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1 Introduction

Despite its remarkable success, General Relativity is not amenable to the laws of Quantum

Mechanics and there is a general understanding that it is the low energy description of

another theory. As such, it is expected to receive higher-derivative corrections that are

suppressed by some high-energy scale, M⋆. If M⋆ is well below the Planck mass and

gravity remains weakly coupled, it was recently shown that both quadratic and cubic higher

(Riemann) curvature corrections entail causality violation unless an infinite tower of higher-

spin particles is introduced [1]. An example is given by perturbative String Theory [2].

In this context, it is interesting to explore whether higher curvature Lagrangians that are

not strictly in the realm of String Theory, but possess some of its distinctive features, may

provide consistent descriptions of the low energy dynamics of a gravitational system. In

this letter we will focus on T-duality.

T-duality is an equivalence between two string theories in different backgrounds. In

particular, it relates string theory dynamics in geometries with large and small compact

directions by identification of momentum and winding modes. Its uses range from the

attempts to resolve the cosmological singularity in early universe models [3–5] to modern

applications in the framework of the AdS/CFT correspondence (see, for example, [6])

mostly due to its remarkable potential as a highly non-trivial solution generating technique.

The convenience of writing down supergravity actions in a manifestly T-dual invariant

way propelled the development of so-called Double Field Theory [7–10] (see [11, 12] for

comprehensive reviews), a convenient scheme to, so to say, treat momentum and winding

modes on an equal footing. In this paper we shall study a two-parameter family of four-

derivative T-dual invariant Lagrangians that was derived in this context [13], building up

in an earlier formulation developed by Hohm and Zwiebach [14]. T-duality constraints on

the construction of higher derivative theories were further explored by these authors in [15].
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In String Theory, T-duality is a symmetry of the low energy effective action to all orders

in α′. Consider, for instance, the action that governs the universal massless NS-NS sector,

I0 =
∫

dDx
√
−G e−2ΦL(0) , (1.1)

where we have set the Newton constant 16πGN = 1, and L(0) reads

L(0) = R− 2Λ + 4(∇M∇MΦ−∇MΦ∇MΦ)− 1

12
HMNR HMNR . (1.2)

The action involves the metric GMN , the dilaton, Φ, and the Kalb-Ramond two-form

potential, BMN (through its curvature, HMNR = ∂M BNR+∂N BRM +∂R BMN ). Besides,

we have included a cosmological term which is T-dual invariant on its own and might be

seen to arise from string compactification.1

If we restrict our fields to possess a U(1) isometry along, say, ψ, there is a set of

transformations given by so-called Buscher rules [16] which leave (1.1) invariant,

Ĝψψ = 1/Gψψ , Ĝψµ = Bψµ/Gψψ , B̂ψµ = Gψµ/Gψψ ,

Ĝµν = Gµν − (GψµGψν −BψµBψν)/Gψψ , (1.3)

B̂µν = Bµν − (GψµBψν −GψνBψµ)/Gψψ , Φ̂ = Φ− 1

2
logGψψ ,

where the hatted fields are those of the T-dual background. A more transparent expression

for these rules emerges from the explicit writing of the fields in terms of those dimensionally

reduced along ψ,

ds2 = gµνdx
µdxν + e2σ(dψ + Vµ dx

µ)2 ,

Bµν = Bµν +
1

2
(WµVν −WνVµ) , Bµψ = Wµ , (1.4)

Φ = φ+
1

2
σ ,

where Vµ andWµ are the U(1) gauge vectors arising from the metric andB-field components

with an index along the cyclic coordinate [17]. Bµν is the dimensionally reduced Kalb-

Ramond field, and the (WµVν −WνVµ)-term is a convenient field redefinition [18] enforcing

a manifestly simple set of T-duality rules,

Vµ ↔ Wµ , and σ ↔ −σ , (1.5)

which make it transparent that the transformation squares to the identity.

One may ask whether T-duality provides a sufficient constraint to uniquely obtain the

next-to-leading term in a low-energy expansion. In spite of our original expectations, this

seems not to be the case as we will see below. Restricted to first-order corrections, a two

1Our Riemann and Ricci tensor definitions are as in [13]. M,N,R, . . . and A,B,C, . . . are D dimensional

(respectively curved and flat) D-dimensional indices, while lower-case indices µ, ν, ρ, . . . and a, b, c, . . . are

(D − 1)-dimensional.
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parameter family of theories has been recently constructed by Marqués and Núñez [13]

based on the O(D,D) invariant Double Field Theory realization of T-duality,

L(1) = γ+ L(1)
+ + γ− L(1)

− , (1.6)

where γ± are assumed to be order M−2
⋆ parameters, and2

L(1)
+ =

1

2
RMNRS RMNRS − 3

4
HMNR HMSLRNR

SL +
1

6
∇M HNRS ∇MHNRS

+
1

48
HMNR HMS

LHNL
T HRT

S +
1

16
HMRT HMR

LHNS
T HNSL (1.7)

− 1

2
HMNR ∂M

(
HNAB Ω AB

R

)
,

L(1)
− = HMNRΘMNR . (1.8)

Notice that the sign subindex in L(1)
± makes reference to its parity properties under the

sign flip H → −H. ΘMNR is the gravitational Chern-Simons three-form,

ΘMNR = Ω[MA
B ∂N ΩR]B

A +
2

3
Ω[MA

B ΩNB
C ΩR]C

A , (1.9)

ΩMA
B being the Lorentz connection, and the antisymmetrization is normalized, for ex-

ample: T[MN ] =
1
2(TMN − TNM ). Some particular values of γ± correspond to low-energy

effective actions coming from string theories:

γ− = 0 bosonic ,

γ+ = −γ− heterotic , (1.10)

γ+ = γ− = 0 type II .

In the former two cases, γ+ − γ− = 1
2α

′. The case γ+ = γ− is also special [20]. We stress

on the fact that for generic γ+ and γ−, not included in the previous cases, the Lagrangian

above is not known to be related to a sigma model or a conformal field theory. Yet, it is

invariant under T-duality if we neglect quadratic terms in γ±. We will comment on the

particular form of the T-duality rules below. At this stage, it is sufficient to mention that

they also receive γ± corrections.

In this paper we would like to explore the behavior of the γ±-corrected Bañados-

Teitelboim-Zanelli (BTZ) black hole [21], which is a solution of the three-dimensional action

I =

∫
d3x

√
−G e−2Φ

[
L(0) + γ+ L(1)

+ + γ− L(1)
−

]
, (1.11)

when it is subjected to a T-duality transformation. Horowitz and Welch [22] studied this

problem when the dynamics is governed by (1.1) or, in other words, when γ± = 0. They

found that the BTZ black hole is mapped onto a black string. Despite the geometry being

severely modified, including its asymptotic behavior, the existence of a bifurcate Killing

2L
(1)
+ was first presented in [19] modulo some field redefinitions, integration by parts and neglection of

boundary terms.
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horizon, the temperature and the entropy of both solutions are the same. We want to

scrutinize whether the result holds true when γ± corrections are included. It seems clear

in [22] that the entropy being given by the area of the black hole horizon, thereby purely

geometric in the Einstein frame, is at the basis of its invariance. We will show that this is

not the case. The temperature and entropy of the BTZ black hole coincide with those of

the T-dual black string when γ± corrections are included, the value of these parameters not

being restricted to the string theory values (1.10). Although T-duality does not provide

stringent enough constraints on these parameters, the AdS/CFT correspondence does.

2 The BTZ black hole and γ± corrections

In order to discuss the effect of γ± corrections on the BTZ black hole, it is convenient to

write down the equations of motion starting from an equivalent form of the action (1.11)

that is based on the construction of [23],

I =

∫
d3x

√
−G e−2Φ

[
R+

4

ℓ2
+ 4(∇M∇MΦ−∇MΦ∇MΦ)− 1

12
H̄MNR H̄MNR

+
1

8

∑

k=±

ak R
(k)
MNA

BR(k)MN
B
A

]
, (2.1)

where ℓ is the AdS radius, the sum runs over two signs, k = ±, and the parameters a± are

going to be dubbed a− ≡ a and a+ ≡ b.

H̄MNR := HMNR − 3

2

(
aΘ

(−)
MNR − bΘ

(+)
MNR

)
, (2.2)

Θ(±) denoting the gravitational Chern-Simons form (1.9) of the Lorentz connection with

torsion Ω
(±)
MA

B = ΩMA
B± 1

2HMA
B. The precise definitions of R

(±)
MNAB and Θ

(±)
MNR are those

of [13]. The parameters γ± are related to a and b in a simple fashion:

γ± = ∓a± b

4
. (2.3)

Notice that the price to pay for writing the action as in (2.1) is that it contains terms

quadratic in γ±; they must not be taken into consideration. From the variation of (2.1)

one gets the following equations of motion:

R+
4

ℓ2
+ 4(∇2Φ− (∇Φ)2)− 1

12
H̄MNR H̄MNR +

1

8

∑

k=±

akR
(k)
MNA

BR(k)MN
B
A = 0 ,

∇M

[
e−2ΦH̄MNR +

3

2

∑

k=±

ak

(
e−2ΦHST [MR

(k)RN ]
ST − k∇(k)

S

[
e−2ΦR(k)S[MNR]

])]
= 0 ,

RMN + 2∇M∇NΦ− 1

4
H̄MRSH̄

RS
N − 1

4

∑

k=±

ak

[
R

(k)
MRSTR

(k)RST
N (2.4)

+e2Φ
(
2GS(M |∇R + kHRS(M |

) (
δU

S∇(k)
T + kHTU

S
)(

e−2ΦR(k)TUR
|N)

)]
= 0 ,
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where ∇2 = ∇M∇M , (∇Φ)2 = ∇MΦ∇MΦ, and ∇(k) is the covariant derivative involving

the connection with torsion3 Ω
(k)
MA

B. To begin with, we want to find exact black hole

solutions of this system. The problem turns out to be straightforward if we start by recalling

that the BTZ black hole [21] can be supplemented by a trivial dilaton and a quadratic Kalb-

Ramond field to give a solution of the equations of motion arising from (1.2) [24].

ds2 = −N2dt2 +
dr2

N2
+ r2

(
dψ +Nψdt

)2
,

e−2Φ = 1 , (2.5)

Btψ =
r2+ − r2

ℓ
,

while all other components vanish; the lapse is given by the standard BTZ form,

N2 =
(r2 − r2+)(r

2 − r2−)

ℓ2r2
, (2.6)

while

Nψ =
r+r−
ℓ

(
1

r2+
− 1

r2

)
, (2.7)

where r+ and r− are two integration constants, better expressed in terms of the

(γ±-uncorrected) black hole mass and angular momentum computed from (1.1),

M =
r2+ + r2−

ℓ2
, J =

2r+r−
ℓ

, (2.8)

which agree with the standard result [21]. Indeed, for the values in (1.10), this solution

is exact to all orders in α′ [25]. The very fact that a± do not appear in (2.5), despite

γ± 6= 0 in bosonic/heterotic string theory, suggests that it can possibly be a solution for

arbitrary γ±. Indeed, this is the case. This happens because Θ
(±)
MNR and R

(±)
MNAB vanish

when evaluated on (2.5), as expected. Notice that H → −H corresponds to a flip in the

Lorentz connection with torsion Ω
(±)
MA

B → Ω
(∓)
MA

B.

In spite of the fact that the action (2.1) can be shown to be local Lorentz invariant on-

shell, it is not so for an arbitrary background. Indeed, it is invariant under an anomalous

local Lorentz transformation of the form:

δΛEM
A = EM

BΛB
A , δΛBMN = −a

2
∂[MΛA

BΩ
(−)
N ]B

A +
b

2
∂[MΛA

BΩ
(+)
N ]B

A , (2.9)

where ΛA
B is the infinitesimal generator. For the heterotic string case (1.10), b = 0 and

a = −α′, such transformation is due to the Green-Schwarz anomaly cancellation mecha-

nism. For the rest of the values of a and b, it is formally similar.4 Transformation (2.9)

leaves H̄MNR invariant, while the rest of the terms in the action are manifestly invariant.

3In other words, ∇(±) is the (diffeomorphism) covariant derivative with torsionful Christoffel symbols

Γ
(±)R
MN = ΓRMN ∓ 1

2
HMN

R.
4In the case of bosonic string theory the necessity of an anomalous Lorentz transformation can be

eliminated by means of a field redefinition. For more details, see [13].
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Due to this anomalous Lorentz invariance, it is necessary to specify both the vierbein5 and

the B-field which solve the equations of motion. A different frame has to be accompanied

by a compensating transformation in the B-field that in general changes its field strength

HMNR so that H̄MNR remains invariant. We shall see next that a ∆Btψ, together with

the choice of an appropriate reference frame, is necessary to bring our solution (2.5) to a

regular form.

Consistency of the black hole thermodynamics requires the horizon to be a regular

bifurcate Killing horizon [28]. We consider a stationary solution with a spacelike isometry

given by the Killing field η. The orbits of η are closed and provide the symmetry along

which we apply T-duality. Furthermore, η commutes with an asymptotically timelike

Killing field λ, and therefore we can associate coordinates to them as:

λ = ∂t , η = ∂ψ′ . (2.10)

By definition of bifurcate Killing horizon, for some constant ω there is a compact spacelike

codimension-2 surface B in which

ξ
∣∣
B
= λ+ ω η

∣∣
B
= 0 , (2.11)

ξ being the null Killing vector that generates the Killing horizon. B is the so-called bifurca-

tion surface, which in our case is just a particular one-dimensional curve located at r = r+.

All fields must obey regularity conditions at the bifurcation surface [29, 30]. Following the

arguments of [22], the particular choice of coordinates in a solution like (2.5), as well as

the gauge choice for the B-field, must be such that

Gtψ

∣∣
N

= Btψ

∣∣
N

= 0 (2.12)

at the horizon N . Otherwise, either the original solution or its T-dual along ψ are singular

at leading order in γ±. Gtψ

∣∣
N

= 0 can be enforced using the coordinate ψ = ψ′ − ωt,

so that:

ξ = ∂t , η = ∂ψ . (2.13)

In these new coordinates we are guaranteed6 that Gtψ

∣∣
N

= GMNξMηN
∣∣
N

= 0. The

T-duality along ψ and the one along ψ′ both correspond to the same Killing vector η. In

what follows we will only use the ψ coordinate, which is indeed the same that already

appeared in (2.5). Thereby, Btψ

∣∣
N

= 0 can be derived from Btψ = BMNξMηN , and the

fact that ξ vanishes on the bifurcation surface B.
On top of that, given the fact that ΩMA

B enters explicitly in the action (1.11), we

want to impose regularity on the Lorentz connection components:

ξMΩMA
B
∣∣
N

= ΩtA
B
∣∣
N

= 0 . (2.14)

5Besides the technical necessity of introducing a frame, it was recently shown that background indepen-

dence plus the requirement of a manifest T-duality invariance call for its use [26, 27].
6It may seem that as ξ vanishes only on B and not on the whole horizon N , Gtψ = 0 only holds in B.

Nevertheless, if N is connected with the bifurcation surface along the integral lines of the Killing field ξ,

then by symmetry and continuity Gtψ = 0 holds in every point of N [22].
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This follows from ξ
∣∣
B
= ∂t

∣∣
B
= 0, and the regularity of ΩA

B as 1-forms. The extension of

the result from B to N is analogous to that of Gtψ

∣∣
N

= Btψ

∣∣
N

= 0, explained just above.

With the regular condition (2.14), the redefinition (3.2) that we will need to do in order to

perform T-duality at linear order in γ± preserves the generating null Killing vector ξ = ∂t,

as established for regular field redefinitions in [30]. It turns out that the obvious vierbein

choice of our solution (2.5),

e0 = Ndt , e1 =
dr

N
, e2 = r(dψ +Nψdt) , (2.15)

does not fulfill (2.14),

Ωt0
1
∣∣
N

= −κ 6= 0 , (2.16)

where

κ =
r2+ − r2−
ℓ2r+

= 2πTH , (2.17)

and TH is the Hawking temperature of the BTZ black hole (we are not considering the

extremal cases).7 As ΩMA
B depends on the vierbein choice, we expect that it can be made

regular by a Lorentz transformation. This expectation turns out to be true by applying a

local Lorentz boost in the radial direction,

E0 = cosh(κt) e0 + sinh(κt) e1 , E1 = sinh(κt) e0 + cosh(κt) e1 , (2.18)

and E2 = e2, which leads to a regular Lorentz connection, ΩtA
B
∣∣
N

= 0. One may wonder

if (2.18) introduces any measurable time dependence in the solution, given that the action

is not Lorentz invariant. In the following we show that this is not the case for the fields

GMN , BMN ,Φ.

Given that our action (2.1) is not local Lorentz invariant, we must preserve H̄MNR for

the new vierbein to be a solution; that is, we have to find the anomalous contribution to

BMN that we call ∆BMN . It cannot be directly computed from (2.9) since the local Lorentz

transformation (2.18) is finite. Nevertheless, if we compute the change in Θ
(±)
MNR entailed

by (2.18), we can easily read that of HMNR; i.e., BMN up to a gauge choice. This last free-

dom is limited by the regularity condition, Btψ

∣∣
N

= 0. We obtain Btψ → Btψ +∆Btψ with

∆Btψ = 2κ
r+ − r

ℓ

(
γ+ − γ−r−

r

)
, (2.19)

the metric and the dilaton remaining the same as in (2.5). Notice that despite the time

dependence of the local Lorentz boost (2.18), the resulting background is manifestly time

independent when written in t, r, ψ coordinates and we are still in a stationary solution.

Furthermore, the metric is unchanged, thereby we are still dealing with a (regular) bifur-

cated Killing horizon at r = r+.

7The time independence of the vierbein can introduce a singularity of the Lorentz connection at the

horizon. For this fact and its implications on Wald formalism see [31].
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3 The γ±-corrected T-dual black strings

In this section we apply the γ±-corrected T-duality rules to the BTZ black hole solu-

tion (2.5), and afterwards we show that the dual can be rewritten as a black string with

γ± corrections. The detailed derivation of the corrected T-duality rules will be presented

in a separate paper [32]. Here we simply present the recipe to do it and display the final

result. The key point is that it is possible to perform a non-covariant field redefinition that

keeps the Buscher rules (1.3) unaffected [13]. To this end, let us define the background

fields G̃MN , B̃MN , and Φ̃,

G̃MN = GMN − 1

4

∑

k=±

ak Ω
(k) B
MA Ω

(k) A
NB , (3.1)

B̃MN = BMN , e−2Φ̃
√
−G̃ = e−2Φ

√
−G . (3.2)

It can be shown that these fields transform according to the Buscher rules; therefore, they

have to be applied and, subsequently, the field redefinition (3.1) and (3.2) must be inverted.

In this fashion, a dependence in the γ± parameters is inherited by the T-dual solution. If

we start from the BTZ black hole solution (2.5), we obtain:

ds2 = −N2dt2 +
dr2

N2
+ e−2σ (dχ+Nχ dt)2 ,

e−2Φ = r2(1 + ∆+) , (3.3)

Btχ =
e

ℓ

(
1− r2+

r2

)
− 2

ℓr2

(
γ+

J

ℓ

(
1− Mℓ2

2r2

)
+ γ−

(
M − J2

2r2

))
,

where N2 is the same lapse function as in (2.6), and

Nχ =
r2+ − r2

ℓ
(1 + e∆−) , (3.4)

with the following definitions:

∆± =
2

r2
(γ±M + γ∓J/ℓ) , e =

r−
r+

, e−σ =
1−∆+

r
. (3.5)

This solution represents a γ±-corrected black string,8 as will be clear once we make a further

coordinate transformation; the γ± = 0 case corresponds to the solution found in [22]. The

bifurcated Killing horizon is not regular, though. Regularity must be imposed both in the

metric and matter fields in order to have a consistent thermodynamics. It can be achieved

either by applying the T-duality transformation to the regular BTZ black hole solution or,

as it turns out to be equivalent, by performing the local Lorentz boost (2.18) to (3.3). It

has to be accompanied by the transformation Btχ → Btχ +∆Btχ, with

∆Btχ =
κ

ℓr2

(
ℓJ

r
γ+ + 2rγ−

)
. (3.6)

8Notice that by expressing the metric as in (3.3), there are also terms quadratic in γ±; their presence is

only meaningful as a way to express the first-order γ±-corrected vierbein in a more compact way.
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To better connect our result with those in the literature, we shall rewrite our solution as

a three-dimensional black string with γ± corrections. First, we extend the leading order

coordinate transformation found in [22] to include γ± corrections in the following way:

t = ℓ(r2+ − r2−)
−1/2

(
1− 2ℓ−2 (γ+ − eγ−)

)
(T +X) , (3.7)

χ = −(r2+ − r2−)
1/2

[(
1 + 2ℓ−2 (γ+ + eγ−)

)
X + 4ℓ−2eγ− T

]
, (3.8)

where r2 = ℓρ, thereby r2± = ℓρ±. If we now further rewrite everything in terms of the

conserved quantities of the leading order solution [22], M = ρ+ and Q = −√
ρ+ρ−,

ds2 = −
(
1− M

ρ

)[
1− 4M

ℓ2ρ
(γ+ + eγ−)

]
dT 2 − 4

(
1− e2

)
γ−Q

ℓ2ρ

(
1 +

M
ρ

)
dT dX

+

(
1 +

eQ
ρ

)[
1 +

4Q
ℓ2ρ

(γ− + eγ+)

]
dX2 +

(
1− M

ρ

)−1(
1 +

eQ
ρ

)−1 ℓ2dρ2

4ρ2

e−2Φ = ℓρ+ 2ℓ−1
[(
1 + e2

)
γ+M− 2γ−Q

]
, (3.9)

BTX = −e− Q
ρ
+

4Q
ℓ2ρ

(
γ+

(M− eQ
2ρ

− 1

)
− γ−

(
e+ e−1

2
+

Q
ρ

))
,

∆BTX = 2κℓ−1/2
(
γ+Qρ−3/2 − γ−ρ

−1/2
)
,

where we used that e = −Q/M. Notice that the angular velocity at the horizon is non-

vanishing in spite of the fact that GTX = 0 at infinity. In the case of bosonic string theory,

γ− = 0, the metric becomes diagonal:

ds2 = −
(
1− M

ρ

)(
1− 2M

ρ

ℓ2s
ℓ2

)
dT 2 +

(
1 +

eQ
ρ

)(
1 +

2eQ
ρ

ℓ2s
ℓ2

)
dX2

+

(
1− M

ρ

)−1(
1 +

eQ
ρ

)−1 ℓ2dρ2

4ρ2
,

e−2Φ = ℓ

[
ρ+

(
1 + e2

)
M ℓ2s

ℓ2

]
, (3.10)

BTX = −e− Q
ρ
+Q

(M− eQ
ρ2

− 2

ρ

)
ℓ2s
ℓ2

, ∆BTX =
κQℓ2s

ℓ1/2ρ3/2
,

where we used γ+ = 1
2α

′ = 1
2ℓ

2
s, ℓs being the string length. This is the leading (bosonic)

stringy correction to the black string found in [25]:

ds2 = −
(
1− ρ+

ρ

)
dT 2 +

(
1− ρ−

ρ

)
dX2 +

(
1− ρ−

ρ

)−1(
1− ρ+

ρ

)−1 ℓ2dρ2

4ρ2
. (3.11)

We can finally obtain the asymptotic form of the metric:

ds2 = −dT 2 + dX2 +
ℓ2dρ2

4ρ2
, (3.12)
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with a linear dilaton, e−2Φ = ℓρ, and a pure gauge Kalb-Ramond two-form, BTX = −e.

The line element is that of flat space and the scalar curvature at leading order in 1/ρ reads

R =
4

ℓ2ρ

[
(M− eQ)

(
1 +

4γ+
ℓ2

)
− 2γ−Q

]
∝ 1

ρ
, (3.13)

which is the expected fall-off of an asymptotically flat metric in three dimensions [25].

4 T-duality and black hole thermodynamics

We want to study the thermodynamics of the γ±-corrected black string configuration;

in particular, its temperature and entropy. To that end, we bring our solution (3.3) to

Eddington-Finkelstein form in which the metric is regular at the horizon through the

change of coordinates:

dv = dt+
dr

N2
, dχ̃ = dχ− Nχ

N2
dr , (4.1)

and the resulting line element is the following:

ds2 = −N2dv2 + 2dvdr + e−2σ(dχ̃+Nχdv)2 . (4.2)

The metric is well-behaved at r = r+, regardless of the condition N(r+) = 0. Notice that

Nχ(r+) = 0. The one-form normal to the Killing horizon is n = dr
∣∣
N
. The surface gravity,

κ, can be defined from the timelike Killing vector, ξ, through ξM∇MξN
∣∣
N

= κ ξN
∣∣
N
,

thereby d(ξ2)|N = −2κn,

d(ξ2)
∣∣
N

= ∂r
[
−N2 + e−2σ(Nχ)2

]
dr
∣∣
N

= −∂rN
2 n

∣∣
N

= −2
r2+ − r2−
ℓ2r+

n
∣∣
N
. (4.3)

where in the second equality we used Nχ|N = 0, and regularity of Nχ and σ at the

horizon. Since the lapse of the solution is invariant under T-duality, the value of κ, which

only depends on N and not on σ and Nχ, is invariant as well. T-duality preserves the

bifurcated Killing horizon and its temperature,

κ =
r2+ − r2−
ℓ2r+

= κBTZ . (4.4)

This generalizes the result obtained in [22] to our γ±-corrected BTZ black hole (2.5) and

its T-dual (3.3).

Let us scrutinize now the properties of the black hole entropy under T-duality. The

invariance found in [22] was purely a geometrical issue, given that at leading order the

Bekenstein-Hawking area law is at place. Far from that, the black hole entropy in the

γ±-corrected theory has to be computed by methods that exceed the applicability of the

Iyer-Wald formula [29, 33] because the action is not Lorentz invariant. We must modify

Wald’s derivation along the lines of [34] to deal with the anomalous Lorentz invariance. In

addition, since our formalism relies on the use of the vierbein, Lie derivatives have to be
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substituted by Lie-Lorentz derivatives [31]. The black hole entropy is finally given by the

following expression [32]:

SBH = 4π

∫

Σ
dζ e−2Φ

√
Gh

[
1 + 2γ+

(
R01

01 −
3

4
HA01HA01

)
− 2γ−Ω

A01HA01

]
, (4.5)

where Σ denotes the cross section of the horizon on which we integrate. As we are in three

dimensions Σ is just a curve, parameterized either by ζ = ψ in the BTZ solution (2.5) or by

ζ = χ in the dual black string solution (3.3). Recall that we have set 16πGN = 1 and Gh is

the determinant of the induced metric on the horizon. The last term in (4.5) is anomalous

Lorentz invariant to linear order in γ± [35].

Plugging either the BTZ black hole or the γ±-corrected black string, we get the same

answer:

SBH = 8π2r+ +
32π2

ℓ2
(γ+r+ + γ−r−) , (4.6)

where we have set ∆ψ = ∆χ = 2π. It is interesting to see how the expressions in the

entropy integrand behave when dimensionally reduced (1.4):

e−2Φ
√
Gh = e−2φ , (4.7)

R01
01 −

3

4
H012H012 = R̃01

01 −
3

4

(
e2σV 01V01 + e−2σW 01W01

)
, (4.8)

H201Ω201 = −1

2
W 01V01 , (4.9)

where R̃µν
ρσ is the dimensionally reduced Riemann tensor, and Vµν and Wµν are the field

strengths9 corresponding, respectively, to Vµ and Wµ. Each of the terms is T-dual invariant

by itself. Whereas (4.7) is exactly invariant [32], (4.8) and (4.9) are only requested to be

invariant under the uncorrected Buscher rules (1.5), given that they are already multiplied

by γ±. Notice that for γ− 6= 0 the entropy depends on the inner horizon radius r−. This

is standard in theories with broken parity, such as Topologically Massive Gravity [36] or

Mielke-Baekler’s gravity [37, 38].

Given the asymptotics of the BTZ black hole, one may wonder about the consistence of

our results from the point of view of the AdS/CFT correspondence. The entropy of the BTZ

solution matches the Cardy formula [39], both in the integrated and the non-integrated

versions.10 The central charges of the dual CFT can be readily computed,

c± =
3ℓ

2GN
+

6

ℓGN
(γ+ ± γ−) , (4.10)

where we have reintroduced 16πGN for the sake of comparison. In the case γ± = 0 we

recover the Brown-Henneaux seminal result [40],

c± =
3ℓ

2GN
. (4.11)

9Indices in (4.8) and (4.9) are flat, R̃abcd, Vab and Wab, and they refer to the basis (2.18).
10We would like to thank Gastón Giribet for pointing out the possibility to perform this non-trivial check,

and for his abundant crucial inputs on this respect.
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Notice also that these expressions satisfy the integrated version of the Cardy formula,

SBH =
π2ℓ

3
(c+T+ + c−T−) , (4.12)

where T+ and T− are the geometric orbifold temperatures,

T± =
r+ ± r−
2πℓ2

. (4.13)

This CFT description, being non-symmetric in its left- and right-moving sectors due to the

bulk Chern-Simons term, yields a quantization condition for γ−. To show this, notice that

modular invariance imposes c− − c+ = 24k, k ∈ Z [41]. Thereby, γ− must be quantized in

units of 2ℓGN . We need to guarantee that γ− ∼ ℓ2⋆, which can be achieved for ℓPl ≪ ℓ⋆ ≪ ℓ,

where ℓ⋆ = M−1
⋆ and ℓPl = GN .

For heterotic string theory, the couplings are related as γ+ = −γ−, and the entropy

correction depends on the combination r+ − r−. This is somewhat consistent with the

absence of corrections to the dual background for the extremal heterotic solution, although

a bit stronger.

5 Concluding remarks

We have studied the effect of applying T-duality to a BTZ black hole in the presence

of higher-derivative corrections parameterized by γ± ∼ M−2
⋆ . This two-parameter fam-

ily of theories includes (but generalizes) the next-to-leading α′-corrected string theory

actions. We used T-duality as a solution generating technique to obtain a non-trivial

higher-curvature asymptotically flat black string configuration, which satisfies the equa-

tions of motion to the requested order in M−1
⋆ . We show that both the temperature and

the entropy remain invariant for all values of γ±.

The result is puzzling in the following sense. T-duality is not expected to be a symmetry

of theories based on point particles. The theories we have just discussed, for generic γ±
do not seem to have a sigma model origin. T-duality for them might be an approximate

symmetry, in the sense that we are always neglecting quadratic contributions in γ±. The

fact that bifurcate Killing horizons are mapped onto bifurcate Killing horizons with exactly

the same surface gravity, generalizing the results obtained by Horowitz and Welch [22], is

noticeable. It can be understood from the fact that γ±-corrected T-duality amounts to a

sequence of field redefinitions with an intermediate transformation given by the uncorrected

Buscher rules in between. In order to extend the results of [30] to our case, we needed to rely

on a notion of regularity for ΩMA
B, much in the spirit of [22]. The preservation of entropy,

in turn, is remarkable. One might naively expect that neglecting quadratic contributions

in γ± may affect a quantity that accounts for the number of degrees of freedom. In the

case studied by [22] this statement amounts to area conservation (strictly speaking, it is

the area in a conformally related metric, which is T-dual invariant), but in the theories

studied in this article the entropy is not given by the horizon area.

Our results suggest that T-duality could be a symmetry of a larger class of theories,

which, nonetheless, are far from arbitrary since terms organize as in (1.7) and (1.8). Among
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all these theories, what makes string theory special is probably the fact that it can be

resummed to all orders in γ± ∼ α′. In order to have a better understanding, one would

need to explore the generalization of these results to O(γ2±). The action becomes rather

intractable, as explicitly shown in [42] for the case γ+ = γ−, which was originally considered

by Hohm, Siegel and Zwiebach [20].

It is interesting to point out that our results are in line with expectations naively

arising from a recent study performed in [43]. These authors demonstrated the first law

of black hole thermodynamics in the Double Field Theory framework, by applying in that

context the covariant phase space approach due to Wald and collaborators [29, 33, 44].

The very fact that our two-parametric theory (1.11) can be (actually, it was originally)

formulated in the realm of an O(D,D) invariant Double Field Theory makes it plausible in

principle to perform a similar analysis to that of [43] as an alternative avenue to reproduce

our results. It would be interesting to pursue this computation.

One may wonder how general is the invariance of γ±-corrected temperature and en-

tropy under T-duality. This is a natural question because the BTZ black hole is a three-

dimensional solution with maximal symmetry. The generalization to black holes in higher

dimensions is feasible,11 and is going to be presented elsewhere [32]. We shall also explore

the uses of the AdS/CFT correspondence to further constrain the γ± parameters leading

to consistent quantum gravities in three dimensions, as well as to scrutinize the would

be chiral point where one of the central charges vanishes, and to study the corresponding

emergence of a logarithmic branch.
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