substrate for this 

system is composed by glucose and AA. Intracellular substrate 

concentrations are assumed constant at a value of 0.1 mM 

following our framework. There are 119 possible reactions, 

resulting in a 68x119 metabolic network matrix. Amongst all 

the reaction rates 22 of them are independent, i.e. depending 

solely on extracellular concentrations. 

2.1 Metabolic network 

Glucose degradation pathways include conversion to acetate, 

propionate, butyrate, ethanol and lactate as reported in 

Regueira et al. (2018). There are 17 AA considered in the 

metabolic network: alanine (Ala), arginine (Arg), asparagine 

(Asn), aspartate (Asp), cysteine (Cys), glutamate (Glu), 

glutamine (Gln), glycine (Gly), histidine (His), isoleucine 

(Ile), leucine (Leu), lysine (Lys), methionine (Met), proline 

(Pro), serine (Ser), threonine (Thr) and valine (Val). Their 

considered end products in this network are: acetate, 

propionate, iso-butyrate, n-butyrate, iso-valerate, n-valerate, 

iso-caproate and ethanol. The catabolism of AA is remarkably 

varied. Some AA can only yield one product (Gly can only be 

converted to acetate) while others can have as much as five 

different end products (Arg can be converted to acetate, 

propionate, butyrate, ethanol and/or n-valerate). Among all the 

possible conversion pathways for each of the different AA, we 

included in the metabolic network those most often reported in 

literature for anaerobic AA degraders. 

Two electron carrier (EC) couples are considered in the 

network: ferredoxin (Fdred/Fdox) and NADH/NAD+. The 

ferredoxin couple is only related to high energy metabolic 

steps such as decarboxylations (as in pyruvate conversion to 

acetyl-CoA) and is considered to be oxidised producing H2 or 

formate. On the contrary, the couple NADH/NAD+ has to be 

balanced among the metabolic pathways. NAD+ to NADH 

ratio is set fixed to a value of 10.  

2.2 Model hypotheses 

Fermentations carried out in CSTR are low-energy 

environments (LaRowe et al., 2012) and it is expected that 

microorganisms perform pathway with high ATP yield. 

Therefore, it is expected that kinetic differences among the 

different pathways consuming a particular substrate do not 

have a strong influence on the pathway selection. 

Protein consumption is generally slower than glucose 

consumption, as shown in literature (Breure et al., 1986), 

which could influence the process stoichiometry. In 

environments with reactions close to the thermodynamic 

equilibrium the flux is positively correlated with the Gibbs free 

energy (ΔG) of the reaction. The ratio between the maximum 

consumption rate of glucose and of protein was set equal to the 

ratio between the average ΔG at standard biological conditions 

(pH 7 and metabolic concentration of 1 mM) of all the featured 

glucose degradation pathways and all the AA degradation 

pathways, normalised by the number of steps on each pathway 

(5). Glucose pathways have on average a 50% higher absolute 

value of ΔG than those of AA degradation. Therefore, glucose 

maximum consumption rate coefficient in the Monod equation 

was set 50% higher than that of the AA. We consider the 

maximum uptake rate as 0.75 mol Lx
-1

 h-1 for glucose and 0.50 

mol Lx
-1

 h-1 for all the AA. The affinity constant is set equal for 

all substrates at 1 mM. 

𝑞𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝑚𝑎𝑥

𝑞𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑚𝑎𝑥 =

1
𝑛𝐺𝑙𝑢𝑐𝑜𝑠𝑒

· ∑
𝛥𝐺𝑔𝑙𝑢𝑐𝑜𝑠𝑒,𝑖

′𝑚

𝑘𝑔𝑙𝑢𝑐𝑜𝑠𝑒,𝑖
𝑖

1
𝑛𝐴𝐴

· ∑ ∑
𝛥𝐺𝐴𝐴 𝑗,𝑘

′𝑚

𝑘𝐴𝐴 𝑗,𝑘
𝑘𝑗

= 1.5 (5) 

Where qmax is the maximum consumption rate, ΔG’m is the 

reaction Gibbs free energy at standard biological conditions, k 

is the number of metabolic steps and n is the number of 

pathways. The subscript i, j and k denote the different glucose 

conversion pathways, the different AA and their different 

conversion pathways, respectively. 

This model follows an “enzyme soup” approach for describing 

the microbial community structure. In this way a virtual 

microorganism containing all the metabolic functions is 

assumed. This approach is more appropriate than a 

compartmentalised one when the a priori knowledge about the 

microbial consortia is limited and the system is open to new 

microorganisms (Biggs et al., 2015). Moreover, it proved to be 



 

 

     

 

capable of good predictions for MCF of glucose (González-

Cabaleiro et al., 2015) and proteins (Regueira et al., 

unpublished). In our case, when having a mixed substrate 

feeding, an “enzyme soup” approach is also valid as the 

environmental conditions (low substrate concentration typical 

of CSTR operations) favour the presence of generalist 

microorganisms over specialist ones (Kuenen, 1983).  

The different substrates might not be consumed due to 

energetic or thermodynamic reasons: if the conversion 

pathways of a substrate are all endergonic or if converting one 

substrate is detrimental for the global energy harvest rate. This 

limitation is expressed in the model as a variable uptake ratio 

for each of the substrates. 

2.3 Solution strategy 

The different terms of the balances are determined following 

the flowchart shown in Fig. 1. The initial states values and the 

feeding characteristics are the initial inputs of the model. 

Firstly, in the reaction selection step all the possible 

conversion pathways of each of the substrates are evaluated. 

The reaction evaluation step is divided into several substeps: 

determination of the reaction rates (Kinetics), of the associated 

transport rates (Transport) and of the ATP production rate by 

proton translocations and active transport (Energetics). First 

these tasks are evaluated assuming that each of the substrates 

is totally converted through each the possible degradation 

pathways. Secondly, the optimal set of reactions is selected in 

the Optimisation by linear optimisation (6-9). Then, the 

Kinetics, Transport and Energetics substeps are repeated in the 

main workflow line to evaluate the set of pathways deemed as 

optimal. Finally, the mass balances (1-4) are determined and 

the steady state condition is evaluated. If it is not yet reached, 

the state values are updated following a pseudo-time stepping 

solution procedure and a new iteration begins.  

The objective function aims to maximise the global ATP 

production from the substrates. The net ATP production 

includes the ATP formed by substrate-level phosphorylation, 

the ATP gained through proton translocations and the ATP 

spent in the active transport of compounds. The solution is 

constrained by NADH conservation: its production and 

consumption must be balanced within the catabolism because 

there is no external electron acceptor that could act as an 

electron sink. Thus, the optimisation problem to be solved can 

be expressed as follows (6-9): 

max
𝑧

 𝑟𝐴𝑇𝑃(𝑧) (mol ATP/Lx·h) (6)  

 rNADH (z) = 0 (mol NADH/Lx·h) (7) 

 0≤zi,j≤1  (8) 

 ∑ 𝑧𝑖,𝑗 = 1

𝑗

,   𝑖 = 1, … , 𝑛𝐴𝐴 
(9) 

Where: rATP and rNADH are the global ATP and NADH 

production rates, respectively and zi,j are the elements of the 

matrix of decision variables. They represent the yield of the 

different metabolic branches of the different substrates. 

Concretely, zi,j is the yield of the metabolic branch i of the jth 

substrate and varies continuously between 0 and 1. For each of 

the substrates there is a branch representing a null reaction.  

Fig. 1. Workflow diagram for model solution 

The model of the reactor can be solved to steady state as a 

system of 68 nonlinear algebraic equations. Testing Newton-

based methods for the solution of the system of nonlinear 

algebraic equations, we observed a tendency to get stuck in 

local solutions or be driven to infeasible states (e.g. negative 

concentrations). To prevent these issues, we used pseudo-time 

stepping as heuristic solving method as previously reported by 

Ceze and Fidkowski (2015), whereby the algebraic system of 

equations is formulated as a system of ODEs. This system of 

ODEs was solved until steady state by the Matlab command 

ode15s.  Steady state was assumed when all the state absolute 

derivatives values were under 1e-6 mol L-1 h-1. Although based 

in FBA strategies, our approach differs in how internal 

concentrations are assumed. Usually in FBA, measured 

internal concentration values at steady state are used or 

determined by heuristic (e.g. the most probable values based 

on maximum compatible metabolic concentration, energetics 

as in Rodriguez et al. 2006)). This assumption limits the 

influence of environmental conditions on the product spectrum 

because it fixes most of the intracellular concentrations to a set 

value. However, our approach focuses on studying how 

environmental conditions are linked to the intracellular 

environment and vice versa through energy-related 

mechanisms such as active transport across the membrane or 

the energy gathered through proton translocations. 

 



 

 

     

 

3. RESULTS AND DISCUSSION 

A CSTR was simulated with a dilution rate (D) of 0.1 h-1 for a 

range of pH values (from 4 to 8.5 with 0.5 increments) and for 

a range of concentrations of a protein (gelatine) and a 

carbohydrate (glucose) from 0 to 10 g/L (with 1 g/l increments, 

keeping a total feeding concentration of 10 g/L). Simulation 

results show that the yields of the different VFA are affected 

by both the pH value and the glucose to protein ratio. For 

example, n-butyrate yield is higher when pH is low and at high 

glucose to protein ratios, attaining a maximum value of 0.4 g 

n-butyrate/g substrate (Fig. 2). Other VFA are affected 

differently: n-valerate yield is favoured at low glucose to 

protein ratio and is generally not affected by pH. Conversion 

is also affected and ranged from 99.8%, when glucose was the 

only carbon source and at high pH, to 84.5% when gelatine 

was the only substrate and at low pH. These values should be 

interpreted as the maximum values from a thermodynamic 

point of view, as the model does not consider any kinetic 

inhibition affecting substrate conversion. 

  Glucose concentration (g/L) 

 

Fig. 2. Predicted n-butyrate yields (g/g of feeding) at different 

pH values (vertical axis) and at different glucose and gelatine 

concentrations in the feeding (horizontal axis). 

The model allows to explore the operational space of two 

parameters (pH and glucose/protein fractions). In this way, the 

information provided by the model is of great interest when 

aiming at designing a process as it makes possible to target a 

specific VFA with a high selectivity, given that a sufficient 

number of waste streams are available. 

3.1 Mechanistic insight 

This section shows the information that can be obtained from 

the model simulations and how it can explain the different 

trends observed on VFA yields, focusing on the effect of 

cofermenting substrates. The yield of n-butyrate is clearly 

affected by the relative concentration of glucose and protein. 

For example, at pH 6.5 its yield varies from 0.26 g/g (for 10 

g/L of glucose and 0 g/L of protein) to 0.05 g/g (for 0 g/L of 

glucose and 10 g/L of protein). This behaviour is directly 

explained by glucose concentration in the feeding (Fig. 3): its 

yield on butyrate increases when its concentration is high in 

the feeding (green bars in Fig. 3) and acetate yield, on the 

contrary, is higher at high protein concentrations (blue bars are 

bigger than green bars in the right part of Fig. 3). At high 

protein concentrations glutamate yield on butyrate is high (red 

bars in Fig. 3) but the overall butyrate yield is lower in these 

conditions (Fig. 2) because glutamate only represent 17% of 

the protein mass and therefore its conversion stoichiometry has 

a limited impact on the overall VFA yields. 

 Fig. 3. Butyrate and acetate concentration (Cmol/L) due to 

glucose and glutamate conversion at pH 6.5 and at different 

feeding proportions. ■ butyrate from glucose ■ acetate from 

glucose ■ butyrate from glutamate. 

Glucose conversion to acetate is the most favourable pathway 

as it has the highest ATP rate among the other options (Table 

1, reactions 1-3). However, it leads to a net NADH production 

that must be consumed in other pathways. Therefore, if 

glucose is degraded on its own, it cannot only produce acetate. 

But, when glucose is converted simultaneously with AAs, this 

NADH surplus can be absorbed in other pathways and in 

consequence glucose is completely transformed into acetate 

when the protein concentration is high enough (Fig. 3). In the 

intermediate cases, there is an equilibrium between 

transforming glucose through its most energetic pathway and 

the NADH absorption capacity of other pathways. For 

example, in the conditions of Table 1, converting glucose to 

butyrate has an ATP rate 44% lower than yielding acetate, with 

an opportunity cost of 0.24 mol ATP/mol NADH (i.e. for each 

NADH produced in the acetate pathway, 0.24 extra ATP are 

produced). To accommodate the extra NADH produced by 

glucose some AAs are rerouted through pathways with a lower 

ATP production. For example, glutamate is partially converted 

to butyrate (reaction 4) when its conversion to acetate has a 

31% higher ATP generation rate, with an opportunity cost of 

0.24 mol ATP/mol NADH. These two changes in conversion 

pathways are in fact in equilibrium as they have the same value 

of opportunity cost (i.e. the extra ATP rate harvested in 

glucose conversion to acetate instead of butyrate is lost in 

glutamate conversion to butyrate instead to acetate). Other 

AAs have their conversion pathways completely switched as, 

for example, isoleucine and valine, which are AA that always 

produce NADH. As their opportunity cost is lower than that of 

glucose conversion to butyrate instead of acetate, they are left 

unconsumed (reactions 8 and 9). Alanine, however, does not 

change its conversion pathway (reactions 6 and 7) because the 

opportunity cost of changing it is higher than that of glucose and 
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therefore it is not globally worthwhile to convert it to propionate 

instead of to butyrate.  

Table 1. Steady state solution for pH 6.5, glucose 

concentration of 6 g/L and protein concentration of 4 g/L. rATP 

and rNADH are the intracellular rates of ATP and NADH (mol 

Lx
-1 h-1).  

# Reaction Z rATP rNADH Opportunity 

cost* 

1 Glucose→ But 0.43 0.317 0 0.24 

2 Glucose→ 2Ac 0.41 0.458 0.580  

3 Glucose→2 Pro  0.16 0.176 -0.580  

4 Glutamate→But 0.41 0.019 -0.05 0.24 

5 Glutamate→2Ac 0.59 0.032 0  

6 Alanine→Pro 0 -0.004 -0.019 0.28 

7 Alanine→But 0.99 0.001 0  

8 Isoleucine→iVal 0 0.129 0.852 0.15 

9 Valine→iBut 0 0.176 1.158 0.15 

*Opportunity cost is defined as the difference in rATP divided by the 

difference in rNADH between two pathways. 

3.2 Comparison with experimental data 

We chose one experimental data set from literature (Breure et 

al., 1986) as representative since the product spectrum is 

reported in detail and methanisation is completely discarded. In 

these experiments, glucose (10 g/L) was added to the feeding of 

a CSTR after being fed only gelatine (5 g/L) until stabilisation 

at a D of 0.10, 0.15 and 0.20 h-1. Simulations were done 

mimicking the different conditions of these experiments in both 

mono and cofermentation scenarios (Fig. 4). Even though the 

experimental results show significant deviations in some cases 

(especially in cofermentation results), these deviations do not 

follow a patter with the value of D and therefore we decided to 

represent the average values for the sake of simplicity. 

The model predicts relatively well the product spectrum both in 

cofermentation and monofermentation experiments. Moreover, 

it is able to capture most part of the changes in product spectrum 

by the addition of glucose to the feeding (Fig. 4). The iso forms 

of butyrate and valerate disappear from the product spectrum 

during cofermentation experiments, n-butyrate yield increases 

significantly when glucose is present as well as the yield of 

ethanol. Propionate yield value does not change between mono 

and cofermentation in both the experimental data and the model 

results, but a considerable deviation is present on the 

cofermentation experimental data. Propionate is always 

overpredicted by the model, which could be partially explained 

by a mismatch between the AA profiles of the gelatine used in 

the model and in the experiments as propionate is yielded by a 

limited number of AA. The change in n-valerate yield is well 

foreseen but the actual yields are underpredicted. Since it only 

can be yielded by two AA (arginine and proline) a difference in 

the gelatine AA profiles could be also de explanation. Acetate 

yield decreases in cofermentation in both simulated and 

experimental data and is overall well predicted. 

The experimental results show a significant decrease in protein 

acidification when glucose is added to the feeding (from an 

average value of 75% to 20%). This decrease in conversion is 

not captured by the model and global protein conversion only 

drops from 91% to 85% in the cofermentation simulations. 

Non-hydrolysed protein could have prevented the prevalence 

of generalist microorganisms and together with a relatively 

high D value it could explain why protein acidification was 

severely affected by glucose presence (Breure et al., 1986). 

This model does not consider kinetic inhibition and therefore 

is not capable of reproducing these events. 

Fig. 4. Product spectra of model and literature results at 3 

different D. A: gelatine monofermentation, B: cofermentation. 

■ Model results ■ Literature results (Breure et al., 1986). 

3.3 Sources of uncertainty 

The NADH restriction is modelled assuming that it is fulfilled 

in common by protein and glucose reactions as we model the 

community as a generalist. This means that glucose or protein 

consuming reactions on their own can be non-neutral in terms 

of NADH. However, if specialist microorganisms dominate the 

culture, it would be more reasonable to consider that each 

substrate has an independent NADH conservation restriction, 

which would affect the conversion stoichiometry. However, as 

pointed out in section 2.2, in the conditions modelled (low 

substrate concentration typically found in CSTR), we do expect 

the prevalence of a generalist microbial community and the 

experimental data analysed proves indeed this hypothesis valid. 

The ratio between the maximum consumption rate of glucose 

and AA was determined based on the assumption that a more 

thermodynamically favoured reaction is faster. Reliable data 

that would have allowed us to determine more accurately this 

ratio were not available in literature. However, if this 

parameter is varied 50%, the main VFA yields vary less than 

10% on average, which shows a smaller sensitivity than, for 

example, the proportion between glucose and gelatine (Fig. 2). 
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3.4 Use as product design tool 

The utility of the model developed as a process design tool was 

already proven when used to explore the operational parameter 

space. With that information, we could steer the process 

towards the yield maximisation of determined VFA, when a 

significant amount of wastes is available. Nonetheless, this 

model can also be used to design processes that valorise 

concrete waste streams and to decide which stream is more 

adequate for our purposes. Cheese whey (CW) or canning 

industry wastewater are examples of waste streams with a high 

content of proteins and carbohydrates. As a proof of concept, 

the conversion of these two waste streams to VFA at different 

pH values is simulated (tuna cooking wastewater (TCWW) 

with 7.3 g/L of gelatine and 0.85 g/L of glucose and CW with 

1 g/L of casein and 4 g/L of glucose). 

Fig. 5. Model results for TCWW and CW fermentation at 

D=0.1 h-1. Dark and light colours represent results at pH 5 and 

7, respectively. ■ TCWW ■ CW. 

As the relative concentration of glucose and protein are 

different and the waste streams feature different proteins, both 

the stoichiometry and the pH effect is different. CW product 

spectrum is dominated by butyrate due to the high proportion 

of glucose. TCWW has a higher yield on acetate and in general 

the pH effect on the conversion stoichiometry is less 

pronounced. This opens the possibility of choosing beforehand 

the most interesting waste depending on the targeted VFA. If 

we are interested in high acetate or propionate production, we 

would choose TCWW at neutral pH. On the other hand, if 

butyrate is our targeted VFA, CW at low pH is our best option 

between these two agro-industrial waste streams. 

4. CONCLUSIONS 

A mechanistic model for the cofermentation of proteins and 

glucose by mixed cultures of microorganisms was developed 

and reproduces satisfactorily both the expected product 

spectrum and the effect of adding glucose to a gelatine 

fermentation. The model shows that glucose to protein ratio in 

the feeding affects the conversion pathways selected by the 

model, owing to competition for shared resources (i.e. NADH). 

In this way, the design process counts with an extra degree of 

freedom, as mixtures of glucose and protein can be tailored to 

direct the process towards the desired VFA. The model was only 

partially validated as only few well-designed experiments are 

available in literature. Expressly designed experiments tracking 

glucose and individual amino acids conversions are being run to 

complete the validation of the model and the more general 

process design methodology. Overall, this model, together with 

a standard kinetic model, will be used as a tool for the early stage 

design of processes degrading mixtures of carbohydrates and 

proteins anaerobically by mixed cultures of microorganisms.  
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