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In this Letter, we uncover a universal relaxation mechanism of pinned density waves, combining gauge-
gravity duality and effective field theory techniques. Upon breaking translations spontaneously, new
gapless collective modes emerge, the Nambu-Goldstone bosons of broken translations. When translations
are also weakly broken (e.g., by disorder or lattice effects), these phonons are pinned with a mass m and
damped at a rate Ω, which we explicitly compute. This contribution toΩ is distinct from that of topological
defects. We show that Ω ≃Gm2Ξ, where G is the shear modulus and Ξ is related to a diffusivity of the
purely spontaneous state. This result follows from the smallness of the bulk and shear moduli, as would be
the case in a phase with fluctuating translational order. At low temperatures, the collective modes relax
quickly into the heat current, so that late time transport is dominated by the thermal diffusivity. In this
regime, the resistivity in our model is linear in temperature and the ac conductivity displays a significant
rearranging of the degrees of freedom, as spectral weight is shifted from an off-axis, pinning peak to a
Drude-like peak. These results could shed light on transport properties in cuprate high Tc superconductors,
where quantum critical behavior and translational order occur over large parts of the phase diagram and
transport shows qualitatively similar features.
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The spontaneous formation of charge density waves and
other types of translational order in weakly coupled one-
dimensional metals is well understood: the Peierls insta-
bility opens a gap and a collective mode of electron-hole
pairs is formed [1]. After condensation, the spectrum of the
system contains a gapless mode (the phase of the con-
densate, ie the Goldstone boson generated by the sponta-
neous breaking of translations): physically, the density
wave can slide without energy cost. In the presence of weak
disorder or lattice effects, the Goldstone (or with a slight

abuse of terminology, phonon) is pinned. More formally,
weak explicit breaking of translations generates a small
phonon mass m.
Pinning has dramatic consequences on the linear fre-

quency-dependent response. Assuming a normal metallic
state with an ac conductivity characterized by a Drude-like
peak centered at zero frequency, the spatially modulated
state is characterized by a transfer of spectral weight to
finite frequencies: an off-axis peak is formed at the so-
called pinning frequency ωo ∼m. In classic treatments [1],
the Goldstone contribution vanishes at zero frequency and
the system is an electrical insulator.
The pinning peak is also characterized by its width,

which heuristically captures the typical lifetime of excita-
tions of the system. There are two well-known contribu-
tions to the peak width [1]. One comes from the rate Γ at
which the momentum of the system relaxes due to disorder
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or lattice effects. The other comes from the rate Ω at which
the Goldstone relaxes in the presence of mobile defects
[2]. In direct analogy to how vortices relax superfluid phase
gradients and eventually destroy superfluidity, dislocations
and disclinations also spoil phase coherence of the density
wave. The phonon contributes to the dc conductivity
σdc ≃ ω2

pΩ=ðΓΩþ ω2
oÞ where ωp is the plasma frequency

(the Drude weight), [3]. As temperature decreases, defects
freeze out, leading to vanishing phase relaxation and
insulating behavior.
Density waves play an important role in the phase

diagram of cuprate high Tc superconductors. These mate-
rials are doped Mott insulators [4], which tend to order
translationally upon doping [5–12]. In the strange metallic
phase, their resistivity scales linearly with temperature [13]
and violates the Mott-Ioffe-Regel limit [14]. This signals
the breakdown of the quasiparticle picture and is usually
interpreted as a sign of strongly coupled dynamics. This
behavior has been attributed to an underlying metallic
quantum critical point with maximal, Planckian dissipation
[15,16] characteristic of strongly coupled phases.
In the strange metallic phase, a shift of spectral weight is

often observed with sharp Drude peaks at low temperatures
moving off axis as temperature increases [17]. Quantum
melting of stripe order by proliferating defects has been
proposed as the origin of the strange metallic phase—see,
e.g., [7,18]—but microscopic descriptions of fluctuating
stripes in the vicinity of a quantum critical metallic phase
and their effects on the ac conductivity remain a challenge
[19–22]. Based on an effective field theory approach
(hydrodynamics), [23] argued that fluctuating translational
order could cause the shift in spectral weight mentioned
above. However the relaxation parameters Ω, Γ, and ωo
enter as an input in the hydrodynamic theory, and need
to be computed by a microscopic theory valid at strong
coupling.
In this Letter, we combine gauge-gravity duality with

hydrodynamics [3] to study the long distance transport
properties of strongly coupled, weakly pinned density
waves in the vicinity of a metallic quantum critical phase
with a T-linear resistivity. Gauge-gravity duality allows
us to address the strongly coupled dynamics of certain
quantum field theories by mapping them to a weakly
coupled theory of gravity [24–27].
We identify unambiguously a new contribution to the

phase relaxation rate Ω due to weak explicit breaking of
translations, which drives the shift in spectral weight and
dominates the resistivity. While this type of damping is well
known from studies of the magnetic field-induced melting
of Wigner solids [28,29], and phonon damping by disorder
was studied very early on—see, e.g., [30,31]—it was
reported to affect the ac conductivity only through the
pinning frequency ωo and the momentum relaxation rate
Γ [1,3]. Our results should also shed light on previous
holographic studies of pinned density waves [32–38],

where this contribution was not explicitly identified. In
passing, we verify the validity of the hydrodynamic theory
of damped and pinned density waves written in [3].
Furthermore, we uncover a universal relation between

the phonon damping rate and its mass,

Ω ≃Gm2Ξ ¼ χππω
2
oΞ ⇒ ρdc ≡ σ−1dc ≃

1

ρ2Ξ
: ð1Þ

Ξ is a phonon diffusive transport coefficient, G the phonon
shear modulus, ρ the charge density, χππ the momentum
static susceptibility, and the pinning frequency is defined
from the phonon mass as ω2

o ≡Gm2=χππ. It is universal
since it determines microscopic parameters in terms of
universal thermodynamic and hydrodynamic data. The
expression for the resistivity is reminiscent of an
Einstein relation. We show that this relation is true in
the limit of small bulk and shear moduli. We expect it will
hold more generally in phases with fluctuating translational
order, or close to a phase transition towards a translationally
ordered phase, where these quantities are small.
Remarkably, at low temperatures, we observe that the

system saturates a bound ensuring the positivity of entropy
production. This is naturally explained by relaxation of
the phonons into the heat current. The resistivity is then
controlled by the thermal diffusivity DT ∼ 1=T. Our result
resonates with the idea that the thermalization time in
strange metals and other strongly coupled quantum phases
is bounded from below by the “Planckian” timescale
τP ∼ ℏ=ðkBTÞ [15,16] and that production of entropy is
minimal, e.g., through a lower bound on the shear
viscosity [39–41].
We now explain in more detail how we arrive at these

results, and close by commenting further on the relevance
of our results to strange metals.
Holographic model.—We consider the holographic

model [42] S ¼ R
d4x

ffiffiffiffiffiffi−gp
L

L ¼ R −
1

2
∂ϕ2 − VðϕÞ − 1

4
ZðϕÞF2 −

1

2

X2
I¼1

YðϕÞ∂ψ2
I ;

ð2Þ

with the scalar couplings behaving near the anti–de
Sitter (AdS) boundary as VuvðϕÞ ¼ −6 − ϕ2 þOðϕ3Þ,
ZuvðϕÞ ¼ 1þOðϕÞ, YuvðϕÞ ¼ ϕ2 þOðϕ3Þ. For concrete-
ness, in our numerical calculations we work with
VðϕÞ¼−6coshðϕ= ffiffiffi

3
p Þ, ZðϕÞ¼expð−ϕ= ffiffiffi

3
p Þ, and YðϕÞ ¼

ð1 − expϕÞ2.
The model (2) enjoys a global shift symmetry ψ I ↦

ψ I þ cI . Adopting the background ansatz ψ I ¼ kxI ,
xI ¼ fx; yg, the product of spacetime translations and
shifts is broken to a diagonal Uð1Þ. The ψ I then transform
nonlinearly under translations precisely as Goldstones of
broken translations are expected to. The other background
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fields can consistently be taken to depend solely on the
holographic radial coordinate, ds2¼−DðrÞdt2þBðrÞdr2þ
CðrÞðdx2þdy2Þ, ϕ ¼ ϕðrÞ, and A ¼ AðrÞdt. Near the AdS
boundary r → 0, ϕðrÞ ¼ λrþ ϕðvÞr2 þOðr3Þ, where λ is
the source and ϕðvÞ the vev of the operator dual to ϕ.
Moreover, the bulk scalar fields can be rewritten as
complex scalars ΦI ¼ ϕ expðiψ IÞ close to the boundary.
This shows that the breaking is spontaneous when λ ¼ 0
or explicit when λ ≠ 0 [43–45], which is the main focus of
this Letter.
This holographic model does not capture the phase

transition between the normal and the ordered phase.
Instead, it describes the low energy dynamics of the
(pseudo)phonons in the ordered phase, consistent with
the pattern of symmetry breaking in an isotropic, two-
dimensional Wigner crystal (WC) [46].
Finite temperature, finite density states are modeled by

charged black holes in the bulk, which implies the existence
of a regular Killing horizon at r ¼ rh. Hereafter, we use a
subscript h to denote quantities evaluated at r ¼ rh.
Unrelaxed WC hydrodynamics from holography.—

Aspects of unrelaxed WC hydrodynamics were studied
previously in [44,45], and are reviewed in the Supplemental
Material [50]. The hydrodynamic retarded Green’s func-
tions at zero wave vector for the electric current and the
phonons are [3,51]

GR
jj ¼

ρ2

χππ
− iωσo; GR

jφ ¼ −γ1 −
ρ

χππ

i
ω
;

GR
φφ ¼ 1

χππω
2
− Ξ

i
ω
: ð3Þ

σo, γ1, and Ξ are diffusive transport coefficients that
appear in the longitudinal sector of hydrodynamic con-
stitutive relations at first order in gradients [3,50].
χππ ¼ sT þ μρþ k2IY , with the entropy density s given
by the horizon area, ρ by the electric flux out of the horizon,
and the chemical potential μ ¼ Að0Þ. The bulk and shear
moduli are 2K ¼ G ¼ k2IY þOðk4Þ ¼ k2

R rh
0

ffiffiffiffiffiffiffi
BD

p
Y þ

Oðk4Þ [44,48]. σo has been computed in [44,45,64], and
the computation of γ1 and Ξ is presented in the Ref. [52]:

σo ¼
ðsT þ μρÞ2
ðχππÞ2

Zh þ
4πρ2k2ðIYÞ2
sYhðχππÞ2

;

γ1 ¼ −
4πIYρðsT þ μρÞ

sYhðχππÞ2
− μ

ðsT þ k2IYÞ
ðχππÞ2

Zh;

Ξ ¼ 4πðsT þ μρÞ2
k2sYhðχππÞ2

þ μ2Zh

ðχππÞ2
: ð4Þ

We have verified that these expressions match the corre-
lators computed numerically and that the phonons are dual
to the vevs of the bulk fields ψ I [52]. After turning on

relaxation, these coefficients only receive small OðλÞ
corrections, which can be safely neglected.
Relaxed WC hydrodynamics from holography.—To

describe weak explicit breaking of translations, we assume
λ=μ ≪ ϕðvÞ=μ2. We also take λ=μ ≪ k=μ ≪ 1. In our
numerics, we choose k=μ ¼ 0.1 and λ=μ ¼ −10−5. At zero
wave vector q, WC hydrodynamics predicts for the ac
conductivity [3,50]

σðωÞ ¼ σo þ
ω2
oγ1ð2ρ − iγ1χππωÞ − ρ2

χππ
ðΩ − iωÞ

ω2 − ω2
o þ iωΩ

: ð5Þ

We have set Γ ¼ 0, consistent with our numerics (see [50]).
There are two gapped poles, which capture the relaxation of
the phonons and of momentum:

ω� ¼ −
i
2
Ω� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

o −Ω2

q
: ð6Þ

In Fig. 1, we compute numerically the lightest pair of
quasinormal modes (QNMs) of the holographic system at
zero wave vector [50] and match their location to (6),
see Fig. 2.
We also find that Ω ∼ jλj, ωo ∼ jλj1=2k [50] and

G;K ∼ k2, so that m ∼ jλj1=2 [65]. This implies that both
Ω and m can be extracted in the limit k ¼ 0, i.e., small
bulk and shear modulus. In this limit, the hydrodynamic
correlator of the transverse phonon is

GR
φφðω; qÞ ¼

Ωþ q2GΞ
Gðq2 þm2Þðiω −Ω − q2GΞÞ : ð7Þ

Near the boundary, δψxðrÞ ¼ δψx;ð0Þ þ δψx;ð1ÞrþOðr2Þ,
where δψx;ð0Þ is the source and hOδψi ¼ λ2δψx;ð1Þ the vev.
In [50], we show that the phonon is Gm2φ ¼ khOδψi. The
pseudodiffusive pole at ω ≃ −iΩ − iGΞq2 is a consequence

FIG. 1. −Im½ω�� vs temperature. No visible difference between
the exact numerics (solid, blue) and the analytical approximation
using (6) and (8) (dashed red). Inset: real part.
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of the explicit breaking of the global shift symmetry when
λ ≠ 0. We also compute:

Ω ≃
IYm2

ChYh
≃

1R rh
0 drðChYh

ffiffiffi
B

p
CY

ffiffiffi
D

p − 1
4πT

1
rh−r

Þ
: ð8Þ

The match to the exact numerics is excellent, see Figs. 1
and 2.
At small k=μ, (4) becomes Ξ ≃ 1=ðk2ChYhÞ þOðk0Þ.

Putting this together with (8) leads to the relation (1) above.
This is one of our key results, and shows that the relaxation
of the phonon is entirely governed by a diffusivity of the
unrelaxed theory in the entire range of temperatures where
WC hydrodynamics applies.
Assuming λ ≠ 0, the holographic Ward identity gov-

erning momentum relaxation is ∂tπ
i ≡ _πi ¼ kδψ i;ð1Þ,

which shows that k controls the strength of momentum
relaxation. Recall that ω2

o ∼ k2 whileΩ ∼ k0. Restoring Γ in
the WC hydrodynamic expressions for the retarded Green’s
functions,

Γþ ω2
o

Ω
¼ 1

χππ
lim
ω→0

lim
k→0

1

ω
ImGR

_πx _πxðω; q ¼ 0Þ; ð9Þ

ω2
o

Ω2
¼ −

1

χππ
lim
ω→0

lim
k→0

ReGR
πxπxðω; q ¼ 0Þ: ð10Þ

The Ward identity relates both quantities on the left-hand
side to GR

ψxψx
evaluated at k ¼ 0 [50], leading to the same

expressions as in (8).
Charge transport at high temperature.—As in many

conventional systems where translations are broken spon-
taneously [1], our holographic system is an electrical
insulator (dρdc=dT < 0) at high T ≳ Tqc ≃ 5.10−2μ.
Its dc conductivity is σdc ¼ Zh þ ρ2=ðk2ChYhÞ, [53,67].

Our numerics reveal that the dc conductivity is dominated
by phase relaxation, σdc ≡ σð0Þ ≃ ρ2Ω=ðm2GÞ.

As T decreases, the ac conductivity (see Fig. 3) shows
a pinning peak moving away from zero frequency,
dωpeak=dT < 0. Correspondingly, the two polesω� collide,
acquire a real gap and move away from the imaginary axis
at low temperatures, see Fig. 1. The match between the
line shape of the ac conductivity and the hydrodynamic
prediction (5) is excellent. Ω and ωo are obtained from the
location of the QNMs. We emphasize that there is no
further fitting: σo and γ1 are computed using (4), ρ and χππ
directly from the λ ≠ 0 numerical background.
Charge transport at low temperatures.—For temper-

atures T ≲ Tqc ≃ 5.10−2μ, the bulk geometry undergoes a
qualitative change and becomes conformal to AdS2 × R2

near the horizon [44,45], with s ∼ T and metallic behavior
ρdc ∼ T—see, e.g., [40,50,54].
As the temperature is lowered, the two off-axis QNMs

turn around and move back towards the imaginary axis,
see Fig. 1.
Accordingly, the off-axis peak in ReσðωÞ reverses

direction, dωpeak=dT > 0, and moves back towards zero
frequency, see Fig. 3. In this region, small deviations
between the hydrodynamic formula (5) and the exact ac
conductivity computed numerically are observed, together
with a small mismatch between the dc values of at
most ∼1%. The first reason is that a third QNM is coming
closer. The second reason are small but finite departures
O½ω2

o=ðΩTÞ ∼ k2� from the hydrodynamic formula (5) at
low temperatures, similar to those reported in [68]. In
contrast, at high T these correctionsO½ω2

o=ðΩTÞ� decay like
a negative power of T, similar to [69].
Eventually, the two QNMs collide, and one of them

moves back up the imaginary axis, dominating the dynam-
ics at very low temperatures. The other QNM goes down
the imaginary axis and collides at Tcm ≃ 10−3μ with the
third QNMmentioned above, which signals the breakdown

FIG. 3. No visible difference between Re½σ� (normalized with
respect to its maximal value σpeak) computed numerically and
hydrodynamic predictions (5) and (11) (black dashed lines). The
ac conductivity above Tcm=μ ≃ 10−3 shows an off-axis peak,
which moves back on axis as T ≲ Tcm. Inset: temperature
dependence of the peak location.

FIG. 2. Ω=μ (blue) and ωo=μ (red) vs T=μ. No visible differ-
ence between the exact numerical result from the QNMs location
(solid line) and the analytical approximation (8) (dashed),
evaluated on the k ≠ 0, λ ≠ 0 numerical background.
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of WC hydrodynamics. Tcm is controlled by the magnitude
of the explicit breaking scale λ [50]. Below Tcm, the system
behaves like a fluid with slow momentum relaxation with a
Drude-like conductivity [27]

σðωÞ ≃ ρ2

χππ

1

Γ − iω
⇒ ρdc ≃

χππ
ρ2

Γ; ð11Þ

see Fig. 3. The longest-lived QNM captures slowly relaxing
momentum and controls the width of the Drude peak. Its
location is predicted to be ω ≃ −iΓ ¼ −ik2ChYh=χππ
[setting ωo ¼ 0 in the right hand side of (9) for purely
explicit breaking]. In this regime, the phonons have
decoupled from momentum: the two subdominant
QNMs are very well approximated by the two longest-
lived QNMs of the k ¼ 0 δψ correlator (the phonons), and
contribute negligibly to ReσðωÞ.
To summarize, we can distinguish between a high

temperature phase with a crossover from insulating to
metallic behavior as T ≲ Tqc, dominated by damped,
pinned phonons as predicted by WC hydrodynamics [3];
and a low temperature metallic phase at T ≲ Tcm, where the
charge dynamics of the system is simply governed by slow
momentum relaxation, and the phonons are decoupled.
Universal low temperature relaxation.—Another univer-

sal aspect of relaxation in our model stems from positivity
of entropy production in WC hydrodynamics, which places
a bound on transport coefficients [50]

γ21 ≤ min

�
σoΞ;

Ωσo
χππω

2
o

�
: ð12Þ

Due to (1), both terms on the right-hand side are equal. At
temperatures T ≲ Tqc marking the onset of the quantum
critical phase, we observe from (4) (neglecting eg sT terms
vs μρ or k2IY) and our numerics (see Fig. 4) that

γ1 ≃ −
μ

χπjq
σo; Ξ ≃

Ω
m2G

≃
�

μ

χπjq

�
2

σo; ð13Þ

where χπjq ¼ χππ − μρ since jq ¼ π − μj (from relativistic
symmetry) and χjπ ¼ ρ. The expressions (13) saturate the
bound (12).
These results can be explained by considering the

relaxation of the phonons into the heat current jq, which
is a universal mechanism in finite temperature systems.
In particular, as translations are explicitly broken in our
system, the only collective modes at the longest distances
are diffusion of charge and energy. From WC hydro-
dynamics [3],

Ξ ¼ lim
ω→0;q→0;λ→0

ImGR
_φ _φðω; qÞ
ω

; ð14Þ

Ω
ω2
o
¼ χππ lim

ω→0;λ→0

ImGR
_φ _φðω; q ¼ 0Þ

ω
: ð15Þ

The limits q→0 and zero relaxation λ → 0 do not com-
mute. The ω → 0 limit must be taken last. The universal
contribution to the Hamiltonian ΔHq ¼

R
d2xðπ · jqÞ=

ðχπjqÞ gives _φ ¼ i½ΔHq;φ� ¼ jq=χπjq . This leads to (13)
using (14) and (15): in this regime relaxation is controlled
by thermal, incoherent diffusion processes [70–72].
The small violation of the bound (12) as T → Tcm

signals the breakdown of WC hydrodynamics. As λ → 0,
Tcm → 0 as well, so that in the spontaneous limit WC
hydrodynamics applies to arbitrarily low temperatures and
the bound γ21 ≤ σoΞ saturates without violation [52]. In
[52], we also discuss how this depends on the scaling
properties of the IR critical phase.
Outlook.—Experimental data in bad metals suggest

ωpeak ∼ kBT=ℏ, [23] (see also [73,74] for more recent
experimental observations). In our holographic model,
while dωpeak=dT > 0, we do not observe ωpeak ∼ kBT=ℏ.
This is because in the region where dωpeak=dT > 0,
the phonon mass has a very weak dependence on temper-
ature, while Ω ∼ 1=T, consistent with the resistivity
ρdc ≃m2=Ω ∼ T.
A linear temperature dependence ωpeak ∼ T would obtain

if m ∼Ω ∼ T [23], as expected for quantum fluctuations
of an order parameter in the vicinity of a quantum
critical point [15], provided GΞ ∼ 1=T. For small bulk
and shear modulus, this is indeed the behavior predicted by
WC hydrodynamics in our system for the thermal diffu-
sivity, DT ≃ ρ2Ω=ðGm2Þ þOðG0; K0Þ ∼ 1=T. In strongly
coupled systems, diffusivities are expected to saturate a
lower bound GΞ≳ℏv2=kBT [75], where v is some char-
acteristic velocity. This is the behavior reported in recent
experiments on cuprates and cold atoms [76–78]. It would
be interesting to further investigate if holographic models
of pinned density waves can capture this behavior.

FIG. 4. The entropy bound of (un)relaxed WC hydrodynamics
saturates as T < Tqc. As T → Tcm, the bound of relaxed WC
hydrodynamics starts to be violated.
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Two distinct universal relaxation mechanisms are at
play in our model. First, the smallness of the shear and
bulk moduli implies Ω ≃ Gm2Ξ in the whole temperature
regime where WC hydrodynamics applies T ≳ Tcm.
Independently, at low temperatures T < Tqc, the phonons
relax into the heat current leading to (13) (see also [79]).
Universal relaxation by hydrodynamic operators was dis-
cussed previously in [40,80] (see also [41]). This motivates
a better characterization of the parameter space where these
relaxation mechanisms dominate, including in other holo-
graphic models of pinned translational order [34–38,81], in
order to consider further their applicability to real materials.
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Effective holographic theory of charge density waves, Phys.
Rev. D 97, 086017 (2018).

[45] A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, DC
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