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In this paper, we construct a simple model for the complex heavy quark potential which is defined
through the Fourier transform of the static gluon propagator. Besides the hard thermal loop resummed
contribution, the gluon propagator also includes a nonperturbative term induced by the dimension two
gluon condensate. Within the framework of thermal field theory, the real and imaginary parts of the
heavy quark potential are determined in a consistent way without resorting to any extra assumption as
long as the exact form of the retarded/advanced gluon propagator is specified. The resulting potential
model has the desired asymptotic behaviors and reproduces the data from lattice simulation reasonably
well. By presenting a direct comparison with other complex potential models on the market, we
find the one proposed in this work shows a significant improvement on the description of the lattice
results, especially for the imaginary part of the potential, in a temperature region relevant to
quarkonium studies.
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I. INTRODUCTION

The heavy-ion experiments at RHIC and the LHC
have shown very rich and interesting physics that cannot
be interpreted by simple extrapolation from proton-
proton collisions, which indicates the formation of a
new form of matter—the quark-gluon plasma (QGP)
during the ultrarelativistic heavy-ion collisions. Heavy
quarkonium dissociation has been proposed long time
ago as a very sensitive probe to study the hot and dense
medium [1]. Bound states of heavy quarks could survive
inside the plasma where the temperature T is higher than
the deconfining temperature. However, color screening
produced by the light quarks and gluons weakens the
interaction between the quark-antiquark pair and leads to
the dissociation of quarkonia. Since excited states are
more weakly bound than the lower ones, the successive
dissociations can possibly serve as a thermometer of
QGP [2].
The studies on quarkonia can be carried out in the

nonrelativistic limit due to their large masses, where a
quantum mechanical description becomes available.

As the basic input in the Schrödinger equation, the
heavy-quark (HQ) potential turns to be very crucial to
understand the physical properties of the bound states.
At zero temperature, the well-known Cornell potential
successfully describes the experimentally observed quar-
konium spectroscopy and agrees with the lattice simu-
lations very well. Within the framework of effective field
theory (EFT) of QCD, i.e., potential nonrelativistic QCD
(pNRQCD), substantial development has been achieved
in the heavy quarkonium physics [3,4]. The EFTwas also
generalized to finite temperature QCD which justified the
description of heavy quarkonia in terms of an in-medium
potential. However, the EFTat finite temperature involves
much more complications due to the appearance of some
extra T-dependent scales [5]. As a result, constructing
phenomenological potential models has been widely
considered over the past decades which provides an
alternative way to analyze the in-medium behaviors of
the bound states.
In previous studies, the color singlet free energy or

internal energy of a static quark pair obtained from lattice
simulations was identified with the HQ potential. In
addition, based on these lattice results, various proposals
for the potential models have also been extensively dis-
cussed, see Refs. [6–9] for examples. However, the real-
valued potential models cannot really represent the HQ
potential in the hot medium because it must include an
imaginary part induced by the color singlet-octet transition
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as well as the Landau damping of the low-frequency gauge
fields [10]. A first step toward a QCD derivation of the
HQ potential at finite temperature was carried out in
Ref. [11]. In hard thermal loop (HTL) resummed pertur-
bation theory, the static Wilson loops were computed in the
imaginary-time formalism. After analytical continuation to
Minkowski space, it was found that besides a Debye
screened potential as its real part, the potential also contains
an imaginary part which determines the decay width of a
quarkonium state. Such a perturbative calculation in the
weak-coupling limit, however, is only valid when the
distance r between the quark and antiquark is small. In
the past long period of time, the large distance behavior of
the complex potential is not clear due to the lack of the
corresponding lattice data. Fortunately, progress has been
made in recent years [12–15]. Burnier et al. have measured
the complex-valued static potential by first principle
simulations in quenched QCD. In a latest publication
[16], the improved results with reduced finite volume
artifacts have been provided.
To sufficiently describe the interaction between the

quark pair at finite temperature, there have already been
some attempts to develop complex HQ potential models. In
Ref. [17], Thakur et al. defined the complex HQ potential
by Fourier transforming the product of the Cornell potential
in momentum space and the inverse dielectric function
ϵ−1ðpÞ. Therefore, medium effects are entirely encoded in
the complex dielectric function which has been calculated
in HTL perturbation theory. Solving the Schrödinger
equation with such a complex HQ potential, the binding
energies and decay widths of quarkonia have been
obtained. However, they did not make a comparison
between their potential model and the corresponding lattice
results. As we will show later, predictions from this model
cannot reproduce the data very well and some asymptotic
behaviors are also found to be unphysical. In Ref. [18],
Burnier et al. constructed a complex potential model based
on the generalized Gauss law [19,20] and similarly as
Ref. [17], medium effects are incorporated by using the
same dielectric function. The predicted imaginary part of
the potential based on the model is only satisfactory when T
is large and r is small. Therefore, for better understanding
the in-medium properties of quarkonia, a more accurate HQ
potential model is required which is expected to be in
agreement with the lattice data at a quantitative level.
For the above mentioned purpose, the current paper

aims to construct a complex HQ potential model which
can be used for other phenomenological studies on the
heavy quarkonia. The rest of the paper is organized as
follows. In Sec. II, we briefly review the calculation of the
complex potential in perturbation theory which provides
the Coulombic contribution in our potential model. In
Sec. III, we adopt a phenomenological gluon propagator
whose nonperturbative term is induced by the dimension
two gluon condensate. Performing Fourier transform of

such a gluon propagator in Keldysh representation, the
obtained HQ potential has a real part which is identical to
the Karsch–Mehr–Satz (KMS) potential model. On the
other hand, the imaginary part presents some unexpected
features and does not agree with the lattice simulation.
Improvements are discussed in Sec. IV where, by inspect-
ing the asymptotic behaviors of the model proposed in
Sec. III, an additional string contribution is introduced in
the gluon propagator. The resulting HQ potential model has
been compared to other available models in Refs. [17,18] as
well as the lattice results in Ref. [16]. In a temperature
region relevant to quarkonium physics, a significant
improvement on the imaginary part of the HQ potential
is observed. Finally, we give a short summary in Sec. V.

II. PERTURBATIVE HEAVY QUARK POTENTIAL
AT FINITE TEMPERATURE

At zero temperature, the interaction between a static
quark pair can be successfully described by the Cornell
potential. It takes a form of a Coulomb plus a linear part,

VCornell ¼ −
αs
r
þ σr; ð1Þ

where αs ¼ g2CF=ð4πÞ is the strong coupling constant, σ is
the so-called string tension which has the dimension of
energy square. At finite temperature, the potential at
short distances can be computed in thermal field theory
with perturbation expansion. In the real time formalism,
the propagator is given by a 2 × 2 matrix. It is more
convenient to use the Keldysh representation where we
have three independent components named retarded (DR),
advanced (DA) and symmetrical (DF) propagators. Their
relation to the physical “11” component is given by
D11 ¼ ðDR þDA þDFÞ=2. Within hard-thermal-loop
approximation, one can compute the self-energy contribu-
tions which are used to determine the resummed gluon
propagators through the Dyson-Schwinger equation. The
perturbative HQ potential Vp can be obtained from the
following Fourier transform1

Vpðr̂Þ ¼ −g2CF

Z
d3p
ð2πÞ3 ðe

ip·r − 1ÞDp
11ðp0 ¼ 0;pÞ; ð2Þ

where Dp
11 refers to the physical component of the

resummed gluon propagator and r̂ ¼ rmD with the

Debye mass given by m2
D ¼ ðNf þ 2NcÞ g

2T2

6
. At leading

order, the static gluon propagator in the above Fourier
transform reads

1From here on, D only denotes the temporal component of the
gluon propagator which is relevant to the HQ potential. We
introduce a supper script “p” to indicate perturbative quantities,
accordingly a supper script “np” stands for the nonperturbative
quantities.
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ReDp
11ðp0 ¼ 0;pÞ ¼ Dp

Rðp0 ¼ 0;pÞ
¼ Dp

Aðp0 ¼ 0;pÞ

¼ 1

p2 þm2
D
; ð3Þ

ImDp
11ðp0 ¼ 0;pÞ ¼ 1

2
Dp

Fðp0 ¼ 0;pÞ ¼ −πTm2
D

pðp2 þm2
DÞ2

:

ð4Þ

The real part of the potential is obtained by the Fourier
transform of the retarded/advanced propagator while the
imaginary part comes from the symmetric propagator in
Keldysh representation. Explicitly, we have [11,21]

ReVpðr̂Þ ¼ −g2CF

Z
d3p
ð2πÞ3 ðe

ip·r − 1Þ 1

p2 þm2
D

¼ −αs
�
mD þ e−r̂

r

�
; ð5Þ

ImVpðr̂Þ ¼ −g2CF

Z
d3p
ð2πÞ3 ðe

ip·r − 1Þ −πTm2
D

pðp2 þm2
DÞ2

¼ −αsTϕ2ðr̂Þ; ð6Þ

where

ϕnðr̂Þ ¼ 2

Z
∞

0

dz
z

ðz2 þ 1Þn
�
1 −

sinðzr̂Þ
zr̂

�
: ð7Þ

Notice that for the real part, the r-independent term is
divergent and we have subtracted a vacuum contribution
1=p2 in the integrand to get a finite result. As compared to
the vacuum case, the Coulombic behavior at small dis-
tances gets screened and a nonzero imaginary contribution
appears. However, the above perturbation theory is not
capable of dealing with the medium corrections to the
string contribution in the Cornell potential which will be
considered by constructing phenomenological models and
discussed in the next section.

III. AN EXTENDED KARSCH-MEHR-SATZ
HEAVY-QUARK POTENTIAL MODEL

To study the in-medium properties of the heavy bound
states, such as charmonia and bottomonia, in the non-
relativistic limit, a proper potential that needs to be
specified in the Schrödinger equation contains nonpertur-
bative physics due to the typical size of the charm and
bottom quark bound states. Therefore, we cannot directly
use the above perturbative potential to describe the inter-
actions. In Ref. [22], a new phenomenological term has
been added to the perturbative (retarded) gluon propagator
Dp

R in order to account for the effects coming from the low
frequency modes incorporated in the dimension two gluon

condensates. As a result, the full retarded propagator DR at
static limit takes the following form

DRðp0 ¼ 0;pÞ≡Dp
Rðp0 ¼ 0;pÞ þDnp

R ðp0 ¼ 0;pÞ

¼ 1

p2 þm2
D
þ m2

G

ðp2 þm2
DÞ2

: ð8Þ

The above equation can be considered as an analogy to
the condensates at zero temperature [23] which implies
a term m2

G=p
4 to be added to the vacuum perturbative

gluon propagator 1=p2. Here,m2
G is a dimensional constant.

Several applications based on the propagator given in
Eq. (8) have been carried out, see Refs. [22,24,25] for
examples. Here, we are interested in the Fourier transform
of Dnp

R at static limit which leads to the following non-
perturbative string contribution to the real part of the
potential,

ReVnp
I ðr̂Þ ¼ αsm2

G

2mD
½1 − exp ð−r̂Þ�: ð9Þ

We use VI ¼ Vp þ Vnp
I to denote the complex HQ potential

model discussed in this section. Improvements on Vnp
I will

be discussed in Sec. IV and the resulting potential model is
then denoted as VII ¼ Vp þ Vnp

II . The real part of VI is the
sum of Eqs. (5) and (9). By matching it onto the Cornell
potential at small distances, we find the dimension two
constant m2

G can be related to the string tension through
σ ¼ αsm2

G=2. Therefore, ReVI is actually identical to the
famous KMS potential model [26] in which the large
distance interaction is described as a QCD string screened
at the same scale as the perturbative contribution.
Explicitly, we have

ReVIðr̂Þ ¼ −αs
�
mD þ e−r̂

r

�
þ σ

mD
½1 − exp ð−r̂Þ�: ð10Þ

Inspired by the above analysis on the real part of the
potential, we will also consider adding a string contribu-
tion, which describes the large distance behavior of ImV, to
the perturbative symmetric propagator Dp

F. In equilibrium,
the symmetric propagator can be related to the retarded and
advanced ones through the following identity

DFðPÞ ¼ ð1þ 2nBðp0ÞÞsgnðp0Þ½DRðPÞ −DAðPÞ�; ð11Þ

which is valid for full propagators as a consequence of the
KMS condition [27]. In the above equation, nB is the Bose-
Einstein distribution function and the four-momentum
P≡ ðp0;pÞ. Although only the static forms of the propa-
gators are required in the Fourier transform, one still need
to know the p0-dependent propagators DRðPÞ and DAðPÞ
in order to compute DFðp0 ¼ 0;pÞ through Eq. (11).
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To make it more clear, we consider the distribution function
nB of on-shell thermal gluons in small p0 limit

ð1þ 2nBðp0ÞÞsgnðp0Þ ¼
2T
p0

þOðp0
0Þ; ð12Þ

which indicates that the leading contribution from
DRðPÞ −DAðPÞ should be linear in p0 in order to have
a nonzero and finite symmetric propagator at static limit.
In fact, for the perturbative terms, we have [21]

Dp
R=AðPÞ ¼ ðp2 − ΠR=AðPÞÞ−1

¼
�
p2 −m2

D

�
p0

2p
ln
p0 þ p� iϵ
p0 − p� iϵ

− 1

��
−1
;

ð13Þ

where ΠR=AðPÞ is (the temporal component of) the
retarded/advanced gluon self-energy at leading order.
Performing a Taylor expansion assuming p0 → 0, it is
straightforward to show

Dp
RðPÞ −Dp

AðPÞ ¼
m2

D

2p
−2πi

ðp2 þm2
DÞ2

p0 þOðp2
0Þ: ð14Þ

Together with Eqs. (11) and (12), one can get the symmetric
propagator Dp

Fðp0 ¼ 0;pÞ whose Fourier transform deter-
mines ImVp as already calculated in Eq. (6).
However, the p0-dependence of the nonperturbative

propagators Dnp
R=AðPÞ is not known. As a “minimal”

extension of the corresponding perturbative result, it is
also introduced in a similar way by replacing m2

D with
−ΠR=AðPÞ and we assume

Dnp
R=AðPÞ ¼ m2

Gðp2 − ΠR=AðPÞÞ−2

¼ m2
G

�
p2 −m2

D

�
p0

2p
ln
p0 þ p� iϵ
p0 − p� iϵ

− 1

��
−2
;

ð15Þ

which has the desired static limit and leads to the following
result

Dnp
R ðPÞ −Dnp

A ðPÞ ¼ m2
Gm

2
D

p
−2πi

ðp2 þm2
DÞ3

p0 þOðp2
0Þ:

ð16Þ

Accordingly, we can obtain the nonperturbative symmetric
propagator through Eq. (11) as

Dnp
F ðp0 ¼ 0;pÞ ¼ m2

Gm
2
D

p
−4πTi

ðp2 þm2
DÞ3

: ð17Þ

After Fourier transforming Eq. (17), the string contribution
to the imaginary part of the HQ potential is found to be

ImVnp
I ðr̂Þ ¼ −g2CF

Z
d3p
ð2πÞ3 ðe

ip·r − 1Þ −2πTm
2
Gm

2
D

pðp2 þm2
DÞ3

¼ −
4σT
m2

D
ϕ3ðr̂Þ: ð18Þ

Summing up Eqs. (6) and (18), the full imaginary part in the
potential model VI reads

ImVIðr̂Þ ¼ −αsTϕ2ðr̂Þ −
4σT
m2

D
ϕ3ðr̂Þ: ð19Þ

As an extension of the real-valued KMS model, the
complex version VI ¼ ReVI þ iImVI is also called the
extended KMS potential model.
It is interesting to see if the above simple model could

reproduce the lattice data. To do so, we use the lattice
data in quenched QCD from Ref. [16]. The two para-
meters αs and σ were assumed to be unchanged in a hot
medium, once determined at zero temperature. Due to the
absence of a T ¼ 0 lattice measurement, αs ¼ 0.272 and
σ ¼ 0.215 GeV2 are determined by using the data at
113 MeV [16]. Applying these values of αs and σ to the
relation σ ¼ αsm2

G=2 leads to a dimension two condensate
which coincides with the corresponding lattice simulations
[28–30]. Notice that at short distances, the running of αs is
controlled by the scale 1=r. Given the shortest quark-pair
separation available in the data from Ref. [16], which is
about 0.1 fm, it turns out that ReV at short distances can be
well described by a naive Cornell potential with fixed
coupling constant. On the other hand, with the upcoming
high resolution lattice simulations at shorter resolved
distances, it is certainly important to take into account the
running of αsðrÞ. Furthermore, although the model study on
the Polyakov loop in Ref. [22] suggests that the non-
perturbative finite temperature condensate is consistent with
that at zero temperature, a possible medium dependence
of the string tension σ cannot be ruled out in principle.
However, the exact T-dependent form of such a nonpertur-
bative quantity has not been fully clear yet. In this work, we
will employ a constant σ for simplicity and assume all the
medium effects on the HQ potential are encoded in the only
free parameter mD in the model. It is worthwhile to mention
that such an assumption can effectively avoid any double
counting of the medium effects.
Since the extraction of the imaginary part from lattice

simulations gets much more challenging than the real part,
the lattice data of ReV is used to determine the Debye mass.
In addition, we only consider the lattice data of ReV up to
1 fm in our fit because in this region of the quark pair
separations, the lattice reconstruction is most reliable and
the error bars are actually very small. As a crosscheck, the
values ofmD from the fit to ReV will be adopted to evaluate
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the imaginary part of the potential. The optimized values
we obtain for mD at different temperatures are given in
Table I.
A critical behavior is found by inspection of the data

and the deconfining temperature Tc is around 290 MeV.
This is actually consistent with the T-dependence of mD
as given in the above table. For temperatures below Tc,
the values of mD from the fit turn to be extremely small
which are at the order of 10−6 or even smaller. On the
other hand, once the temperature exceeds Tc, mD gets a
nonzero value which increases with temperature T as
expected. Since we are more interested in the behavior of
the HQ potential in the deconfined phase, when T < Tc,
the values ofmD are simply taken to be zero in Table I. As
a result, r̂ vanishes for finite quark pair separation and
ReVI is exactly identical to the vacuum Cornell potential
in the confined phase.
As we can see from Table I, mD does not have a simple

linear dependence on T which clearly indicates the non-
perturbative effects in the temperature region relevant to
the quarkonium studies. Interestingly, we find that the
extracted Debye mass can be simply parametrized as
mDðTÞ ¼ aT þ b=T. Besides the usual leading order
result, a new term inversely proportional to T has been
included which accounts for the nonperturbative contribu-
tions and becomes important when the temperature is
decreasing to Tc. As shown in Fig. 1, in the deconfined
phase, the values of mD can be well reproduced when
taking the parameters as a ¼ 1.719 and b ¼ −0.123 GeV2.
Notice that this simple parametrization of mD does not
apply in the asymptotically high temperature limit because
the parameter a is considered as a constant. Furthermore,
the negative value of b indicates that the ratio mD=T
decreases as T approaches to Tc from above. The same has
also been observed in a massive quasiparticle model when
fitting to the equation of state [31]. In addition, lattice
measurements of the gauge invariant correlation function
between Polyakov loops shows that the associated screen-
ing mass behaves similarly as that presented in Fig. 1
[32,33]. However, based on the two point function of
gluons computed on lattice, a contradictory conclusion was
obtained where the corresponding gauge dependent mass
increases as T approaches to Tc [34,35]. Such an upward
trend of the ratio mD=T actually coincides with the result
from perturbation calculation [36,37]. Therefore, as dis-
cussed in Ref. [38], it would be important to reanalyze the
lattice data by using a Higgsed propagator where different
modes with both increasing and decreasing masses are
combined.

The comparisons between the extended KMS model and
the lattice data are given in Fig. 2 for ReV and in Fig. 32 for
ImV. We also plot the pure perturbative results Vp which
clearly indicate the necessity to include string contributions
even for relatively small distances. As shown in Fig. 2,
ReVI has a good agreement with the lattice data. At very
small distances, the Coulombic interaction is dominated
while at large distances, it exhibits a screened behavior
as suggested by the data. In addition, the lattice data at
T ¼ 271 MeV is nicely reproduced by the vacuum Cornell
potential, therefore, our assumption of vanishing Debye
mass in the confined phase is justified. On the other hand,
ImVI gets a rapid increase with the quark pair separation
which obviously overshoots the lattice data as shown in
Fig. 3. Besides the quantitative deviations in the deconfined
phase, a qualitative difference appears when T < Tc.
Neglecting the cold nuclear effects, in the confined phase,
one would expect ImV is approximately zero which is
actually supported by lattice data despite the huge
uncertainties. Unfortunately, the model prediction at
T ¼ 271 MeV is apparently contradictory to the lattice
results. The lack of success of Eq. (19) requires improve-
ments on the current potential model, especially for the
imaginary part.
Given the model above, it is also important to discuss its

asymptotic behaviors which hints at some possible mod-
ifications on the extended KMS potential model. In the
small distance limit where r̂ ≪ 1, the real part of the
potential ReVI reduces to the vacuum Cornell potential
and the Coulombic interaction dominates over the string
contribution. We can define a distance scale rsðTÞ where
the nonperturbative effects start to matter. It is determined
by requiring jReVpðrsÞj ¼ jReVnpðrsÞj and we find that
rsðTÞ ¼

ffiffiffiffiffiffiffiffiffiffi
αs=σ

p
. This result is actually T-independent

because medium effect appears as higher order correction
to the Cornell potential when we expand ReVI with respect

FIG. 1. Comparison between the parametrization of Debye
mass (red solid curve) and its values extracted from the lattice
data (blue dots) in Ref. [16].

TABLE I. Debye mass extracted from the extended KMS
model VI fit to the lattice result for ReV in Ref. [16].

T [MeV] 406 369 338 312 290 271 254 226 113
VI: mD [MeV] 423 258 231 134 87.8 0 0 0 0

2Notice that for the imaginary part of the potential, we actually
plot its absolute values in all the figures.
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to r̂. Since this perturbative expansion is valid for r̂ ≪ 1,
the above result is applicable when mD ≪

ffiffiffiffiffiffiffiffiffiffi
σ=αs

p
which

can be satisfied for not very high temperatures. To study the
asymptotic behavior of ImVI in small r̂ limit, we need to
expand the following functions,3

ϕ2ðr̂Þ ≈ −
1

9
r̂2ð3 ln r̂ − 4þ 3γEÞ; ð20Þ

ϕ3ðr̂Þ ≈
1

12
r̂2 þ 1

900
r̂4ð15 ln r̂ − 23þ 15γEÞ; ð21Þ

ϕ4ðr̂Þ ≈
1

36
r̂2 −

1

360
r̂4; ð22Þ

FIG. 2. Comparison of ReV between the lattice data in quenched QCD (blue dots) from Ref. [16] and the extended KMS potential
model VI as discussed in Sec. III. The red solid curve denotes the model prediction based on ReVI while the black dashed curve denotes
the results from pure perturbative contribution ReVp. The critical temperature Tc ¼ 290 MeV.

FIG. 3. Comparison of ImV between the lattice data in quenched QCD (blue dots) from Ref. [16] and the extended KMS potential
model VI as discussed in Sec. III. The red solid curve denotes the model prediction based on ImVI while the black dashed curve denotes
the results from pure perturbative contribution ImVp. The critical temperature Tc ¼ 290 MeV.

3The expansion of ϕ4ðr̂Þ will be used later.
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where γE is the Euler-Gamma constant. The imaginary part
of the potential develops a nonzero value at finite temper-
ature and quark pair separation. In general, one can expect
that the imaginary part of the potential behaves similarly
as the real part, namely, ImVp is dominant at very short
distances, when starting to separate the quark pair, the
contribution from ImVnp gets increased and eventually
becomes comparable to ImVp at the same distance scale
rsðTÞ ∼

ffiffiffiffiffiffiffiffiffiffi
αs=σ

p
. However, this desired feature does not

show up in the analysis based on the above potential model
ImVI. In fact, the distance scale rsðTÞ determined through
jImVpðrsÞj ¼ jImVnpðrsÞj is found to be

rsðTÞ ≈
1

mD
e
− σ
αsm2

D; ð23Þ

which is exponentially suppressed when mD ≪
ffiffiffiffiffiffiffiffiffiffi
σ=αs

p
.

Therefore, for the imaginary part of the potential, the
string contribution becomes important at much smaller
distances as compared to the real part. For example, taking
αs ¼ 0.272 and σ ¼ 0.215 GeV2, we find that rsðTÞ ≈
0.2 fm for ReVI which differs the distance scale for ImVI
by orders of magnitude. For some typical value of the
Debye mass,mD ∼ 0.3 GeV, rsðTÞ is about 10−4 fm for the
imaginary part.
As already mentioned before, ImVI has finite values

in the confined phase which increase quickly with the
distance r. The origin of such an incorrect behavior actually
comes from ImVnp

I in the small r̂ limit. One can easily
check that for vanishing Debye mass, jImVIj reduces to
σTr2=3 which perfectly reproduces the solid curve in the
last plot of Fig. 3. On the other hand, the above discussed
problems can be solved if the leading order contribution in
ImVnp is proportional to r̂4 ln r̂ instead of r̂2. As a result, the
same distance scale rsðTÞ ∼

ffiffiffiffiffiffiffiffiffiffi
αs=σ

p
is found for both real

and imaginary part of the HQ potential and in the confined
phase, ImV also vanishes if mD is assumed to be zero.
When r̂ → ∞, the asymptotic value of ReVI equals

σ=mD − αsmD. In general, the Debye screening mass
increases with T, therefore, ReVIðr̂ → ∞Þ decreases as
T is getting larger. This is qualitatively in agreement with
that suggested by lattice data. In addition, for the imaginary
part, we have

ImVIðr̂ → ∞Þ ¼ −αsT −
2σT
m2

D
: ð24Þ

According to this equation, the asymptotic value of ImVI
could have a nontrivial dependence on the temperature T.
Only at very high temperatures where the Debye mass
mD ∼ T, we can expect jImVIðr̂ → ∞Þj increase with
increasing T provided mD >

ffiffiffiffiffiffiffiffiffiffiffiffi
2σ=αs

p
. However, the cur-

rent lattice simulations on the complex HQ potential cannot
provide us sufficient information about the asymptotic
values of ImV at large r̂.

IV. AN IMPROVED KARSCH-MEHR-SATZ
HEAVY-QUARK POTENTIAL MODEL

For the purpose of quantitatively describing the lattice
data, in this section, we will discuss the improvements on
the extended KMS potential model VI as proposed in
Sec. III. In fact, the analysis on the asymptotic behavior of
ImVI suggests the leading order contribution from ImVnp

should behave like ∼r̂4 ln r̂ when r̂ → 0. Therefore, an
extra nonperturbative term could be introduced in the
symmetric propagator and the resulting contribution to
ImV is expected to cancel the ∼r̂2 term in ImVnp

I in the
small r̂ limit. This can be achieved in a consistent way
through Eq. (11) and the key point is to find a proper string
contribution which needs to be added to the retarded/
advanced propagator Dnp

R=A in Eq. (8).

At finite temperature, a nonperturbative term m2
G=ðp2 þ

m2
DÞ2 in the retarded propagator was introduced based on

the extension of the vacuum dimension two gluon con-
densates. From a phenomenological point of view, how-
ever, we cannot rule out some other possible forms, for
example, adding a term ∼m2

Gm
2
D=ðp2 þm2

DÞ3 in Eq. (8)
does not ruin the vacuum limit m2

G=p
4 since this term

vanishes as mD → 0. Furthermore, both terms produce the
same kind of condensate related tom2

G and in the Gaussian-
like approximation, lead to the same nonperturbative
contribution ∼1=T2 to the (logarithm of the) Polyakov
loop in deconfined phase[24]. Therefore, we formally write
the improved retarded propagator as D̃R ≡DR þ δDR
and (the static limit of) the newly added string contribution
δDR can be written as

δDRðp0 ¼ 0;pÞ≡ a
m2

Gm
2
D

ðp2 þm2
DÞ3

; ð25Þ

where a is a dimensionless constant. Fourier transforming
Eq. (25), an extra contribution to the real part of the
potential reads

ReδVðr̂Þ ¼ a
4

σ

mD
ð1 − e−r̂ − r̂e−r̂Þ: ð26Þ

Qualitatively, the asymptotic behavior of ReV is not
affected by the above contribution. Since Eq. (26) vanishes
when taking r̂ → 0, one still gets the Cornell potential in
this limit. On the other hand, the asymptotic value at
infinitely large r̂ is changed into ð1þ a=4Þσ=mD − αsmD.
In vacuum, the main contribution to ReV is dominated by

σr for large quark pair separation. For 0 < T < Tc, ReV is
very close to the Cornell potential as observed by the lattice
simulation. Therefore, the medium effects in the confined
phase, which strictly speaking are not exactly zero, can be
treated perturbatively by assuming r̂ ≪ 1. For large but finite
quark pair separation r, we can always assume r̂ ≪ 1 in the
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confined phase due to mD → 0. Since the potential ReV
at finite T cannot overshoot the vacuum potential, such
medium effects should set in as a negative correction
to σr. According to Eq. (9), the leading order correction
equals −σr̂2=ð2mDÞ which is negative as expected. After
including the extra contribution in Eq. (26), this correction
becomes −σr̂2=ð2mDÞ þ aσr̂2=ð8mDÞ. To keep it nonpos-
itive, we choose the maximum value of a, i.e., a ¼ 4 and
it is expected to give the “most confining” potential.
Accordingly, the leading order correction appears at higher
order in r̂ which is still negative and given by −σr̂3=ð6mDÞ.
In the above discussion, we ignore the medium correction
coming from the perturbative terms because it is small as
compared to the corresponding nonperturbative correction
when r is large. With the above choice of the constant a, the
asymptotic value ReVnpðr̂ → ∞Þ is changed from σ=mD
to 2σ=mD which is identical to other potential models
discussed in Refs. [17,39].
With the improved propagator D̃R=A, we will also study

the corresponding changes in the imaginary part of the
potential. To do so, the p0-dependence should be properly
introduced in δDR=A. Here, we adopt the following
assumption for the p0-dependent δDR=A

δDR=AðPÞ ¼ b
m2

Gm
2
D

ðp2 − ΠR=AðPÞÞ3

þ b0
m2

Gð−m2
D − ΠR=AðPÞÞ

ðp2 − ΠR=AðPÞÞ3
: ð27Þ

There is a subtlety in the above equation due to the fact
that the term with the dimensionless constant b0 vanishes in
the static limit. Therefore, the recovery to Eq. (25) when
p0 ¼ 0 which requires the dimensionless constant b to
be equal to a, however, does not impose any constraint
on the value of b0. In fact, Eq. (27) can be considered as a
generalized expression of δDR=AðPÞ as compared to its
simplest form one could imagine ∼m2

GΠR=AðPÞ=ðp2−
ΠR=AðPÞÞ3. The latter is obtained from Eq. (25) by
replacing mD with the gluon self-energy −ΠR=AðPÞ and
identical to our assumption Eq. (27) only when b ¼ b0. The
necessity of considering a more general form of δDR=A, as
wewill see later, is based on the fact that b0 has to take some
value different from b in order to meet the crucial require-
ment on ImVnp, namely, its leading order contribution
should be proportional to ∼r̂4 ln r̂ in small r̂ limit.
Using Eq. (11), we can calculate the extra contribution to

the symmetric propagator induced by Eq. (27),

δDFðp0 ¼ 0;pÞ ¼ −2πTi
m2

Gm
2
D

p

�
b

3m2
D

ðp2 þm2
DÞ4

− b0
1

ðp2 þm2
DÞ3

�
; ð28Þ

which after performing Fourier transform, gives rise to the
following correction to the imaginary part of the HQ
potential ImVnp

I ,

ImδVðr̂Þ ¼ −b
6σT
m2

D
ϕ4ðr̂Þ þ b0

2σT
m2

D
ϕ3ðr̂Þ;

≈ −b
σT
m2

D

�
r̂2

6
−
r̂4

60

�

þ b0
σT
m2

D

�
r̂2

6
−
23 − 15γE − 15 ln r̂

450
r̂4
�
;

for r̂ ≪ 1: ð29Þ

Here, the small r̂ expansion is obtained by using
Eqs. (21) and (22). As we can see the leading order
contribution from the ϕ3ðr̂Þ term is ∼r̂2 and the same
holds for the ϕ4ðr̂Þ term but with opposite sign. If the
values of b and b0 were chosen to be the same, the
leading order contribution from Eq. (29) would be
proportional to ∼r̂4 ln r̂ and there is no way to cancel
the ∼r̂2 term in ImVnp

I . On the other hand, the desired
result can be obtained when the relation between the two
dimensionless constants b0 − b ¼ 2 is satisfied. After
including the correction in Eq. (29), the nonperturbative
contribution to ImV now takes the form

ImVnp
II ðr̂Þ ¼ ImVnp

I ðr̂Þ þ ImδVðr̂Þ

¼ b
2σT
m2

D
½ϕ3ðr̂Þ − 3ϕ4ðr̂Þ�;

≈ b
σT
m2

D

30 ln r̂ − 31þ 30γE
900

r̂4; for r̂ ≪ 1:

ð30Þ

In the above equation, b0 has already been replaced by
bþ 2. Furthermore, in order to have the “most confining”
potential, the constant b is uniquely determined as
b ¼ a ¼ 4.
The above discussion clearly demonstrates the ration-

ality of using the more general assumption Eq. (27) for the
p0-dependence of δDR=AðPÞ. However, one may wonder
that what would happen if we added more than one possible
term like ∼m2

GðΠR=AÞn=ðp2 − ΠR=AÞnþ2 (with n ¼ 1; 2;…)
to Dnp

R=AðPÞ. By inspecting the asymptotic behavior of the
real part of the potential, no qualitative change was found
when two or more terms are added simultaneously.
However, in small r̂ limit, the correction to the imaginary
part induced by each individual term is subleading with
respect to the term ∼r̂2 in ImVI, as a result, no cancellation
could happen. Unavoidably, we need to use the same trick
as Eq. (27) to split at least one added term into two parts
with different coefficients. Therefore, adding more terms
turns to be not helpful which on the other hand, makes the
model complicated.
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Now, we are ready to write down the improved KMS
potential model VII which, as compared to the extended
KMS model VI in Sec. III, contains the corrections from
Eqs. (26) and (29). Explicitly, the results are listed below

ReVIIðr̂Þ ¼ −αs
�
mD þ e−r̂

r

�
þ 2σ

mD
½1 − exp ð−r̂Þ�

−
σ

mD
r̂ exp ð−r̂Þ;

ImVIIðr̂Þ ¼ −αsTϕ2ðr̂Þ þ
8σT
m2

D
ϕ3ðr̂Þ −

24σT
m2

D
ϕ4ðr̂Þ:

ð31Þ

The asymptotic values of the above potential model at
r̂ → 0 are found to be

ReVIIðr̂ → 0Þ ¼ −αs=rþ σr and

ImVIIðr̂ → 0Þ ¼ αsT
3

r̂2 ln r̂þ 2σT
15m2

D
r̂4 ln r̂: ð32Þ

Correspondingly, for r̂ → ∞ we have

ReVIIðr̂ → ∞Þ ¼ −αsmD þ 2σ

mD
and

ImVIIðr̂ → ∞Þ ¼ −αsT −
4σT
m2

D
: ð33Þ

According to Eq. (32), now the distance scale rsðTÞ is at the
order of ∼

ffiffiffiffiffiffiffiffiffiffi
αs=σ

p
for both real and imaginary part of the

HQ potential. Furthermore, at infinitely large r̂, the non-
perturbative contribution equals ð1þ a=4Þσ=mD for the
real part and −bσT=m2

D for the imaginary part. Therefore,
Vnp
II ðr̂ → ∞Þ is determined solely by the dimensionless

constant a (a ¼ b is required).
Before we show the comparison between the improved

KMS potential model VII ¼ ReVII þ iImVII and lattice
data, it is also worthwhile to mention other phenomeno-
logical models which have been studied in Refs. [17,18].
We refer to the one in Ref. [17] as Thakur–Kakade–Patra
(TKP) model. Accordingly, the model in Ref. [18] is
referred to as Burnier-Rothkopf (BR) model. Explicit forms
of these two potential models can be found in the above
mentioned references. Although the basic ideas of model
construction are very different from each other, the per-
turbative terms in these models are all expressed by the
leading order HTL result, i.e., Eqs. (5) and (6). On the
other hand, despite owning different nonperturbative forms,
their asymptotic behaviors of ReVnp are actually very
similar. Taking r̂ → 0, ReVnp reduces to the linear rising
Cornell potential. At infinitely large r, the asymptotic value
ReVnpðr̂ → ∞Þ obtained from TKP model coincides with
the improved KMS model. While for the BR model, the
corresponding value becomes ∼σ3=4= ffiffiffiffiffiffiffi

mD
p

which may

indicate a different T-dependence as compared to the other
two models.4

We would like to also mention that there exist some
differences among these potential models when we con-
sider the medium effect as a perturbation to the Cornell
potential. In the deconfined phase where mD is very small,
the potential can be expanded in term of r̂. As just
discussed before, in the improved KMSmodel, the medium
correction from ReVnp is −σr̂3=ð6mDÞ, comparing with
that from ReVp which is −αsmDr̂=2, we find a critical
distance ∼

ffiffiffiffiffiffiffiffiffiffi
αs=σ

p
above which the leading order medium

correction is from ReVnp, while in the region where r is
smaller than the critical distance, the correction from ReVp

is dominated. On the contrary, the nonperturbative correc-
tion due to medium effect is ∼r̂2 in TKP model and ∼ðrμÞ4
in BR model with μ ∼ ðm2

Dσ=αsÞ1=4. As a result, for
mD → 0, the leading order correction comes from the
nonperturbative terms even at very small distances.
Despite such a qualitative difference, all these medium
corrections have negative contributions and none of them
overshoots the vacuum potential.
As for the nonperturbative terms in ImV, the improved

KMS model and BR model share some common features,
namely, the Coulombic HTL part dominates at small
distances while at asymptotically large distances, the string
contribution saturates to some constant as required. As
pointed in Ref. [18], when r is small, the string term in the
BR model rises according to r3 which is subleading with
respect to the Coulombic contribution and the correspond-
ing distance scale rsðTÞ is comparable to that in ImVII. The
TKP model, on the other hand, shows some unexpected
differences. In small r̂ limit, the leading order contribution
from the nonperturbative term is proportional to r̂2, so the
string part would contribute equally as the Coulombic
term even at very small r. This is exactly the same as the
previous discussed potential model in Eq. (18). As a result,
ImV in this model gets an unwanted increase proportional
to r2 when the temperature is below Tc. Finally, we find that
ImVnpðr̂ → ∞Þ in TKP model does not converge to some
constant, instead a logarithmic divergence ∼ ln r̂ exists.
Similar as what we did in Sec. III, the strong coupling

constant αs and the string tension σ are assumed to be
T-independent and the lattice data of the real part of the
potential is used to extract the only free parametermD in the
above models. The corresponding results can be found in
Table II. We point out that the value of mD at a given
temperature varies according to the different forms of ReV
under consideration, however, the T-dependence of mD in
these models looks very similar and all of them can be well
described by using the previous parametrization aT þ b=T.
For the improved KMS model, the set of parameters are

4At relatively large distances (r̂ ≫ 1), the real parts of the
improved KMS model and the BR model decay exponentially,
however, the TKP model retains an ∼1=r behavior.
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found to be a ¼ 2.69, b ¼ −0.146 GeV2. We get a ¼ 2.32,
b ¼ −0.161 GeV2 and a ¼ 2.38, b ¼ −0.152 GeV2 for
the TKPmodel and BRmodel, respectively. In all the cases,
a negative value of b suggests the downward trend of the
ratio mD=T as T approaches to Tc should be a universal
behavior. Here, we will not show the comparisons between
the extracted values of mD and their parametrizations since
the outcomes are almost the same as Fig. 1.
In Fig. 4, we show the comparison between the model

predictions and the lattice data for ReV. Besides the
improved KMS model ReVII, the results obtained from
the TKPmodel and BRmodel are also plotted in this figure.
In fact, the prediction from ReVII is quantitatively the
same as compared to the TKP model up to the distances
around 1 fm. In the following, we only concentrate on the
comparison between ReVII and the BR model. Roughly
speaking, both models can well reproduce the data. In the
confined phase, since the Debye mass is approximately

zero, we actually have the Cornell potential and nothing
changes as compared to the extended KMS model as
discussed in Sec. III. Above the critical temperature, both
models behave qualitatively the same, namely, a Debye
screened contribution at small distances and a screened
string contribution at large distances. In addition, for
temperatures slightly above Tc, a better agreement can
be obtained by using the improved KMS model since it
exhibits an upward trend at large distances which is in
accordance with the data. On the other hand, at relatively
high temperatures, small deviations from data at inter-
mediate and large distances appear in ReVII while the BR
model turns to work very well.
We consider a temperature regime in the deconfined

phase from Tc ¼ 290 MeV to 1.4Tc ¼ 406 MeV. As we
can see from Fig. 4, the real part of the potential saturates
at r ≈ 1 fm when T ¼ 406 MeV which demonstrates the
screening behavior. On the other hand, for temperatures
slightly higher than Tc, the potential curve starts to flatten
at even larger distances. The distance where ReV saturates
strongly depends on the temperature. This qualitatively
agrees with the lattice simulations and can be verified by
Fig. 5 which clearly shows the desired screening behavior
of the improved KMS model at very large distances. For
example, when T ¼ 338 MeV, ReVII arrives at the asymp-
totic value at r ≈ 1.5 fm.
According to Fig. 4, the real part of the potential seems

not very sensitive to the exact forms we used in the fit
because all the potential models seem to work reasonably
well. On the other hand, the discrepancy of the Debye mass
among different models leads to very different asymptotic

FIG. 4. Comparison of ReV between the lattice data in quenched QCD (blue dots) from Ref. [16] and various complex potential
models. The results from the improved KMS potential model VII is denoted by the red solid curve and the blue dash-dotted curve
denotes the TKP model. The prediction from BR model is also shown in this figure which is denoted by the black dashed curve with the
colored error-bands from the uncertainty in the determination of mD. The critical temperature Tc ¼ 290 MeV.

TABLE II. Debye mass extracted from the potential models fit
to the lattice result for ReV in Ref. [16]. Besides the improved
KMS model VII, we also extract the Debye mass from TKP
model fit to the data. For completeness, the values of Debye mass
in BR model obtained in Ref. [16] are also listed in the table.

T [MeV] 406 369 338 312 290 271 254 226 113
VII: mD [MeV] 754 546 508 361 278 0 0 0 0
TKP Model:
mD [MeV]

576 365 329 196 129 0 0 0 0

BR Model:
mD [MeV]

603 430 367 273 150 14 0 0 0
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values ReVðr → ∞Þ as shown in Fig. 6. Therefore, the
binding energies of quarkonia evaluated based on these
potential models may differ dramatically. The elimination
of such an ambiguity on ReVðr → ∞Þ requires lattice
simulations at even larger distances.
The Debye masses at different temperatures as given in

Table II are used to evaluate the imaginary part of the HQ
potential. The comparisons among various potential mod-
els as well as the lattice results are given in Fig. 7. Below
the critical temperature, lattice simulations suggest very
small values for ImV which is in accordance with the
numerical evaluations based on the improved KMS model
and the BR model. As discussed in Sec. IV, due to the
elimination of the problematic term ∼r̂2, ImVII actually
vanishes at finite r because the Debye mass mD → 0. On
the other hand, the TKP model exhibits a rapid increase
according to r2 which is the same as the extended KMS
model ImVI and qualitatively differs from the lattice data.
In the deconfined phase, the predictions from the TKP
model overshoot the data in the entire temperature region.
Because of the logarithmic divergence at large r, the results
are even worse as compared to ImVI. On the contrary, the
BR model underestimates the lattice data at intermediate
and large distances and the agreement is only reached for
large T and small r [16]. On the other hand, for temper-
atures not far above Tc, the results obtained from ImVII
point to a significant improvement compared to other two
potential models and a quantitative description of the lattice
data is achieved. In addition, both the BR model and ImVII

FIG. 6. Comparison of the asymptotic values ReVðr → ∞Þ
from different potential models.

FIG. 7. Comparison of ImV between the lattice data in quenched QCD (blue dots) from Ref. [16] and various complex potential
models. The results from the improved KMS potential model VII is denoted by the red solid curve and the blue dash-dotted curve
denotes the TKP model. The prediction from BR model is also shown in this figure which is denoted by the black dashed curve with the
colored error bands from the uncertainty in the determination of mD. The critical temperature Tc ¼ 290 MeV.

FIG. 5. The real part of the potential predicted by the improved
KMS model ReVII at different temperatures in the deconfined
phase. The solid curve denotes to the vacuum Cornell potential.
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asymptotically approach to some constant, however, they
present a very different behavior at relatively large dis-
tances. The former turns to be saturated much more
quickly, while the latter gets a continuous increase even
at r ∼ 1 fm. In fact, such an increase seems to be consistent
with the lattice data although the error bars get large in this
distance region. Notice that the asymptotic value at
infinitely large r in the BR model turns to be much smaller
than that in ImVII, therefore, the large r behavior of ImV
needs to be further confirmed by the lattice.
As the temperature increases, a visible deviation from

the data starts to emerge in ImVII at intermediate distances.
We would like to mention that in order to have a “most
confining” potential, the parameter a introduced in Eq. (25)
is chosen to be 4 although in principle it can take some
other values smaller than 4. We have checked that if a
relatively smaller value is used, the result for ImV at T ¼
406 MeV can be further improved. This actually suggests
using a T-dependent parameter a which of course com-
plicates the proposed model and will not be discussed in
more details in the current work. On the other hand, the HQ
potential at temperatures close to Tc is most relevant for the
studies of quarkonia. Only very heavy bound states, such as
the ground state of bottomonium, can survive at very high
temperatures whose typical root-mean-square radii are
small. As a result, one can expect the improved KMS
model is sufficient to describe the interforce between the
quark and antiquark and can be put into the Schrödinger
equation to quantitatively study the properties of the
quarkonia.

V. SUMMARY

In this paper, we proposed a model for the complex HQ
potential which is defined as the Fourier transform of the
static gluon propagators in the Keldysh representation.
These propagators consist of two parts: the Coulombic term
comes from the resummed HTL perturbation theory at
leading order while the string contributions are induced
by the dimension two gluon condensate. For the retarded/
advanced propagator, the nonperturbative contributions
were assumed to be m2

G=ðp2 þm2
DÞ2 at static limit. The

corresponding symmetric propagator was determined
by using the relation given in Eq. (11) where the p0-
dependence of the retarded/advanced propagator needs to
be specified. The resulting potential model VI has a real
part which is identical to the well-known KMS potential
model while the imaginary part exhibits some unexpected
behaviors which were demonstrated by inspecting the
asymptotic limit when r̂ → 0.
Improvements on the extended KMS potential model VI

have been studied by adding an extra non-perturbative term
in the static gluon propagator DR=A. Based on the same
justification for the introduction ofDnp

R=A in Eq. (8), the new

added term δDR ∼m2
Gm

2
D=ðp2 þm2

DÞ3 also arises as the

consequence of the dimension two gluon condensate. A
specific p0-dependence in δDR is adopted for the purpose
of eliminating the unwanted ∼r̂2 term appearing in ImVnp

I
in the small r̂ limit. The improved KMS potential model VII
presents the correct asymptotic behaviors and also repro-
duces the results from the lattice simulations on the
complex HQ potential fairly well.
The comparisons among different potential models show

that a satisfactory prediction on the lattice data for ReV
seems not very sensitive to the exact forms used in these
models. Therefore, modeling ImV turns to be the most
challenge task. In the TKP model and BR model, employ-
ing a complex dielectric function naturally gives rise to an
imaginary part in the HQ potential. Such a dielectric
function computed within the HTL perturbation theory
at leading order may not capture the full nonperturbative
effects due to the low frequency modes. A more consistent
way to model the medium effects relies on a nonperturba-
tive evaluation on the dielectric function. On the other
hand, the imaginary part in the improved KMS potential
model comes from the Fourier transform of the symmetric
gluon propagator and the corresponding nonperturbative
contributions are determined through a phenomenological
gluon propagator which is induced by the dimensional two
gluon condensate and has been widely used in some other
studies before. We emphasize that in our approach, the p0-
dependence of the (nonperturbative) retarded/advanced
gluon propagator has to be specified which is crucial to
determine the symmetric propagator and then ImV. By
mimicking the p0-dependence of the perturbative propa-
gator which is known at the fundamental level, a similar
p0-dependence was introduced in the nonperturbative
counterpart where an extra constraint has also been taken
into account in Sec. IV in order to ensure a correct
asymptotic behavior.
Our complex HQ potential model as given by Eq. (31)

takes a relatively simple form. The real part reproduces the
Cornell potential in the confined phase where mD → 0,
while in the deconfined phase it gets screened for both
Coulombic and linear rising string contributions. The
imaginary part develops a nonvanishing contribution above
Tc which increases rapidly with the quark pair separation
for not very high temperatures. There are three parameters
appearing in the potential model where the strong coupling
αs and string tension σ are assumed to be T-independent
and can be determined from lattice simulations at zero-
temperature. Therefore, there is only one free parametermD
related to the hot medium effect. We further considered to
extract the Debye mass from the model fit to the in-medium
ReV from lattice. The obtained values of mD have been
used to evaluate the imaginary part. The outcome suggests
that in a T − r region relevant to quarkonium physics, the
improved KMS potential model VII proposed in this work
clearly shows an improved agreement on the lattice data for
ImV. Therefore, it can offer a quantitative description of the
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interquark forces which is important for other phenom-
enological studies on quarkonia.
Finally, we want to point out that the asymptotic

behaviors at very large r change dramatically among
different potential models which cannot be judged based
on the current data from lattice. Therefore, a more accurate
lattice reconstruction of the HQ potential, especially for the
imaginary part, is urgently needed which requires lattices
with finer spacing and larger volume. It is expected to
provide more information to constrain the model construc-
tion. The different behaviors predicted by different models
also need to be further checked when more data from lattice
becomes available. Furthermore, the extension of our
model to full QCD is also important where we can naively
expect that the medium effects including the thermal
activations of the light quarks are entirely encoded in
the Debye mass as the quenched case. The determination of
the QCD Debye mass is crucial for phenomenology
applications to heavy-ion collisions. All of these need to
be further investigated in the future work.
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Note added.—In a previous version (arXiv:1806.04376v1),
we constructed the complex HQ potential based on a
completely different idea where the long distance behavior
between the quark pair was considered as an effective one-
dimensional string interaction. Therefore, the nonperturba-
tive terms in the potential were determined through the
one-dimensional Fourier transform of the resummed gluon

propagator at static limit. Although formally the real part of
the potential obtained in this way is identical to ReVI, the
corresponding imaginary part asymptotically has a ∼r̂2
contribution similar as ImVI as well as a logarithmic
divergence just like the TKP model. The incorrect behavior
at small r̂ limit has been regulated after a nonperturbative
“entropy” contribution was introduced. However, the
logarithmic divergence is still there. When compared with
the lattice data, the results from this model are not as good
as the one proposed in the current paper. In fact, the idea of
an entropy contribution is based on the previous discus-
sions about the real-valued HQ potential. Following the
idea in Ref. [2], the real-valued potential is considered to
lie between the HQ free energy and internal energy,
therefore, the entropy contribution should be partially
subtracted from the free energy. Of course, this is somehow
a vague statement which is not timely anymore due to the
already mentioned groundbreaking works [5,11]. In addi-
tion, such a statement loses a clear physical meaning when
applied to the imaginary part of the HQ potential. The HQ
free energy was originally defined in Ref. [40] which is
given by the correlation of two Polyakov loops in the
imaginary time formalism. As computed in Ref. [41], the
singlet free energy at leading order coincides with the real
part of the perturbative potential as given in Eq. (5).
However, in general, its exact relation to the HQ potential
is not clear on the level of an EFT [42,43].
The complex HQ potential model in the current paper

was proposed without invoking the above statement about
the entropy contribution which puts our model construction
on a more solid theoretical footing. In the meantime, it is
worthwhile to point out that for our special choose a ¼ 4,
the extra contributions ReδV and ImδV as discussed in
Sec. IV are indeed identical to an “entropy” contribution
−T∂=∂T where the Debye mass mD is assumed to linearly
depend on T and the derivative acts on the nonperturbative
term ReVnp

I ðr̂Þ and ImVnp
I ðr̂Þ, respectively. According to

such an interesting finding, it is certainly a meaningful
work to explore the relation between the HQ free energy
and the potential in the future.
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