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WIGNER CRYSTAL HYDRODYNAMICS

We briefly recap the main features of Wigner crystal hydrodynamics, in the presence of

weak explicit breaking of translations. More details can be found in [1, 2]. As translations are

broken spontaneously along both spatial directions, the usual conserved densities (energy,

charge, momentum) need to be coupled to two Goldstone modes, ϕi, i = x, y. The free

energy is supplemented by terms capturing the effect of the Goldstones:

f =
1

2
K|q · ϕ(q)|2 +

1

2
G
(
q2 +m2

)
|ϕ(q)|2 =

1

2
(K +G)

∣∣λ‖(q)∣∣2 +
G

2
|λ⊥(q)|2 . (1)

K and G are the bulk and shear moduli, and characterize the stiffness of phase fluctuations

around the ordered state. m is the Goldstone mass generated by the explicit breaking

of translations. It is convenient to parameterize the Goldstones by their longitudinal and

transverse contributions, λ‖ = ∇ · ϕ and λ⊥ = ∇ × ϕ. The corresponding sources s‖,⊥ are

defined by requiring that λ‖,⊥ = δf/δs‖,⊥.

To leading order in gradients and keeping only linear terms, the Goldstones obey the

following ‘Josephson’ relations

∂tλ‖ + Ω‖λ‖ =∇ · v + γ1∇2µ+ γ2∇2T +
ξ‖

K +G
∇2s‖ + . . . ,

∂tλ⊥ + Ω⊥λ⊥ =∇× v +
ξ⊥
G
∇2s⊥ + . . . ,

(2)

where v is the velocity, µ the chemical potential, and γ1,2 and ξ‖,⊥ are diffusive transport

coefficients. We have introduced two Goldstone damping rates Ω⊥ and Ω‖. They can in

principle be distinct. For instance, in the presence of dislocations, the climb motion of

dislocations, Ω‖, is suppressed [3].

These Josephson relations are supplemented by current, heat and momentum conserva-

tion equations (energy can be traded for entropy to linear order):

∂tρ+∇ · j = 0 , ∂ts+∇ · (jq/T ) = 0 , ∂tπ
i +∇jT

ji = −Γπi −Gm2φi , (3)

together with the constitutive relations

j =ρv − σo∇µ− αo∇T − γ1∇s‖ + . . . ,

jq/T =sv − αo∇µ− (κ̄o/T )∇T − γ2∇s‖ + . . . ,

T ij =δij (p+ (K +G)∇ · ϕ) + 2G
[
∇(iϕj) − δij∇ · ϕ

]
− η

(
2∇(ivj) − δij∇ · v

)
+ . . . .

(4)
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The underlying conformal symmetry of the holographic setup implies that the stress-energy

tensor is traceless, which sets the bulk viscosity to zero.

The hydrodynamic retarded Green’s functions at nonzero frequency and wavevector are

derived by following the Kadanoff-Martin procedure [4, 5]:

GR
AB(ω, q) = MAC

[
(iω −M)−1]

CD
χDB (5)

where the vevsA,B = (δρ, δs, π‖, λ‖, π⊥, λ⊥) and the corresponding sources are (δµ, δT, v‖, s‖, v⊥, s⊥).

M is the matrix

MAB =



σoq
2 αoq

2 iρq γ1q
2 0 0

αoq
2 κ̄o

T
q2 isq γ2q

2 0 0

iρq isq ηq2 + χππΓ iq 0 0

γ1q
2 γ2q

2 iq χλ‖λ‖
(
q2ξ‖ + Ω‖

)
0 0

0 0 0 0 ηq2 + χππΓ iq

0 0 0 0 iq χλ⊥λ⊥ (q2ξ⊥ + Ω⊥)


.

(6)

Relativistic symmetry of the holographic setup enforces that the momentum and energy

current densities must be equal π = je, which places constraints on the transport coefficients:

αo = −µ
T
σo , κ̄o =

µ2

T
σo , γ2 = −µ

T
γ1 . (7)

Observe that this also means that the heat current jq ≡ je − µj = π − µj. Finally, the

susceptibility matrix is1

χAB =



χρρ χρs 0 0 0 0

χρs χss 0 0 0 0

0 0 χππ 0 0 0

0 0 0 q2

Kq2+G(q2+m2)
0 0

0 0 0 0 χππ 0

0 0 0 0 0 q2

G(q2+m2)


. (8)

A nonzero Goldstone mass implies that the Goldstone static susceptibilities χϕiϕj are finite

in the limit q → 0 (rather than divergent like 1/q2 if m = 0): there is no long range

translational order in the system in the presence of explicit breaking.

1 In general, nonzero static susceptibilities χρλ‖ , χsλ‖ are also allowed. They play no role in our analysis,

so we have set them to zero.
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Positivity of entropy production can be ensured by requiring all the eigenvalues of the

matrix M to be positive [2]. This implies:

η ≥ 0, σo ≥ 0 , γ2
1 ≤ σo

ξ‖
K +G

. (9)

Using (5) and identities between the Green’s functions stemming from (3) gives the retarded

Green’s functions quoted in equation (3) of the main text (with relaxation parameters turned

off). We defined eg

GR
ϕiϕj

=
qiqj
q4

GR
λ‖λ‖

+

[
δij −

qiqj
q2

]
GR
λ⊥λ⊥

q2
. (10)

In this q = 0 limit, and in absence of relaxation, for an isotropic crystal, GR
λ‖λ‖

= GR
λ⊥λ⊥

,

since there should be no distinction between the longitudinal and transverse phonons. This

leads to the constraint
ξ‖

K +G
=
ξ⊥
G
≡ Ξ . (11)

Of direct interest to us is the presence in the longitudinal part of the spectrum of a diffusive

mode, which in the limit of small bulk and shear moduli takes the simple expression:

ω = −iξ‖q2 +O(K,G) +O(q4) . (12)

This diffusive mode can be thought of as encoding the dissipation of the longitudinal Gold-

stone mode at long distances.

When translations are broken explicitly but the breaking is weak, the two Goldstone

damping rates Ω‖, Ω⊥ become q-dependent (see [2]). In the long distance limit applicable

to conductivities, q � m, they are equal Ω‖ = Ω⊥ ≡ Ω. Although explicit translation

symmetry breaking was not considered as a microscopic origin for Ω in [2], the functional

form of the hydrodynamic equations and retarded Green’s functions is insensitive to the

microscopic origin of such terms. Phonon damping by disorder was studied very early on,

see eg [6, 7], but was reported to affect the ac conductivity only through a pinning mass m

and momentum relaxation rate Γ [8]. Here we show that it also leads to phase relaxation Ω

in the sense of [2, 9] and a nonzero dc conductivity. This is well-known from studies of the

magnetic field-induced melting of Wigner solids [10, 11]

The conductivity equation (5) quoted in the Main text is defined from the retarded

Green’s function of the current

σ(ω) ≡ i

ω
GR
jj(ω, q = 0) . (13)
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The poles in the denominator of this expression are given in equation (6) of the main text,

with the pinning frequency defined as ω2
o = Gm2/χππ and setting Γ = 0. For reference,

we quote here its full expression without neglecting terms proportional to the momentum

relaxation rate Γ:

σ(ω) = σo +

ρ2

χππ
(Ω− iω)− ω2

oγ1 [2ρ+ γ1χππ (Γ− iω)]

(Γ− iω)(Ω− iω) + ω2
o

. (14)

The Drude formula in equation (11) of the main text is recovered by setting the pinning

frequency to zero or equivalently sending Ω→ +∞.

NUMERICAL METHODS

We have computed numerically black hole solutions to the action

S =

∫
d4x
√
−g

[
R− 1

2
∂φ2 − V (φ)− 1

4
Z(φ)F 2 − 1

2

2∑
I=1

Y (φ)∂ψ2
I

]
. (15)

We adopt the following Ansatz for the metric and matter fields

ds2 =
1

r2

(
−u(r)dt2 +

1

u(r)
dr2 + c(r)(dx2 + dy2)

)
, (16)

A = At(r)dt , φ = φ(r) , ψI = kxI , xI = {x, y} , (17)

which allows for solutions that break translations pseudo-spontaneously. This follows from

the Ansatz for the scalars ψI and the asymptotic behavior of the scalar coupling Y (φ), as

explained in the Main text.

The resulting equations of motion can be reduced to a system of four ordinary differential

equations (three are second order and one is first order). The scalar couplings behave in the

UV as

Vuv(φ) = −6− φ2 +O(φ3), Zuv(φ) = 1 +O(φ), Yuv(φ) = φ2 +O(φ3) . (18)

The asymptotic behavior of the metric and matter fields is

φ(r) = λ r + v r2 +
1

36c2
0

[
−9c1 (c1 λ+ 4c0 v) + c0 λ (36k2 + 7c0 λ

2)
]
r3 +O(r4) , (19a)

At(r) = µ− ρ r +O(r2) , (19b)

u(r) = 1 +
c1

c0

r +
1

4

(
c2

1

c2
0

− λ2

)
r2 + u3 r

3 +O(r4) , (19c)

c(r) = c0 + c1 r +
1

4c0

(
c2

1 − c2
0 λ

2
)
r2 − λ

6
(c1 λ+ 2c0 v) r3 +O(r4) , (19d)
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where higher order coefficients are functions of λ, v, ρ, u3, c0, and c1. Notice that in order

for this solution to asymptote to AdS we must have c0 = 1, and c1 = 0. ρ is the charge

density, µ the chemical potential and v is related to the vev of the scalar φ.

We can also expand the solution near the black hole horizon r = rh:

φ(r) = φh +O(rh − r) , At(r) = Ah,1(rh − r) +O((rh − r)2) , (20a)

u(r) = uh,1(rh − r) +O((rh − r)3) , c(r) = ch + ch,1(rh − r) +O((rh − r)2) . (20b)

In our numerics, we choose for the potentials

V (φ) = −6 cosh(φ/
√

3), Z(φ) = exp(−φ/
√

3), Y (φ) = (1− expφ)2 . (21)

Then

uh,1 =
ch e

− φh√
3

[
6 + e

2φh√
3 (6− r4

hAh,1)
]
− 2k2r2

h

(
1− eφh

)2

2rh (2ch + ch,1 rh)
(22)

determines the temperature of the black hole T = −uh,1/(4π), and further higher order

coefficients in (20) are also determined in terms of φh, Ah,1, ch, and ch,1.

By using the scale invariance (t, x, y, r) → α (t, x, y, r), At → At/α, k → k/α of the

equations of motion, we can set the horizon radius rh = 1 in our numerical computations.

Numerical solutions are generated by integrating the equations of motion from the IR (r = 1)

to the UV (r = 0). Using another scale invariance of the equations under (x, y)→ β (x, y),

k → k/β, c → c/β2, we set c0 = 1 This fixes ch, leaving three free IR parameters φh, Ah,1,

ch,1; and one UV condition: c1 = 0. Therefore, for each value of k we expect to obtain a

two-parameter family of solutions. We can choose those parameters to be the dimensionless

ratios T/µ, λ/µ. All in all we can parametrize the space of solutions in terms of the three

dimensionless ratios T/µ, λ/µ, and k/µ.

In this work we are interested in solutions breaking translations pseudo-spontaneously.

These are geometries where λ/µ� v/µ2.

Low temperature, near horizon geometry

As we decrease the temperature below Tqc ' 5.10−2µ, the scalar φ diverges near the

horizon. The scalar couplings become

VIR = −3e−φ/
√

3 , ZIR = e−φ/
√

3 , YIR = 1 , (23)
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k/μ=0, λ/μ=-10-5

k/μ=0.1, λ/μ=0

k/μ=0.1, λ/μ=-10-5

10-4
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0.100
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100
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FIG. 1. Comparison of the entropy density vs temperature for various values of k and λ.

leading to a solution of the equations of motion conformal to AdS2 ×R2, with a dynamical

Lifshitz exponent z = +∞ [12–16]:

ds2 =
1

ξ

[
−f(ξ)

ξ2
L2
tdt

2 +
L̃2dξ2

ξ2f(ξ)
+ L2

xdx
2 + L2

xdy
2

]
, A = ao ξ

−2dt ,

φ = −
√

3 log ξ , f(ξ) = 1−
(
ξ

ξh

)2

.

(24)

This solution is valid for values of the IR radial coordinate ξ � µ. The constants Lt, Lx,

L̃, ao can be determined by matching to the UV AdS4 asymptotics. In these coordinates,

T ∼ ξ−1
h , so that the entropy density s ∼ ξ−1

h ∼ T .

A rough estimate of the temperature Tqc where the near horizon geometry becomes con-

formal to AdS2 ×R2 is given by the temperature below which the entropy density becomes

linear in temperature. This is displayed in figure 1 for various values of k and λ. All curves

fall on top of one another, which demonstrates that Tqc is relatively insensitive to the specific

value of k and λ for the typical ranges we are interested in.
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AC Correlators: Conductivity and QNMs

In order to compute the conductivity of the boundary theory and the QNMs at zero

momentum, it is sufficient to study the following consistent set of fluctuations

δgtx = h(r) e−iωt , δAx = a(r) e−iωt , δψx = ξ(r) e−iωt . (25)

To linear order in the fluctuations, the equations of motion for a, h, and ξ are a consistent

set formed by two second order and one first order differential equation.

For a pseudo-spontaneous background geometry with λ 6= 0, the fluctuations have the

following UV expansion

h(r) = r−2
(
h0 +O(r3)

)
, (26a)

a(r) = a0 + a1 r +O(r2) , (26b)

ξ(r) = ξ0 + ξ1r +O(r) , (26c)

where higher order coefficients are functions of h0, a0, a1, ξ1 and ξ0.

The AC conductivity can be read from GR
jxjx through a Kubo formula which in terms of

the asymptotic expansion (26) takes the form

σ(ω) =
1

iω
GR
jxjx(ω) =

a1

iω a0

. (27)

The second equality holds for configurations where the only nonzero source is given by a0

which corresponds to turning on an electric field along x. The only other independent source

in the UV solution (26) is given by the diffeomorphism-invariant combination

ξ0 −
ik

ω
h0 , (28)

and it should vanish on the solutions used to compute σ(ω) through (27).

We are interested in computing a retarded correlator, hence we look for solutions with

ingoing boundary conditions at the black hole horizon. They read

h(r) e
i ω
uh,1 = hh,1 (rh − r) +O((rh − r)2) , (29a)

a(r) e
i ω
uh,1 = ah +O(rh − r) , (29b)

ξ(r) e
i ω
uh,1 = ξh +O(rh − r) , (29c)
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with

hh,1 =
ahAh,1 e

− φh√
3 r2

h −
(
eφh − 1

)2
ξh k/rh

iω/uh,1 − 1
, (30)

and other higher order coefficients determined as well in terms of ah, and ξh.

We construct numerical solutions by integrating the system of three linear differential

equations for h, a, ξ from the horizon (r = rh = 1) to the boundary (r = 0). There are

two free IR parameters in (29), but since the equations are linear we can scale away one of

them (eg set ah = 1). Therefore we are left with one free (complex) parameter and one UV

boundary condition: we shoot for solutions where the combination (28) vanishes, and read

σ(ω) using (27).

We shall next compute the QNMs given by the poles of the holographic correlator GR
AB(ω)

where A,B = h, a, ξ are the set of fields (25). We follow [17] and employ the so-called deter-

minant method. Hence we need to obtain three independent solutions for the fluctuations,

and construct the following matrix of sources

S =


h

(I)
0 h

(II)
0 −iω

a
(I)
0 a

(II)
0 0

ξ
(I)
−1 ξ

(II)
−1 k

 , (31)

where in order to generate the third column we have used the pure gauge solution

h(r) = −iω c(r)
r2

, a(r) = 0 , ξ(r) = k . (32)

It is straightforward to construct two independent numerical solutions integrating from the

horizon with boundary conditions (29).

Finally, the QNMs, namely the complex frequencies where the holographic Green func-

tions have a pole, are given by the values of ω for which the determinant of the matrix (31)

vanishes [17].

ψ CORRELATORS AT k = 0

In this appendix, we solve the equations of motion and compute the correlators of the

fields ψI in the limit k = 0. Similar results have also been reported in [18]. In this case,

both fields decouple and so we will just denote them by δψ. The equation of motion for the

9



fluctuation δψ = δψ(r) exp(−iωt+ iqx) is(√
D

B
CY δψ′

)′
+

(
ω2 − D

C
q2

)
CY

√
B

D
δψ = 0 . (33)

Using a standard procedure in holography [19–21], this equation can be solved perturbatively

at small ω, q compared to rh, assuming the presence of a regular black hole horizon. We

consider the expansion of the perturbation

δψ(r) =

(
1− r

rh

)− iω
4πT
(

1 +
iω

4πT
δψ1 +

( q

4πT

)2

δψ2 +O
(
q3, ω3, ωq2

))
. (34)

After transforming to Eddington-Finkelstein coordinates, this corresponds to the ingoing

mode at the horizon [22]. The horizon is located at r = rh and the boundary at r = 0.

Plugging (34) into (33), the equation is solved perturbatively order by order in ω.

The order ω0 is trivially solved by a constant, which can always be set to unity by linearity

of the equation of motion. The solution at O(ω) reads

δψ1(r) =

∫ r

rh

dr

(
4πTChYh

√
B

CY
√
D

− 1

rh − r

)
, (35)

where we have imposed horizon regularity to fix one of the integration constants, and chose

the other one such that δψ1(rh) = 0 (which otherwise would simply correspond to a different

choice of normalization of the source).

The solution for δψ2 after imposing horizon regularity is

δψ2 = (4πT )2

∫ r

rh

√
B√

DCY

∫ r̃

r̃h

√
BDY . (36)

We now put everything together back in (34) and expand close to the boundary. For

nonzero source λ 6= 0, the asymptotic expansion of δψ takes the form

δψ(r → 0) = δψ(0) + rδψ(1) + . . . (37)

where the r0 term is the source and the r1 term is related to the vev by

〈Oδψ〉 = λ2δψ(1) . (38)

We find

GR
δψδψ =

iωChYh − q2IY
1− iωτo + τoDψq2

, (39)
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with

τo =

∫ rh

0

dr

(
ChYh

√
B

CY
√
D
− 1

4πT

1

rh − r

)
, (40)

and

Dψ =
1

τo

∫ 0

rh

√
B√

DCY

∫ r̃

rh

√
BDY . (41)

This gives a pseudo-diffusive pole located at

ωk=0,λ 6=0 = −iΩ− iDψq
2 +O(q4) , Ω =

1

τo
, (42)

which matches very well the exact location of the pole determined numerically, see figures

2 and 3. The exact numerical dispersion relation deviates from (42) as q increases or as T

decreases, which is expected. Actually, at sufficiently low T or large q, the pole collides with

another purely imaginary pole and moves off axis. This collision and subsequent motion of

the poles matches very well the motion of the two CM poles in figure 1 of the main text at

the lowest temperatures T < Tcm.

In figure 4, we compare the collision temperature Tcm at k = 0 and k/µ = 0.1 by plotting

the real part of the relevant QNMs close to the collision. At λ/µ = −10−5, there is little

variation between k = 0 and k/µ = 0.1. On the other hand, varying λ/µ from −10−5 to

−5.10−7 shows that Tcm depends in a much more pronounced way on the value of λ, which

is expected since τ−1
o ∼ λ (see top row of figure 7 below). Indeed, Tcm = 0 in the purely

spontaneous limit λ = 0, [23].

The presence of an overdamped mode when λ 6= 0 is a consequence of the explicit breaking

of the global shift symmetry ψ 7→ ψ+c. It is easy to check that when λ = 0, the gap vanishes

and the mode (42) becomes purely diffusive

ωk=0,λ=0 = −iξq2 , ξ ≡ IY
ChYh

(43)

which coincides with the k → 0 limit of the CM diffusivity GΞ in equation (6) of the main

text. Turning λ back on, we expect that

Dψ = ξ +O(λ) =
IY
ChYh

+O(λ) , (44)

which we verify numerically in figure 5. Small deviations appear at very low temperature,

upon approaching the pole collision. This is because the corrections of O(λ) are no longer

small compared to T .
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Im(ω/μ)

-1/(μ·τ0)

0.1 0.2 0.3 0.4 0.5
T/μ

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.002 0.004 0.006 0.008 0.010

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

FIG. 2. Numerical check that the gap in (42) at q = 0 is well-captured by (40). Data for

λ/µ = −10−5.

T/μ = 0.0035

T/μ = 0.01

T/μ = 0.05

T/μ = 0.1

0.00 0.01 0.02 0.03 0.04 0.05
q/μ0.000

0.001

0.002

0.003

0.004
-Im(ω/μ)

FIG. 3. Numerical check of the dispersion relation (42). Solid lines represent the numerical data

and dashed lines correspond to equation (42).

Holographic and hydrodynamic correlators may differ by contact terms [5], so we compare

GR
ϕ⊥ϕ⊥

(ω, q)−GR
ϕ⊥ϕ⊥

(ω = 0, q) =
1

G

iω

(q2 +m2)(iω − Ω− q2ξ)
+O(G0,Γ0 ∼ k0) (45)

to

GR
δψδψ(ω, q)−GR

δψδψ(ω = 0, q) = −iωΩ (ChYhΩ + q2(ChYhDψ − IY ))

(Dψq2 + Ω) (iω − Ω−Dψq2)
. (46)
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k/μ=0.1, λ/μ=-10-5

k/μ=0, λ/μ=-10-5

k/μ=0, λ/μ=-10-6

k/μ=0, λ/μ=-5.10-7

0.0004 0.0006 0.0008 0.0010
T/μ

0.0002

0.0004

0.0006

0.0008
Re[ωqnm ]/μ

FIG. 4. Real part of the longest-lived complex QNMs at low temperatures T ≤ Tcm (Tcm is the

temperature at which the real part vanishes), showing the dependence of Tcm on k and λ.

Dψ

ξ

0.1 0.2 0.3 0.4 0.5
T/μ

1

2

3

4

5

6

7

0.002 0.004 0.006 0.008

5

10

15

FIG. 5. Numerical check of equation (44).

The two expressions can be seen to match since from (44) Dψ ' ξ ' IY /(ChYh) and

m2 ' Ω/ξ, as we verify in figure 6, after identifying the boundary Goldstone mode and the

vev of the bulk operator δψ as

〈Oδψ〉 = λ2δψ(1) =
Gm2

k
ϕ . (47)
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Ω
ξ

- q2

0.1 0.2 0.3 0.4 0.5
T/μ

0.0002

0.0004

0.0006

0.010 0.015 0.020

0.000110

0.000112

0.000114

FIG. 6. Numerical check that there is a pole in (39) at ω = 0, q2 = −m2 ' −Ω/ξ.

λ AND k DEPENDENCE OF THE RELAXATION PARAMETERS

Using the quasi-normal modes computed numerically together with the hydrodynamic

expression for the conductivity (14) and the analytic expression for the diffusivity γ1 (formula

(4) of the main text), we have been able to compute the relaxation parameters Ω, Γ and ωo

and to fit their k and λ dependence. The results are shown in figures 7, 8 and 9 for two

different values of the temperature: the red dots refer to T/µ = 0.5 and the blue dots to

T/µ = 0.0035.

The result of the fitting analysis is:

Ω ∼ |λ|k0 , Γ ∼ |λ|k2 , ωo ∼ |λ|1/2k , (48)

as reported in the main text. All our best fits include a small intercept, which is typically

very close to our numerical zero and should be disregarded.

At either very small k or λ, the dc conductivity we use to extract the relaxation param-

eters becomes very large, and our numerical procedure loses accuracy. This is particularly

apparent in the left panel of figure 9, which shows the dependence of Γ on k at high T . We

find values of Γ/µ of order 10−12, which we do not regard as very reliable. For all intents

and purposes, Γ should be set to zero, which we have done in the main text. This is further

justified by the fact that in this range of k, Γ � ω2
o/Ω, as shown in the right plot in fig 9.

Moreover, we have verified that the values of Ω and ωo obtained setting Γ = 0 are quasi-

identical to those obtained keeping Γ 6= 0. At fixed λ/µ = −10−5 and T/µ = 0.0035, we
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obtain values for Γ oscillating between tiny positive and negative values, once again with

little effect on the values of Ω and ωo. For this reason, we have set Γ = 0 for the results

presented in the right column of figure 8. As a final check, we have verified that the k → 0

limits for the parameters Ω and m agree with the values we find setting k = 0 exactly, as is

done in the previous section.
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FIG. 7. Bi-log plots of the λ dependence of Ω, Γ and ωo and their best fits (dashed lines) at

k/µ = 0.1, revealing the scalings reported in equation (48). The red dots are for T/µ = 0.5 while

the blue dots are for T/µ = 0.0035.

Figure 10 shows the λ dependence of the ratio Γ/(ω2
o/Ω) at high and low temperature.

As one can see from the plots, for small |λ|/µ (e.g. λ/µ = −10−5 as it is considered in the
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FIG. 8. Bi-log plots of the k dependence of Ω and ωo and their best fits (dashed lines) for λ/µ =

−10−5, revealing the scalings reported in equation (48). The red dots are for T/µ = 0.5 while the

blue dots are for T/µ = 0.0035. As explained in the text, we have set Γ = 0 for T/µ = 0.0035.

For Ω (top row), the dashed line is a guide to the eye, from our lowest value of k available, in very

good agreement with the value of Ω at k = 0 exactly.

main text) the ratio is very small with a very weak dependence on |λ|/µ, implying that Γ

can be safely neglected as is done in presenting the results in the main text. The situation

is different increasing |λ|/µ, since Γ becomes comparable to ω2
o/Ω for large enough λ/µ.

This is expected since by increasing λ/µ we are moving from the pseudo-spontaneous to the

purely explicit regime, where any spontaneous component of the system is washed out and

Γ is the dominant relaxation scale.

Figure 11 shows the λ dependence of the ratio Ω/(Gm2Ξ) at high and low temperature.

For small |λ|, the dependence on |λ| is also very weak, before increasing more sharply as the

explicit regime is approached.

Finally, we have checked that as k is varied from very low values up to values k/µ = 1,

the ratio Ω/(Gm2Ξ) shows no significant deviations from unity.
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FIG. 9. Left: k dependence of Γ for T/µ = 0.5 and λ/µ = −10−5, revealing the scaling reported

in equation (48). Even though the data becomes noisy at low k, it is consistent with the best

quadratic fit determined from the higher k data. The tiny value for the intercept is close to the

machine precision and we regard it as a numerical zero. Right: k dependence of the ratio Γ/(ω2
o/Ω)

for T/µ = 0.5 and λ/µ = −10−5.
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FIG. 10. λ dependence of the quantity Γ/(ω2
o/Ω) for k/µ = 0.1. Left: T/µ = 0.5. Right:

T/µ = 0.0035. For small enough |λ|, Γ can be neglected compared to ω2
o/Ω.
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[9] Luca V. Delacrétaz, Blaise Goutéraux, Sean A. Hartnoll, and Anna Karlsson, “Bad Met-

als from Fluctuating Density Waves,” SciPost Phys. 3, 025 (2017), arXiv:1612.04381 [cond-

18

http://dx.doi.org/10.1017/CBO9780511813467
http://dx.doi.org/10.1103/PhysRevB.96.195128
http://dx.doi.org/10.1103/PhysRevB.96.195128
http://arxiv.org/abs/1702.05104
http://dx.doi.org/ 10.1016/j.physrep.2017.03.004
http://arxiv.org/abs/1603.04254
http://dx.doi.org/ https://doi.org/10.1016/0003-4916(63)90078-2
http://dx.doi.org/10.1088/1751-8113/45/47/473001
http://dx.doi.org/10.1088/1751-8113/45/47/473001
http://arxiv.org/abs/1205.5040
http://dx.doi.org/10.1103/PhysRevB.17.535
http://dx.doi.org/ 10.1103/PhysRevB.28.340
http://dx.doi.org/ 10.1103/PhysRevB.28.340
http://dx.doi.org/10.1103/RevModPhys.60.1129
http://dx.doi.org/ 10.21468/SciPostPhys.3.3.025
http://arxiv.org/abs/1612.04381
http://arxiv.org/abs/1612.04381


mat.str-el].

[10] Hidetoshi Fukuyama and Patrick A. Lee, “Pinning and conductivity of two-dimensional

charge-density waves in magnetic fields,” Phys. Rev. B 18, 6245 (1978).

[11] Michael M. Fogler and David A. Huse, “Dynamical response of a pinned two-dimensional

Wigner crystal,” Phys. Rev. B 62, 7553 (2000).

[12] Richard J. Anantua, Sean A. Hartnoll, Victoria L. Martin, and David M. Ramirez, “The Pauli

exclusion principle at strong coupling: Holographic matter and momentum space,” JHEP 03,

104 (2013), arXiv:1210.1590 [hep-th].

[13] Richard A. Davison, Koenraad Schalm, and Jan Zaanen, “Holographic duality and the resis-

tivity of strange metals,” Phys. Rev. B89, 245116 (2014), arXiv:1311.2451 [hep-th].
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