Design of Carvacrol-Based Active Packaging for Extending Fresh Fish Shelf-life

Carlos Vilas1, Miguel Mauricio-Iglesias2, Míriam R. García1

1 Engineering Group, Institute of Marine Research, Spanish Council Research (CSIC)
2 Chemical Engineering, Universidade de Santiago de Compostela, Spain
Motivation

- Design of active packaging

![Diagram showing packaging with Carvacrol and Listeria](image)
Motivation

• Design of active packaging

Objectives

– to extend shelf-life:

Use by Food Safety

Best Before Quality
Motivation

• Design of active packaging

- to extend shelf-life:
 - Carvacrol (antimicrobial substance)
 - Listeria (pathogen)

- Smart labels (smart sensor) ➔ update of shelf life

Objectives

Use by Food Safety

Best Before Quality

Shelf life date

Abusive temperature

Time
Motivation

- Design of active packaging

To extend shelf-life:

- Smart labels (smart sensor) ➔ update of shelf life

OBJECTIVES

- Use by Food Safety
- Best Before Quality

Modelling

- Predictive microbiology
- Biochemical dynamics
- Mass transfer (diffusion) and optimization
maximize
\[t_f, L_i, C_{i,0} \]
subject to
Use-by date \(t_f \)
Safety requirements,
Design constraints.
Fish Safety Requirements ➔ Predictive microbiology

- **Listeria concentration at final time ≤ 2 logs**
 - Assumed exponential growth
 \[
 \frac{d \log_{10} L_m}{dt} = \mu^* \gamma_T \gamma_C
 \]
 - Velocity depends on the temperature following (Rosso et al 1995)
 \[
 \gamma_T = \frac{(T - T_-)(T - T_-)^2}{(T_+ - T_-)[(T_+ - T_-)(T - T_+) - (T_+ - T_-)(T_+ + T_- - 2T)]}
 \]
 - Inhibition by carvacrol using the square root model (Dalgaard, 1995)
 \[
 \gamma_C = \begin{cases}
 \left(1 - \frac{C_f}{MIC}\right)^2, & C_f < MIC \\
 0, & C_f \geq MIC
 \end{cases}
 \]
Design Constraints ➔ Packaging modelling

Packaging constraints

- Concentration of carvacrol in the food at all times $C_f(t) \leq 0.03$ kg/m3.
- Thickness of each layer: 12×10^{-6} μm $\leq L_i \leq 70 \times 10^{-6}$ μm.
- Total thickness of the active packaging 35×10^{-6} μm $\leq L \leq 70 \times 10^{-6}$ μm.
- Initial concentration of carvacrol in each layer $C_{i,0} \leq 80$ kg/m3.

➔ Partial differential equations (PDEs) modelling the spatial distribution of carvacrol on package and food matrix
Active packaging design to extend use-by date

<table>
<thead>
<tr>
<th>Layer configuration</th>
<th>Use-by date</th>
<th>1<sup>st</sup> layer</th>
<th>2<sup>nd</sup> layer</th>
<th>3<sup>rd</sup> layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_f</td>
<td>$C_{1,0}$</td>
<td>L_1</td>
<td>$C_{2,0}$</td>
</tr>
<tr>
<td>-</td>
<td>13.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Active packaging design to extend use-by date

<table>
<thead>
<tr>
<th>Layer configuration</th>
<th>Use-by date t_f</th>
<th>1^{st} layer $C_{1,0}$</th>
<th>L_1</th>
<th>2^{nd} layer $C_{2,0}$</th>
<th>L_2</th>
<th>3^{rd} layer $C_{3,0}$</th>
<th>L_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>13.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PP</td>
<td>14.94</td>
<td>49.2</td>
<td>70.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LDPE</td>
<td>15.69</td>
<td>18.2</td>
<td>35.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HDPE</td>
<td>13.51</td>
<td>80.0</td>
<td>70.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Active packaging design to extend use-by date

<table>
<thead>
<tr>
<th>Layer configuration</th>
<th>Use-by date t_f</th>
<th>1^{st} layer $C_{1,0}$</th>
<th>L_1</th>
<th>2^{nd} layer $C_{2,0}$</th>
<th>L_2</th>
<th>3^{rd} layer $C_{3,0}$</th>
<th>L_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>13.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PP</td>
<td>14.94</td>
<td>49.2</td>
<td>70.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LDPE</td>
<td>15.69</td>
<td>18.2</td>
<td>35.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HDPE</td>
<td>13.51</td>
<td>80.0</td>
<td>70.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PP-LDPE</td>
<td>15.78</td>
<td>3.4</td>
<td>39.1</td>
<td>47.7</td>
<td>12.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PP-HDPE</td>
<td>13.51</td>
<td>66.9</td>
<td>56.7</td>
<td>80.0</td>
<td>13.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HDPE-LDPE</td>
<td>15.78</td>
<td>3.6</td>
<td>39.1</td>
<td>47.2</td>
<td>12.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PP-HDPE-LDPE</td>
<td>15.78</td>
<td>57.0</td>
<td>13.3</td>
<td>3.6</td>
<td>42.2</td>
<td>48.7</td>
<td>12.0</td>
</tr>
<tr>
<td>LDPE-PP-LDPE</td>
<td>15.78</td>
<td>3.9</td>
<td>29.8</td>
<td>3.0</td>
<td>16.0</td>
<td>48.8</td>
<td>12.0</td>
</tr>
<tr>
<td>LDPE-HDPE-LDPE</td>
<td>15.78</td>
<td>57.0</td>
<td>13.3</td>
<td>3.6</td>
<td>42.2</td>
<td>48.7</td>
<td>12.0</td>
</tr>
<tr>
<td>HDPE-PP-LDPE</td>
<td>15.78</td>
<td>15.6</td>
<td>20.6</td>
<td>2.5</td>
<td>13.7</td>
<td>48.5</td>
<td>12.1</td>
</tr>
<tr>
<td>HDPE-PP-HDPE</td>
<td>13.51</td>
<td>78.9</td>
<td>33.0</td>
<td>17.0</td>
<td>23.8</td>
<td>80.0</td>
<td>13.3</td>
</tr>
</tbody>
</table>
Best Before Quality

\[
\begin{align*}
\text{maximize} & \quad t_f,L_i,C_{i,0} \\
\text{subject to} & \quad \text{Best-before date } (t_f) \\
& \quad \text{Quality requirements,} \\
& \quad \text{Safety requirements,} \\
& \quad \text{Design constraints.}
\end{align*}
\]
Fish Quality Requirements

- **k-quality index**

\[
K_i(\%) = \frac{[\text{Ino}] + [\text{Hx}]}{[\text{IMP}] + [\text{Ino}] + [\text{Hx}]} \times 100
\]

- To develop a mathematical model describing early quality losses in hake including:
 - Enzymatic degradation model
 - Bacterial growth model
 - Mass diffusion through the food matrix (leaching)

A mathematical model to predict early quality attributes in hake during storage at low temperature

C. Vilas, A.A. Alonso, J.R. Herrera, M. Bernaldez, M.R. Garcia
Active packaging to extend use-by and best-before date

<table>
<thead>
<tr>
<th>Layer configuration</th>
<th>Use-by date (t_f)</th>
<th>Best-before date</th>
<th>1(^{st}) layer</th>
<th>2(^{nd}) layer</th>
<th>3(^{rd}) layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>13.43</td>
<td>7.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Active packaging to extend use-by and best-before date

<table>
<thead>
<tr>
<th>Layer configuration</th>
<th>Use-by date t_f</th>
<th>Best-before date t_f</th>
<th>$C_{1,0}$</th>
<th>L_1</th>
<th>$C_{2,0}$</th>
<th>L_2</th>
<th>$C_{3,0}$</th>
<th>L_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>13.43</td>
<td>7.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PP</td>
<td>14.94</td>
<td>8.58</td>
<td>63.9</td>
<td>70.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LDPE</td>
<td>15.69</td>
<td>9.11</td>
<td>18.2</td>
<td>35.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HDPE</td>
<td>13.51</td>
<td>7.44</td>
<td>80.0</td>
<td>70.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Active packaging to extend use-by and best-before date

<table>
<thead>
<tr>
<th>Layer configuration</th>
<th>Use-by date t_f</th>
<th>Best-before date t_f</th>
<th>1st layer</th>
<th>2nd layer</th>
<th>3rd layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$C_{1,0}$</td>
<td>L_1</td>
<td>$C_{2,0}$</td>
</tr>
<tr>
<td>-</td>
<td>13.43</td>
<td>7.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PP</td>
<td>14.94</td>
<td>8.58</td>
<td>63.9</td>
<td>70.0</td>
<td>-</td>
</tr>
<tr>
<td>LDPE</td>
<td>15.69</td>
<td>9.11</td>
<td>18.2</td>
<td>35.0</td>
<td>-</td>
</tr>
<tr>
<td>HDPE</td>
<td>13.51</td>
<td>7.44</td>
<td>80.0</td>
<td>70.0</td>
<td>-</td>
</tr>
<tr>
<td>PP-LDPE</td>
<td>15.78</td>
<td>9.20</td>
<td>3.0</td>
<td>56.6</td>
<td>48.6</td>
</tr>
<tr>
<td>PP-HDPE</td>
<td>13.51</td>
<td>7.44</td>
<td>67.0</td>
<td>19.8</td>
<td>80.0</td>
</tr>
<tr>
<td>HDPE-LDPE</td>
<td>15.78</td>
<td>9.20</td>
<td>3.6</td>
<td>37.0</td>
<td>47.2</td>
</tr>
<tr>
<td>PP-HDPE-LDPE</td>
<td>15.78</td>
<td>9.20</td>
<td>0.0</td>
<td>31.5</td>
<td>3.6</td>
</tr>
<tr>
<td>LDPE-PP-LDPE</td>
<td>15.78</td>
<td>9.20</td>
<td>11.7</td>
<td>23.8</td>
<td>2.9</td>
</tr>
<tr>
<td>LDPE-HDPE-LDPE</td>
<td>15.78</td>
<td>9.20</td>
<td>69.3</td>
<td>15.9</td>
<td>3.6</td>
</tr>
<tr>
<td>HDPE-PP-LDPE</td>
<td>15.78</td>
<td>9.20</td>
<td>28.5</td>
<td>30.4</td>
<td>2.5</td>
</tr>
<tr>
<td>HDPE-PP-HDPE</td>
<td>13.51</td>
<td>7.44</td>
<td>77.7</td>
<td>14.4</td>
<td>79.9</td>
</tr>
</tbody>
</table>
Active packaging to extend use-by and best-before date.
Effect of transport/storage temperature on shelf-life

(a) Temperature vs. Time

(b) % Value vs. Time
Smart label/sensor ➔ Consumers industry 4.0
Conclusions

• Tool to optimally design active packaging to extend shelf combining predictive microbiology and diffusion models of active packaging

• Study the effect of transport/storage on shelf life date using active packaging

• Details about software and general methodology:
 – Vilas, Mauricio-Iglesias, García «Model-based design of smart active packaging systems with antimicrobial activity»

submitted to Food Packaging and Shelf Life
Acknowledgments

The authors acknowledge the financial support received from E.U. H2020 research and innovation programme (CoPro project, No 723575).

Carlos Vilas
Bioprocess Engineering Group
IIM-CSIC, Vigo, Spain

Miguel Mauricio-Iglesias
Chemical Engineering department. Universidad de Santiago de Compostela,

Funding:

ControlAR
RTI2018-093560-J-I00 (MCIU/AEI/FEDER, UE)
http://resistance.iim.csic.es/

CoPro project, No 723575 (H2020)

miriamr@iim.csic.es @Miriam_R_Garcia
Design of Carvacrol-Based Active Packaging for Extending Fresh Fish Shelf-life

Carlos Vilas1, Miguel Mauricio-Iglesias2, Míriam R. García1

1 Engineering Group, Institute of Marine Research, Spanish Council Research (CSIC)
2 Chemical Engineering, Universidade de Santiago de Compostela, Spain