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Abstract: Estimating forest inventory variables is important in monitoring forest resources and
mitigating climate change. In this respect, forest managers require flexible, non-destructive methods
for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly
available to measure three-dimensional (3D) canopy structure and to model forest structural attributes.
The main objective of this study was to evaluate and compare the individual tree volume estimates
derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital
aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA)
techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied
correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly
identified using DAP-based point clouds acquired from Unmanned Aerial Vehicles (UAV), representing
accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression
fit based on individual tree height and individual crown area derived from the ITC provided the
following results: Model Efficiency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3

and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and
0.0004 m3) using DAP and ALS-based estimations, respectively. No significant difference was found
between the observed value (field data) and volume estimation from ALS and DAP (p-value from
t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate
basal area or biomass stocks in Eucalyptus spp. plantations.

Keywords: unmanned aerial vehicles (UAV); forest inventory; volume; canopy height model (CHM);
object based image analysis (OBIA); structure from motion (SfM)
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1. Introduction

Sustainable forest management demands accurate information that can be obtained efficiently and
rapidly [1] in order to describe forest structure and quantify forest resources [2]. However, although
accurate, traditional forest inventory is resource- and time-consuming, indicating the need for either
alternative or complementary methods that may overcome the drawbacks of field data acquisition [3].
In addition, although field-measured data are commonly assumed to be ground truth values for remote
sensing estimations, the associated errors tend to be large [3–6].

A number of alternatives to traditional field-based measurement of morphological parameters for
characterizing three-dimensional (3D) structure of trees and canopies have emerged [4,7]. Airborne
Laser Scanning (ALS), Digital Aerial Photogrammetry (DAP) and Terrestrial Laser Scanning (TLS) have
become widely established as forest mapping and monitoring methods [8–11]. In the last two decades,
DAP, ALS (e.g., [12–14]) or a combination of these methods (e.g., [15–17]) have been increasingly used
to support forest inventories at different scales.

ALS has been the primary source of 3D data on forest vertical structure since the 1990s [18,19].
There has been an abundance of research demonstrating the utility of ALS for predicting forest
biophysical variables to support forest inventories at individual tree- and stand-level [20,21]. Since the
late 2000s DAP has provided a promising alternative, as the accuracy of stand-based estimates has
been found to be similar to that achieved through ALS, at much lower cost [17,22,23].

Baltsavias [12] provided a comprehensive comparison of DAP and ALS data, highlighting the
advantages and disadvantages of both technologies with regards to acquisition, accuracy, maturity
and costs. Although ALS data have many advantages (e.g., direct measurement of height, higher
penetration through the vegetation), DAP still represents an essential source of data for the forest
inventory analyses. In fact, photogrammetric software has developed rapidly in the past 15–20 years.
Since the first studies [24], advances in computer vision, image matching algorithms and computing
power have promoted the use of aerial images for generating high-resolution 3D data by image
matching [25]. Many photogrammetric software packages (proprietary and open-source) have been
developed, offering unparalleled opportunities to produce 3D data from 2D image collections with
high overlap.

Recent advances in sensors and in image processing –particularly Structure from Motion (SfM)
technology– have also enabled the extraction of dense point clouds obtained by DAP [16,24,26–29].
In this sense, DAP derived from SfM is an emerging source of 3D data, reaching quality standards
close to those provided by ALS [25,30]. works by [26,31–33] pointed out the potential of DAP for forest
applications. During the past five years in particular, there has been an increasing interest in the use of
DAP to generate 3D data analogous to ALS data, in order to support forest inventories [17,22,25,34–39].
This interest can be attributed to the need to optimize costs while improving the temporal resolution.

Unmanned Aerial Vehicles (UAVs), also known as drones or Unmanned Aerial Systems (UAS),
have emerged as a cost-effective alternative to conventional methods based on manned fixed-wing
aircraft or helicopters for DAP imagery and ALS data collection [40–43]. Since the first studies in which
UAV-derived data was used for forest inventory purposes [44,45], UAV-based forestry applications
of both ALS and DAP have increased substantially [40,46–52]. Indeed, ALS and Red-Green-Blue
(RGB) sensors mounted on UAV platforms are becoming cost-effective tools for monitoring forest
structure because of their high spatial and temporal resolution, achieved by the low flight height,
operational flexibility and relatively low cost of the flight surveys, which meet most of forest managers
requirements [53]. In particular, light UAVs equipped with inexpensive consumer grade cameras have
recently appeared as a feasible option for monitoring 3D forest structure [54]. In addition, multi-temporal
UAV-acquired data can also be used for rapid, accurate and cost-effective tree growth assessment,
providing up-to-date information to support decision-making in forest management [48,54–58].

Two main strategies have been adopted for DAP and ALS-based analysis in forestry inventories:
(i) the Area-Based Approach (ABA), a distribution-based technique which typically provides data
at stand level, and (ii) the individual tree crown (ITC) delineation, in which individual tree crowns,
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heights and positions are the basic units of assessment. ABA has been used with ALS and DAP to
estimate forest attributes over a wide range of forest types including Temperate (e.g., [59]), Boreal
(e.g., [13,14,17,34,60]), Atlantic (e.g., [61,62]), Tropical (e.g., [37]), Alpine (e.g., [63,64]), Mediterranean
forests (e.g., [65–69]) and plantations [70]. At the stand level, results from recent research on small- to
medium-sized boreal and tropical forests have demonstrated the potential use of UAV-based DAP
data for estimating forest biomass [53,71]. On the other hand, ITC has also been applied to DAP point
clouds [72] and to ALS clouds [73,74]. ITC presents several advantages over ABA for estimation of
above-ground biomass because it can be used to derive biomass when an allometric model is available
at individual tree level [75]. At the same time, it is particularly well suited for precision forestry, which
usually requires information about individual trees.

Finally, ALS and SfM approaches to tree height estimation tend to underestimate tree
height [73,74,76,77]. Recent studies [77] have presented a model that explains the observed bias
using probability theory, developing methods for correcting several ALS metrics used for ABA
prediction of stand structure. However, few studies have evaluated the influence of this bias at
individual-tree level. In this respect, further research is needed in order to analyze the influence of this
bias in the individual-tree biomass and volume models for both technologies.

The objectives of this study were as follows: (i) to investigate the combined use of ALS- and
SfM-derived individual-tree measurements (height and crown area) with non-linear regression models
to estimate individual tree diameter and volume; and (ii) to compare the estimation of ALS- and
SfM-derived individual-tree volume models to estimate growing stock volume in relation to field data.

2. Materials and Methods

2.1. Study Area

The study area is located in the municipality of Valongo (41.213◦ N, −8.496◦ W) in the district of
Porto, Portugal (Figure 1). The site consists of a seven year old plantation of Eucalyptus spp. clonal
material (G74), covering an area of 26 ha. Tree spacing was 3.70 × 2.5 m, yielding a density of one tree
per 9.25 m−2. The elevation ranges from 163 to 294 m above the WGS84 reference ellipsoid. The terrain
is topographically complex, with steep slopes (mean slope = 24.2%), and of elevation up to 131 m.
The mean annual rainfall is 1568 mm, and 42.1% of the precipitation occurs between November and
January. The mean annual temperature is 14.2 ◦C, ranging from 8.6 ◦C in the coldest months (December
to February) to 20.1 ◦C in the warmest months (July to September). The study site is characterized by
evenly planted trees of superior genetic material with a low mortality rate.
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Figure 1. (a) UAV-derived RGB-orthomosaic image of the study area and 10 ground control points
(GCPs) (red dots) (b) UAV-derived Digital Surface Model (DSM) generated using Pix4d® software.

2.2. Field Measurements and Field Volume Estimation

The field data were collected in December 2016 (to correspond to the date of acquisition of ALS
data) from 6 square plots, each of approximately 400 m2 (Table 1). A total of 323 reference trees were
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measured and located in 6 square plots (400 m2). The height of each tree (h, m) within the plots was
measured with a Haglof Vertex IV hypsometer equipped with a T3 transponder. The diameter at
breast height (1.30 m above the ground – d, cm) was measured with a steel diameter measuring tape.
Field plots were remeasured using the same methods in September 2017 (matching with UAV-based
DAP acquisition).

Table 1. Statistical description of the field data within six field plots for a total of 323 reference trees

Plot d h ^
v

Mean Mean Mean

Dec 2016 Sep 2017 Dec 2016 Sep 2017 Dec 2016 Sep 2017

P1 13.2 13.4 19.4 20.9 0.13 0.14
P2 12.9 13.3 18.8 19.9 0.12 0.15
P3 13.4 13.8 18.6 20.0 0.13 0.15
P4 13.8 14.1 18.8 19.8 0.13 0.15
P5 13.7 14.0 18.3 19.7 0.13 0.15
P6 13.8 14.2 17.6 19.1 0.13 0.14

Min. 5.3 5.4 9.9 10.3 0.01 0.01
Mean 13.5 13.8 18.6 19.9 0.13 0.14
Max. 17.3 17.8 22.8 23.5 0.24 0.26
SD 1.7 1.7 1.5 1.6 0.03 0.04

Average (Mean), minimum (Min), maximum (Max) and standard deviation (SD), values of the individual tree
diameter (d, cm), height (h, m) and field data volume estimation (v̂, m3).

In order to obtain accurate positions of the trees, topographic surveys were conducted to determine
the position of the center of each tree within the plots. A Trimble® TSC3 GPS controller with Trimble®

R8s Integrate GNSS System Antenna (Trimble, Sunnyvale, CA, USA) (dual-frequency real-time
kinematic receiver –RTK) was used to determine the coordinates of a densified geodetic network for
the study area by applying real time kinematic (RTK). Based on the network established with GPS,
a topographic survey of the plots was conducted using a Trimble® M3 Robotic Total Station (Trimble,
Sunnyvale, CA, USA). Observations on the position of each tree within the plot were made during
the survey.

Field-derived volumes were estimated using the Equation (1), provided by [78].

v̂ = 0.2105
(

d
100

)1.8191

h1.0703 (1)

where v̂ is the estimated volume (m3), d is the diameter (cm) at the breast height (1.30 m) and h is the
tree height (m).

2.3. ALS Acquisition

The airborne surveys were conducted on 17 December 2016, covering an area of 100 ha. The data
were captured with Leica ALS80-HP laser scanner operating at pulse rate of 704 kHz, field of view
of 6.5◦ and scan rate of 73.5 Hz, which was mounted on a Cessna airplane that flew the area at an
approximately flight altitude of 2750 m.a.s.l and an average speed of 250 km.h−1. The overlap between
sweeps was 30%, achieving an average laser pulse density of 43.33 pulses m−2.

2.4. UAV Data Acquisition and Use

The airborne surveys were conducted on 6 September 2017. An RGB S.O.D.A. 10.2 (20 MP) camera
(senseFly Co, Cheseaux-Lausanne, Switzerland) was mounted, with nadir view, on a fixed-wing
UAV (SenseFly eBee) (Figure 2). The camera, which was equipped with a 12.75 × 8.5 mm sensor
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and 5472 × 3648 pixels detector, was used in manual mode. Exposure settings (ISO 150 and shutter
speed of 1/1000 s) were set before each take-off according to the light conditions. This provided ~6 cm
pixel−1 resolution for a variable altitude above ground level, which is especially useful in areas of
diverse elevation range such as mountainous regions. Atmospheric conditions during the airborne
surveys were characterized by calm winds, clear lighting at the flight time (between 11.30 am and
12.15 pm) to minimize the effect of shadowing. Flight parameters were determined using eMotion
V. 3.2.4 flight planning and monitoring software. The flight plan covered the entire study area with
longitudinal and lateral overlaps of 85% in both cases. The flight line spacing was 25 m (Figure 2).
In total, 744 images were used to generate orthomosaics and Digital Surface Models (DSMs) by the SfM
image reconstruction process. Two-block flights were required to capture the entire forest study area
(the orthomosaic covered an area 103.70 ha with average Ground Sample Distance (GSD) of 5.95 cm).
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2.5. 3D Model Generation and Preprocessing Point Clouds

The absolute orientation of the aerial photos was determined using aerotriangulation techniques
implemented in pix4D 3.3.29 (pix4D®, Ecublens, Switzerland). A set of 10 ground control points
(GCPs) measured in the field with topographic methods was used to georeference the SfM mosaics to a
projected coordinate system for both datasets. The ground control photogrammetric points (GCPs)
were captured with a Trimble TSC3 controller and a Trimble R8s GNSS antenna (RTK precision 8 mm +

1 ppm Horizontal/15 mm + 0.5 ppm Vertical) mounted on a pole. The GCPs markers comprised a set
of 1 × 1 m cross-shaped white painted timber planks with some black and white 50 × 50 cm painted
checkerboards. For reliable accuracy of GPS measurement, all GCPs were located in open areas with
no canopy cover. At each point, GPS signals were logged in RTK–global navigation satellite system
(GNSS) mode. The recordings were processed with real-time correction data retrieved from the fixed
base station in Gaia (Porto) (latitude: 41◦06′21.67048” N, longitude: 8◦35′20.73434” W, and ellipsoidal
elevation: 287.63 m above the WGS84 reference ellipsoid).

Photogrammetric point clouds were computed using SfM techniques, implemented in Pix4D 3.3.29.
The matching parameters for point cloud densification were set as follows: multiscale, image scale =

1/2 (half image size) and point density = ‘optimal’. The minimum number of matched images was also
set to 3. DEMSfM was generated from the ground points by using a natural neighbor interpolation
technique implemented in Pix4D (additional details of the algorithms are proprietary and were not
disclosed by Pix4D).

The ALS and SfM point clouds preprocessed using FUSION/LDV 3.60 software [79] and
LasTools [80]. For more details of point cloud processing see details in [74]. Finally, two CHMs
(CHMSfM and CHMALS) were obtained by subtracting the DEMs (DEMALS and DEMSfM) from the
DSMs (DSMALS and DSMSfM) in the FUSION LiDAR Toolkit [79].
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2.6. ITC Process to Derive ALS- and SfM-Variables

Individual tree position (X and Y coordinates), height (hSfM, hALS) and crown area (caSfM, caALS)
were retrieved from the respective CHMSfM and CHMALS (Figure 2). Resampling of the CHMs to
20 cm resolution and subsequent smoothing with mean filter (5 × 5 window) in the case of ALS
and median filters (3 × 3 window) for SfM were conducted using the FUSION LiDAR Toolkit [79].
Crown delineation followed the procedure detailed in [81]. The process is divided into three main
phases: segmentation, classification and iterative watershed segmentation The Chessboard Segmentation
algorithm was used to split the image into square image objects. In the second phase, a Classification
algorithm was used to classify image objects from the smoothed CHM. Objects with an elevation
value of less than 5 m were classified as gaps. The threshold was established empirically from field
observations and by trial-and-error tests. The remaining objects were assigned to the ‘temporary
canopy’ class. These objects were used to locate tree tops and delineate tree crowns in the following
iterative watershed segmentation processes. In the iteration, the Find Local Extrema algorithm was used
to classify the image objects of the ‘temporary canopy’ class, which fulfills a local extreme condition
according to image object features within a search domain in their neighborhoods. However, because
of the forest stand and tree species characteristics, the initial maximum search domain used in the
iterative process (see Figure 3 in [81]) to detect top trees was changed from 5 to 3, and 4 interactions
were applied. A search with a variable square window enables detection of apices of trees with a
large variety of crown sizes. Objects less than 3 m away from any detected tree top were retained
in the ‘temporary canopy’ class (candidates for watershed) and any other objects were disregarded.
This distance was the maximum observed crown width in the plots, which was considered the limit for
crown growing in the next step. Then, the crown delineation results (Figure 3) and tree top positions
were exported in ESRITM shapefiles as vector polygons and points respectively, for subsequent analysis.
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2.7. Individual Tree Volume Estimation

Volume equation (Equation (1)) requires the measurement of tree diameter or circumference,
which is not available from UAV imagery. We therefore tested two approaches for estimating ALS- and
SfM-derived individual-tree volumes (vSfM and vALS) (Figure 4). In the first approach, the multiplicative
(power function) model in Equation (2) was fitted using d (from field data) as the dependent variable
and the pairs of explanatory variables hSfM, caSfM for SfM, or hALS, caALS for ALS. The predicted
diameter obtained by each method (dSfM and dALS) and their respective height estimates (hSfM and hALS)
were then included as independent variables in Equation (1) to predict the individual volumes for
the subset of 192 trees for ALS and 199 for SfM (vSfM and vALS, respectively). In the second approach,
the multiplicative (power function) model in Equation (3) was also fitted to predict vSfM and vALS for
the 192 and 199 trees respectively, but v was considered a dependent variable (estimated using the
field-measured d and h in Equation (1)), and the pairs hSfM, caSfM (from SfM) or hALS, caALS (from ALS)
were considered explanatory variables, without the need to estimate the diameters.

d̂ = hβ0caβ1 + ε (2)

v̂ = hβ0caβ1 + ε (3)

where v̂ is the estimated volume (m3), d̂ is the estimated tree diameter (cm), h is the tree height (m),
ca is the canopy area (m), generated from ALS or SfM, β0, β1, are the exponential parameters to be
estimated by non-linear regression analysis; and ε is the additive random error. The models were fitted
using the Non-linear Least Squares nls function implemented in the BASE package of R software (R
Core Team, 2018).

Finally, the Model Efficiency (Mef, Equation (4)), the overall root mean square error (RMSE,
Equation (5)), the relative root mean square error (rRMSE, Equation (6)) and the Bias (Equation (7))
were computed in order to determine the accuracy of ALS and SfM models for estimating diameter
and volume with the second approach. Mef compares predictions directly with observed data using
a statistic analogous to R2 [82]. This statistic provides a simple index of performance on a relative
scale, where 1 indicates a ‘perfect’ fit, 0 reveals that the model is no better than a simple average, and
negative values indicate a poor model.

Me f = 1−

 (n− 1)
∑n

i=1(yi − ŷi)
2

(n− p)
∑n

i=1

(
yi − y

)2

 (4)

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(5)

rRMSE =
RMSE

y
∗ 100 (6)

Bias =
∑n

i=1(ŷi − yi)

n
(7)

where n is the number of trees; yi is the field-measured tree diameter i; y is the the mean observed value
for the field-measured diameters; ŷi is the estimated value of diameter derived from the non-linear
regression model and p is the number of parameters in the models.

Finally, using the correctly detected and delineated trees, d was compared with dSfM, dALS and v
with vSfM, vALS in the subsample of 192 trees for SfM and 199 for ALS, respectively. Estimated and
observed values were plotted and visually examined. A paired t-test was conducted to compare ALS-
and SfM-predicted variables (dSfM, dALS, vSfM, and vALS) to verify the significance of the deviations
between the observed and estimated values. However, these deviations were previously checked using
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the Shapiro-Wilk test [83], which indicated that the distributions meet the assumption of normality.
The tests were conducted at a 5%significance level.

1 

 

 

Figure 4. Summary steps of individual tree crown (ITC) to map volume.

3. Results

Field, ALS and SfM Volume Estimation

Table 2 shows the parameter estimates and goodness-of-fit statistics for the models used to predict
d (cm) in the first approach, and v directly estimated by SfM- and ALS-variables in the second approach.

In the first approach, non-linear regression yielded an Mef value of 0.45 for the SfM-estimated
diameter and 0.47 for ALS-estimated diameter (RMSE = 1.17 and 1.12 cm, rRMSE of 8.49 % and 8.31%,
respectively). Although the UAV-based DAP method tends to underestimate tree height relative to
field measurements (hypsometers), there was no appreciable bias throughout the observed diameter
(Figure 5a,b). The bias values (0.38 and 0.35 cm) indicated a slight tendency to overestimate the initial
diameter values from field data (Figure 5a,b). On the other hand, although d was not directly measured
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in CHMs derived from UAV and ALS, hSfM and hALS were, and these variables were significant in
the SfM and ALS equations. For dSfM and dALS modelling, the crown area (caSfM and caALS) was also
statistically significant (p < 0.05 and p < 0.001, respectively).

Table 2. Models selected for estimating SfM and ALS derived individual tree diameter and volume.

Approach Dependent
variable Predictors Parameter

estimate
Standard

error p-value Mef RMSE
(cm)

rRMSE
(%)

bias
(cm)

1st

dSfM

Constant 0.863 1.170 < 0.001
0.45 1.17 8.49 0.38hSfM 0.907 0.108 < 0.001

caSfM 0.037 0.037 0.013

dALS

Constant 0.564 0.151 < 0.001
0.47 1.12 8.31 0.35hALS 1.042 0.090 < 0.001

caALS 0.062 0.015 < 0.001

Approach Dependent
variable Predictors Parameter

estimate
Standard

error p-value Mef RMSE
(m3)

rRMSE
(%)

bias
(m3)

2nd

vSfM
Constant 0.004 0.002 0.082

0.43 0.030 20.31 0.0016hSfM 1.192 0.201 < 0.001
caSfM 0.151 0.035 < 0.001

vALS

Constant 0.001 0.000 0.106
0.46 0.026 19.97 0.0004hALS 1.828 0.224 < 0.001

caALS 0.024 0.037 < 0.001

hSfM and hALS are the SfM and ALS-derived tree height (m), caSfM and caALS are the SfM and ALS-derived individual
crown area (m2), Mef is the model efficiency statistic, RMSE is the root mean squared error and rRMSE is the relative
root mean square error.
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Figure 5. Scatter plots of ALS and SfM-derived variables against field-derived variables:
(a) field-measured tree diameter (d) against ALS-estimated tree diameter (dALS); (b) field-measured
tree diameter (d) against SfM-estimated tree diameter (dSfM); (c) field-estimated volume (vfield) against
ALS-estimated volume (vALS) using the first approach; (d) field-estimated volume (vfield) against
SfM-estimated volume (vSfM) using the first approach; (e) field-estimated volume (vfield) against
ALS-estimated volume (vALS) using the second approach; (f) field-estimated volume (vfield) against SfM
-estimated volume (vSfM) using the second approach.



Forests 2019, 10, 905 10 of 18

In the case of vALS modelling, the second approach yielded an Mef value of 0.56. The mean
rRMSE of v estimation was 20.31% (0.030 m3) when calculated on the basis of the SfM cloud, and
19.97% (0.026 m3) when based on the ALS cloud. There were no appreciable biases from the models
throughout the observed volume range using both approaches (Figure 5c–f). However, the tendency
of ALS and SfM to underestimate h may be the main reason for the slight underestimation of v in
the first approach (Figure 5c,d). In the case of the second approach, a slightly positive bias (0.0004
and 0.0016 m3) indicated slight overestimation when volume was modeled directly form ALS- and
SfM-variables (Figure 5e,f).

The t-test (Table 3) showed that there were no evidence of significant differences between observed
and estimated values of diameter (p-values of 0.98 for both approaches in the subsample of 192 trees
for SfM and 199 for ALS, respectively) and volume using the second approach (p-values of 0.99 for
ALS and 0.98 for SfM, Figure 6b). However, there were significant differences using the 1st approach
between the observed values and estimated value at the tree level (Table 3, Figure 6b). It is important
to note that the mean values of field data for diameter and volume computed for ALS and SfM in the
subsample were similar that the values considering the 6 field plots for the total of 323 reference trees,
except for the mean volume values for volume in 2017 (Table 3).

Table 3. Field, ALS and SfM diameter and volume estimations from both approaches with their
minimum (Min.), mean (Mean), maximum (Max.) and standard deviation (SD) values and the results
for the t-test in the subsample of 192 trees for SfM and 199 for ALS, respectively. Field 16 and Field 17
are the field data acquisition years for ALS (Dec 2016) and SfM (Sep 2017), respectively.

Plot
dALS (cm) dSfM (cm) vALS (m3) vSfM (m3)

ALS Field 16 SfM Field 17 ALS 1st ALS 2sd Field 16 SfM 1st SfM 2sd Field 17

P1 14.1 13.3 14.3 13.4 0.13 0.15 0.13 0.15 0.15 0.14
P2 13.4 12.5 14.0 13.4 0.11 0.14 0.11 0.13 0.15 0.14
P3 13.1 13.3 13.9 14.0 0.10 0.13 0.12 0.12 0.14 0.15
P4 13.4 13.8 13.8 14.3 0.11 0.14 0.13 0.12 0.14 0.15
P5 13.5 13.8 14.0 14.2 0.11 0.14 0.13 0.13 0.15 0.15
P6 13.2 14.2 13.1 14.0 0.11 0.16 0.14 0.12 0.14 0.14

Min. 8.9 6.0 7.6 5.4 0.05 0.05 0.02 0.03 0.09 0.01
Mean 13.5 13.5 13.9 13.9 0.11 0.15 0.13 0.13 0.15 0.15
Max. 15.6 17.0 15.8 17.8 0.16 0.20 0.21 0.19 0.19 0.25
SD 1.0 1.5 1.1 1.6 0.02 0.02 0.03 0.02 0.02 0.03

t-test
p-value 0.98 0.98 <0.001 0.99 <0.001 0.98
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Figure 6. Box plot of field-measured and remotely sensed estimated values of diameter (a) and volume
using the 1st approach and 2nd approach (b). The lower and upper areas of the boxes represent the 5th
and 75th percentiles and the horizontal band represents the median. The upper and lower whiskers
extend from to the highest and lowest value respectively within the 1.5 times the interquartile range.
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4. Discussion

Both vSfM and vALS were accurately estimated from UAV photograph and ALS-based 3-D point
clouds using SfM- and ALS-variables extracted automatically from their respective CHMs. Although
ALS-based methods and UAV-based DAP methods tend to underestimate tree height [73,74,77], relative
to field measurements (hypsometers), no appreciable biases in the observed diameter and volume
range estimations occurred with either technologies in the 2nd approach.

Variables derived from the automated processing of ALS and UAV-based DAP with ITC delineation
(hSfM, hALS, caSfM, and caALS) were found to be significant explanatory variables for predicting d and v
in both approaches; however, the Mef and RMSE values for diameter models indicate poorer fits than
reported in some recent studies in P. pinea plantations [57] (Mef = 0.79, rRMSE = 4.99%, n = 50 trees)
and Japanese Cypress (Chamaecyparis obtusa) [84] (R2 = 0.79, n = 51 individual trees where d ranged
from 11 to 58 cm) using UAV-based DAP point clouds.

In the case of ALS-based diameter models, our results were similar in terms of R2 to those reported
by Chisholm et al. [85], who extracted forest below-canopy information using UAV-based LiDAR and
developed post-processing software to detect trees and to estimate their diameters (R2 = 0.45, rRMSE =

25.1%). Finally, the results were also similar in terms of rRMSE to those reported by Cosenza et al. [86]
in a eucalyptus plantation in Brazil (rRMSE = 9%), for an exponential equation with h as explanatory
variable. Cosenza et al. [86] also observed a slight tendency to overestimate the initial diameter values
(bias = 0.12 cm).

Studies conducted in Picea abies (L.) H. Karst. and Pinus sylvestris L. stands in Sweden and in Pinus
taeda L. stands in the SE United States found that ALS-derived h and crown diameter (cd) explained
up to 87% and 91% of the variance associated with the estimation of d, with RMSE of 3.8 and 4.9 cm,
respectively [87,88]. Zhao et al. [89] reported an R2 value of 0.87 and a RMSE value of 5.2 cm for
ALS-derived tree dimension variables including h, cd and crown base height in P. taeda stands. In this
study, the diameter equation based on ALS-derived variables performed well, although the values of
Mef were slightly lower than some of those reported for other species [87,88].

Regarding volume modelling, the performance of the vALS and vSfM estimates for predicting tree
volume directly from ALS- and SfM-derived variables (the second approach, R2 = 0.46, R2 = 0.43;
RMSE = 0.026 m3, RMSE = 0.030 m3; respectively) was lower than that obtained in different conifer
species (R2 = 0.88) [88], as well as in P. taeda (R2 = 0.80) [89] and P. pinea (Mef = 0.84 − 0.85) [57].
The mean differences between the deviations of field volume and the ALS- or SfM-derived volume were
statistically significant using the 1st approach. The tendency of ALS and UAV-based DAP technologies
to underestimate h may be the main reason for the underestimation of v with 1st approach. It should be
also borne in mind that the ALS and UAV-based DAP, as a tree height estimation technique, tends to
underestimate tree height (e.g., DAP [39,90,91], UAV-based DAP [47,74,76,92] and ALS [73,77,93–95]
point cloud data). However, our volume modelling results suggest that this bias may not influence
in volume estimations using the 2nd approach, leaving open the question as to when and where
specific models should be developed for correcting the bias at tree level depending on particular
species or forest structure [77]. The results of this study are consistent with the approaches used
by other authors [57,73], in which the use of linear regression improved the accuracy of tree height
estimations from DAP-ALS data in terms of RMSE and bias, instead of using tree height extracted
directly from the CHM to calculate the RMSEs and bias [74], as also occurred with modelling volume
in the present study.

There are three possible reasons for the differences in performance for diameter models using
SfM- and ALS-variables relative to other species: (i) First, broadleaved trees trees in particular are more
challenging for both local maxima detection and delineation compared to conifer trees. (ii) Second,
crown delineation remains difficult because the crowns of neighboring trees often overlap due to
the high density of trees per unit area. (iii) Third, the low density of leaves in the crowns and the
small size of the crowns of mature trees prevent a considerable number of laser pulses from hitting
the crown (thus hampering crown delineation). As expected, the ALS cloud contributed to yielding



Forests 2019, 10, 905 13 of 18

slightly better results for diameter and volume estimation, but we did not observe differences in
terms of volume estimations. As with previous studies using DAP, ITC delineation is more affected
than ALS crown delineation as UAV-based DAP has several limitations: (i) ALS is insensitive to
shadows made by clouds [15], (ii) the images are strongly influenced by atmospheric conditions (e.g.,
wind swaying can cause problems building point clouds), solar illumination and view angles (sun,
surface and sensor geometry), occlusions caused by shadows are particular problematic for generation
of image-based point clouds in dense forest canopies [45,96–98]. In addition, seasonality (timing)
influences underestimation of tree heights but can improve detection accuracy [99]. The allometric
relationship between volume and ALS or SfM crown-derived variables could be also refined through
improvements in UAV imagery acquisition and processing.

Finally, a more comprehensive examination of the effects of varying the conditions of UAV-based
DAP acquisition and their implications for estimating forest inventory variables in different types of
forest should be carried out using these techniques [100–102]. Many facets have not been explored
with current state-of-the-art techniques. Several effects related to flight configuration (i.e., flight speed,
wind effect, illumination effect), post-processing pipelines (i.e., comparing different SfM algorithms),
field data collection (i.e., number of field plots) and environmental variables (i.e., effect of aspect or
slope when using different DEM approaches or the DEM-independent approach) must be analyzed.
Future research must also explore how the type of platform (fixed-wing versus multirotor), sensors or
the type of forest (e.g., temperate, deciduous, evergreen needleleaf, and tropical forest) influence the
ability of UAV-based DAP methods to accurately characterize biometric tree variables at the tree level.

5. Conclusions

The study findings showed that UAV-based DAP methods are useful and comparable to ALS
for forest inventory and sustainable forest management in planted forests, by providing accurate
estimations of forest structural attributes at the tree level. The results suggested that object-based
image analysis (OBIA) provides more accurate predictive models for individual volumes of Eucalyptus
trees based on ALS-derived and SfM-derived variables from the 3D point clouds than those obtained
using indirect approaches to estimate diameter.
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