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String percolation in AA and p+p collisions
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A brief review of the string percolation model and its results are presented together with the comparison to experimental data. First, an
introduction to the quark-gluon phase diagram and the lattice results concerning the confinement and the percolation center domains is done.
The interaction of the strings produced in nucleus-nucleus and proton-proton collisions is studied, showing how the string percolation arises.
The main consequences of the string percolation, concerning the dependence on the energy and centrality, on the multiplicities and the mean
transverse momentum, are obtained comparing with experimental data. the non-abelian character of the color field of the strings forming
the cluster is emphasized to reproduce the rise of the transverse momentum with multiplicity and the relative suppression of multiplicities.
It is also studied different observables like multiplicity and transverse momentum distributions, dependence with multiplicity and transverse
momentum correlations, forward-backward correlations, the strength of the Bose-Einstein correlations, dependence on the multiplicity of
J/Ψ production and its possible suppression in p+p collisions at high multiplicity, strangeness enhancement, elliptic flow, and ridge structure
are also studied. The comparison with the data shows an overall agreement. The thermodynamical properties of the extended cluster formed
in the collision are discussed computing its energy and entropy density, shear viscosity over entropy density ratio, bulk viscosity, sound speed
and trace anomaly as a function of temperature, showing a remarkable agreement with lattice QCD evaluations. The string percolation can
be regarded as the initial frame able to describe the collective behavior produced in AA and p+p collisions.
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1. Introduction

More than four decades ago, the possibility of distributing
high energy over a large volume to restore broken symmetries
of the physical vacuum creating abnormal states of nuclear
matter was raised [1]. Very early, it was pointed out that the
asymptotic freedom property of QCD implies the existence
of a high-density matter formed by deconfined quarks and
gluons [2], and the exponential increase of the hadron Hage-
dorn spectrum was connected with the existence of a different
phase [3]. The thermalized phase of quarks and gluons was
called Quark Gluon Plasma (QGP) [4], and the evaluations of
the required high density showed that it could be reached in
relativistic heavy ion collisions [5,6] and several signatures
of QGP were proposed. Quarkonium suppression [7], the ex-
cess of photons and jet quenching [8,9] were some of them.
At this time, it was pointed out the relevance of percolation in
the study of the phase transitions of hadronic matter [10,11].

From the experimental side, there were large facilities to
study the properties of large density matter starting by the
AGS and ISR, experiments later followed by SPS, RHIC,
and LHC. At SPS already several signatures hinted the on-
set of QGP formation [12]. The RHIC data show a collec-
tive elliptic flow which pointed out a very low shear viscosity

over entropy density ratioη/s, indicating strongly interacting
matter. In addition, the jet quenching was observed, indicat-
ing that this strongly interacting matter was very opaque [13-
17]. The above mentioned ratio enhanced the attention to the
AdS/CFT correspondence due to the resultη/s = 1/4π [18].
The LHC experiments [19-21] have extended the study of the
elliptic flow to all the harmonics [22,23] confirming the ob-
tained strong interacting quark and gluon matter and showing
that the collective behavior and the ridge structure previously
observed at RHIC in Au-Au and Cu-Cu collisions [24,25];
also occurs in pPb [26-28] and p+p collisions at high multi-
plicity [29]. The collective behavior of p+p and pPb interac-
tions are a challenge to the hydrodynamics descriptions, and
they raise the question whether the main experimental data
can be explained by final state interactions or on the contrary,
the initial state configuration should describe them.

On the other hand, the data on quarkonium confirm the
validity of combined picture of a subsequent melting of the
different resonances, together the recombination of heavy
quarks and antiquarks at high energy [30-32]. The departure
of linear dependence on the multiplicity of theJ/Ψ produc-
tion has been observed in p+p and pPb collisions [33,34],
indicating multiparton interactions or multiplicity saturation
[35]. Detailed studies on the jet quenching for identified par-
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ticles have been done [36] showing features related to the low
of coherence of the gluons edited in the jet due to the high-
density medium. Finally, let us mention that at RHIC has
been observed recently that the fluid produced by heavy ions
is the most vortical system ever observed [37].

On the theoretical side, in addition to the hydrodynamics
studies, the Color Glass Condensate (CGC) approach [38-
42] gives a good description of most of the experimental data
and is derived directly from QCD. In QCD, the gluon density
xG(x,Q) rises rapidly as a function of the decreasing frac-
tional momentumx or increasing the resolutionQ. So, the
gluons showers generate more gluon showers producing an
exponential increasing toward smallx. As the transverse size
of the hadron or the nucleus rises slowly at high energy, the
number of gluons and its density per unit of area and rapid-
ity increase rapidly asx decreases. However, there will be
the fusion of gluons leading to a limited transverse density
of gluons at some fixed momentum resolution,Qs, the gluon
saturation [43]. The lowx gluons are closely packed, the
distance between them is very small. Hence, the interaction
coupling is smallas ¿ 1. In a given collision, the multiplic-
ity should be proportional to the number of gluons, which at
the saturation momentumQs is [44,45]:

dN

dy
∼ 1

αs(Qs)
Q2

sR
2. (1)

This dense system, called CGC, has a very high occupation
number1/αs, and corresponds to a highly coherent state of
strong color fields. The highx gluons can be considered as
the sources of the lowx gluons. The independence of the cut-
off used to separate the highx gluons from the lowx ones,
gives rise to a kind of evolution equation.

In high energy physics experiments, the colliding objects
move at velocities close to the speed of light. Due to the
Lorentz contraction, the collision of two nuclei can be seen
as a that of two sheet of colored glass where the color field
in each point of the sheets is randomly directed. Taking these
field as initial conditions, one finds that between the sheets,
longitudinal color electrical and magnetic fields are formed.
The number of these color flux tubes between the two collid-
ing nuclei is forming the called Glasma [46], which has been
extensively compared with the experimental data.

Another approach to the initial state is the percolation of
strings [47-51] which is not so popular as the CGC because
cannot be derived directly from QCD although it is inspired
in it, and most of its results, are a direct consequence of prop-
erties of QCD. In this approach, the multi-particle production
is described in terms of older strings stretched between the
partons of the projectile and target. These strings decay into
q − q̄ pairs and subsequently hadronize producing the ob-
served hadrons. Due to the confinement, the color of these
strings is confined to a small areaS = πr2

0, with r0 = 0.2 fm
in the transverse space. The value 0.2-0.25 fm is obtained in
lattice studies [52] and also considering bilocal correlations
[53]. It corresponds to the correlation length of the QCD vac-
uum. With increasing energy and/or size and centrality of the

colliding objects, the number of strings grows and the strings
start to overlap forming clusters similarly than the continuum
percolation theory [54]. At a given critical density, a macro-
scopical cluster appears crossing the collision surface, which
marks the percolation phase transition. Therefore, the nature
of this transition is geometrical.

In string percolation, the basic ingredients are the strings,
and it is necessary to know its number, rapidity extension,
fragmentation and number distribution. All that requires a
model and therefore, string percolation is model dependent.
However, most of the QCD inspired models give similar re-
sults for most of the observables in such a way that the pre-
dictions are, by a large measure, independent of the model
used.

The string percolation and the Glasma are related to each
other [55]: in the limit of high density, there is a correspon-
dence between the physical quantities of both approaches.
The number of color flux tubes in Glasma picture,Q2

sR
2,

has the same dependence on the energy and centrality of the
collisions that the number of effective clusters of strings in
string percolation. In both approaches, the negative binomial
distribution is obtained as the multiplicity distribution, where
the parameterk, that controls the width of this distribution
has the same energy and centrality dependence. The role of
the occupation number1/αs in CGC is played by the fraction
of the collision surface covered by strings. The randomness
of the color field in CGC gives rise to a reduction of the mul-
tiplicity. Similarly, the randomness in color space of the color
field of then strings of the cluster originates that the intensity
of the color field of the cluster is notn times the individual
color field of each string but

√
n. This reduction implies also

a reduction of the multiplicity of particle production and an
increase of the transverse momentum with the multiplicity.
Due to these similarities, the predictions of both approaches
are similar for many observables. The string percolation is
able to explore also the region where the high-density limit
has not been reached.

The observed densities of our world have large dif-
ferences which expand over many orders of magnitude,
from 10−6 nucleons/cm3 in average in the Universe to
1038 nucleons/cm3 inside a nucleus and1039 nucleons/cm3

in a neutron star. The study of the high-density limit,i.e.,
the study of de-confinement of quarks and gluons can be re-
garded as the place where high energy collision of two bod-
ies probes the short distances and meets the thermodynamics
(many body) of this short distance limit [56]. The lattices
studies have shown that at low chemical potentialµ = 0,
color confinement and chiral symmetry restoration coincide
and the phase transition is a crossover. Hence, in a medium
of low baryon density, the mass of the constituent quark van-
ishes at the deconfined pointTc, and the screening radius of
the gluon cloud vanishes. At lowT and highµ there is no
reason to expect similar behavior, and probably there will
be an intermediate region of massive dressed quarks between
the hadronic phase and the deconfined and chiral restoration
phase. However, other possibilities could exist as quarkonia
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FIGURE 1. Phase diagram of the nuclear matter. Temperature vs
baryonic chemical potential [163].

and color superconductivity. A possible diagram is shown in
Fig. 1.

In finite T lattice QCD, the de-confinement order pa-
rameter is provided by the vacuum expectation value of the
Polyakov loopL(~x) defined in Euclidean space:

L(~x) = Tr
Nt∏
t=1

A4(~x, t). (2)

Note thatL(~x) is the ordered product of the SU(3) tempo-
ral gauge variablesA4(~x, t) at a fixed spatial position, where
Nt is the number of lattice points in time direction and Tr
denotes the trace over color indices. The Polyakov loop cor-
responds to a static quark source and its vacuum expectation
value is related to the free energyFq for a single quark:

L(~x) ∼ exp
(
−Fq

T

)
. (3)

Below the critical temperatureTc quarks are confined andFq

is infinite implying 〈L(~x)〉 = 0. In a de-confined medium
color screening among the gluons makesFq finite, hence for
T > Tc, 〈L(~x)〉 6= 0. The phase transition of chiral symme-
try is controlled by the chiral condensate:

σ(T ) = 〈ψ̄ψ〉 ∼ Mq, (4)

which measures the constituent quark masses obtained from
a Lagrangian with massless quarks. At high temperature this
mass melts, therefore:

σ(T )
{ 6= 0 if T < Tσ,

= 0 if T > Tσ.
(5)

Here, Tσ defines another critical temperature. The corre-
sponding derivatives, the susceptibilities, have been studied
in lattice QCD at vanishing baryon number, showing a sharp
peak that defines respectivelyTc andTσ. The two tempera-
tures, within errors, coincide. Also, is seen a crossover,i.e.,

FIGURE 2. The energy density and the pressure as the function of
temperature (up). The energy density shows a sharp rise in the tem-
perature region 170-200 MeV. The interaction measure calculated
using different staggered fermion actions (bottom) [58].

a sharp transition but without discontinuity. The quoted value
is 155±9 MeV [56-58].

The energy densities resulting from lattice QCD are
shown in Fig. 2 (up), indicating that even forT > 3Tc its
value are far from the energy density of free gas quarks and
gluons, namely:

ε =
π2

30

[
gg +

7
8
(gq + gq̄)

]
T 4, (6)

wheregg, gq andgq̄ are the degeneracy numbers of the glu-
ons, quarks and antiquarks. This fact indicates that the de-
confined phase is interacting strongly for a rather large range
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of temperatures. This is also seen in the interaction measure:

∆ =
ε− 3P

T 4
. (7)

Moreover, the trace of the energy momentum tensor:

Tµ
µ =

β(gs)
2gs

Ga
µνGaµν + [1 + γ(gs)]mqψ̄ψ (8)

is ε − 3P and even for masses quarksTµ
µ 6= 0 as a conse-

quence of the introduction of a scale in the renormalization
process bearing the conformal symmetry (trace anomaly). In
Fig. 2 (bottom) the results of the lattice QCD are shown. Note
that∆ decreases withT very slowly, even less than1/T 2.

FIGURE 3. Up panel: Disconnected discs, Middle: Cluster forma-
tion, Bottom panel: Over-lapping discs forming a spanning clus-
ter [56].

2. Percolation model

Let us distribute small discs of areaπr2
0 randomly on a

large surface, allowing overlap between them. As the num-
ber of discs increases, clusters of overlapping discs start to
be formed. If we regard the disc as small drops of water, how
many drops are needed to form a puddle crossing the con-
sidered surface? GivenN disc, the disc density isξ = N/S,
where S is the surface area. The average cluster size increases
with ξ, and at a certain critical valueξc, the cluster spans the
whole surface, as is shown in Fig. 3.

The critical density for the onset of continuum percola-
tion is determined by numerical and Monte Carlo simula-
tions, which in the 2-dimensional case gives:

ξc =
1.13
πr2

0

. (9)

In the thermodynamical limit,N → ∞ keepingξ fixed, the
distribution of overlaps of the disc is Poissonian with a mean
valueρ = ξπr2

0 [59,60]:

Pn =
ρn

n!
exp(−ρ). (10)

It also gives the total fraction of the plane covered by discs
in 1 − exp(−ρ) [50]. The number 1.13 is obtained in case
of discs uniformly distributed [51,61,62]. However, in cases
when the discs are not uniformly distributed, this number
changes. For instance, in the cases of circular surfaces with
Gaussian or Wood-Saxon profiles, the number is 1.5 and the
fraction of the area covered by strings is closer to the func-
tion:

1
1 + a exp(−(ρ− ρc)/b)

, (11)

whereρc = 1.5 and the parametersa andb depend on the
profile function,b that controls the ratio between the width
of the border of the profile(2πR) and the total area(πR2),
and therefore is proportional to1/R [63]. In the collisions
of two hadrons or two nuclei, the surface where the discs are
distributed is rather an ellipse or a circle, what gives rise to
smaller values of the critical density [64]. For small systems
where the number of discs is not large (far from the ther-
modynamical limit) the critical density is smaller than above
values, being 0.8 for high eccentricities [64].

In SU(3) Gauge theory, spatial clusters can be identified
as those where the local Polyakov loops〈L(~x)〉 have values
close to some element of the center. The elements of the cen-
ter groupZ3, are a set of three phases(0, 2π/3,−2π/3) [65].
Below Tc (〈L(~x)〉 = 0), the values of〈L(~x)〉 are grouped
around there three phases, show three pronounced peaks lo-
cated at the center phases. AboveTc (〈L(~x)〉 6= 0), the
distribution changes: one of the peaks grows and the other
two shrink. A spontaneous breaking symmetry occurs, which
leads to a non-vanishing〈L(~x)〉, as is shown in Fig. 4. Spatial
clusters can be defined grouping the sites with a very similar
value of〈L(~x)〉. The weight of the largest cluster increa-
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FIGURE 4. Histograms for the distributions of the phaseφ(x) of the local loops〈L(~x)〉. Left side shows the distribution belowTc and right
side shows the de-confined phase [65,164].

ses sharply atT = Tc, indicating that the cluster percolates.
Therefore, in the pure SU(3) theory, the de-confinement tran-
sition is a percolation phase transition (of second order).

In high energy collisions, we expect that color strings
were formed between the projectile and target partons. These
color fields must have a small transverse size due to confine-
ment. In this way, the strings, in the transverse plane, are
small discs in the surface of the collisions. As the number of
strings grows with energy and centrality degree of the colli-
sion, the strings start to overlap forming clusters which even-
tually percolate. The phenomenological consequences in re-
lation to SPS, RHIC, and LHC, p+p, pA and AA data are the
main subject of this brief review. A more extended version
can be found in Ref. [66].

3. String percolation

3.1. String models

The basic ingredient of the string percolation are the strings.
Despite differences, most of them coincide in basic postulates
as the number of strings and its dependence on energy and
centrality, which is taken from the Glauber-Gribov Model.
We will concentrate in models with color exchange between
projectile and target as the Dual Parton Model (DPM) [67-
69], Quark Gluon String Model (QGSM) [70], Venus and
EPOS [71]. They are based on the1/Nc QCD expansion and
its terms are in correspondence with the ones of the Gribov-
Reggeon calculus. They have been extensively compared to
the experimental data ISR, SPS, and Fermilab obtaining an
overall agreement [67]. In DPM or QGS, the multiplicity dis-
tribution dN/dy of p+p collisions is given by fragmentation
of 2k strings

dNpp

dy
=

1
σ

∑
σk[Nqq−q

k (s, y)

+ Nq−qq
k (s, y) + (2k − 2)Nq−q̄

k ], (12)

whereNqq−q
k andNq−qq

k are the inclusive spectra of hadrons
produced in the strings stretched between a valence diquark
of the projectile (target) and a quark of the target (projectile)
andNq−q̄

k are the inclusive spectra of the strings stretched be-
tween sea quarks and antiquarks. A schematic representation
of this process is shown in Fig. 5a). In this figure are shown
four chains, two between quark-diquark and two correspond-
ing to quark-antiquark. Each chain corresponds to the frag-
mentation intoq − q̄ pairs of one string, stretched between
the quark (diquark) of the projectile and the diquark (quark)
of the target or from the quark and diquark from the sea. The
leading term corresponds to two strings stretched between a
valence quark (diquark) and a valence diquark (quark). Via
unitarity, the modulus square of the leading diagram corre-
sponds to the pomeron as is shown in Fig. 5b). In this fig-
ure is shown a net of gluons which are accompanying to
the quarks, which can be seen in this picture as constituent
quarks. In Fig. 5b) is also shown that the pomeron corre-
sponds to a cylinder topology. The single particle of each
string can be obtained by folding the momentum distribution
of the partons at the end of the string with the fragmentation
function of the string:

Nqq−q
k (s, y) =

1∫

0

dx1

1∫

0

dx2ρk(x1)

× ρk(x2)
dNqq−q

dy
(y − ∆̄, ss), (13)
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FIGURE 5. a) Two cut Pomeron diagram (four chain) for proton-proton collisions. b) Single Pomeron exchange and its underlying cylindrical
topology. This is a dominant contribution to proton-proton elastic scattering at high energies [67].

where
√

ss is the invariant mass of the stringss = sx1x2 and
x1 andx2 are the light cone momentum fractions of the par-
tons of the end of the string.̄∆ is the rapidity shift necessary
to go from the p+p center of mass to the center of mass of
one string:

∆̄ =
1
2

log
(

x1
x2

)
. (14)

The momentum distribution used for the valence quarks, va-
lence diquarks, sea quarks and antiquarks arex−1/2, x−1 and
x−3/2, respectively. In general, the distribution of2k partons
in the proton is:

ρk(x1, x2k, x2, x3, x3, . . . , x2k−1)=Cρ
kx
−1/2
1

× x−1
2 . . . x−1

2k−1x
1/2
2k x

1/2
2k δ

(
1−

2k∑

i=1

xi

)
, (15)

whereCρ
k is obtained by normalizingρk to unity. Due to

these distributions theNqq−q
k andNq−qq

k are long in rapidity
extension and centered at a point shifted with respect to the
center of mass and theNq−q̄

k string are short and centered at
the center of mass. For the fragmentation functions differ-
ent ways are used, in string percolation, the strings fragment
according the Schwinger mechanism, such as in the Lund
string. In Eq. (12)σk is the cross section for producing2k
strings resulting from cuttingk pomerons. As the pomeron
has the topology of the cylinder, its cutting give rise to two
strings (See Fig. 5b)). Using the AGK cutting rules [72], the
cross section is calculated as follows:

σk =
8πg exp(∆y)

kz

[
1− exp(−z)

k−1∑

l=0

zl

l!

]
, (16)

where:

z =
2gC exp(∆y)

R2 + α′y
, (17)

andg is the coupling of the pomeron to the proton,α′ and
1 + ∆ are the slope and the interception of the pomeron tra-
jectory, respectively, andC is a parameter describing the in-
elastic diffractive states. Summing overk, we obtain the total
cross section.

σtot = exp(∆y)
∞∑

k=0

∞∑

l=k,l>0

(
−z

2

)l−1

× 8πg

l!

[
δk0 + (−1)1−k2l−1

(
l

k

)]
. (18)

The rise ofdN/dy with energy is due mainly to the short
strings, whose number grows with energy. On the other hand,
outside the central rapidity region, there is not contribution of
short strings and the rise with energy is slower, giving rise to
the approximate limiting behavior. Assuming a Poisson dis-
tribution for cuttingk pomerons:

Pk(n) =
(kN)n

n!
exp(−kN), (19)

whereN is the mean multiplicity production when cutting
one pomeron, therefore, the multiplicity distribution is:

Pk(n) =
∑

k

ωkPk(n), (20)

whereωk = σk/σ. Usually,〈n〉P (n) is plotted as a function
of n〈n〉. When the result is independent of energy, one has
the known Kobe-Nielsen-Olsen scaling (KNO), which is vio-
lated at SPS Fermilab, RHIC and LHC. The reason for that in
DPM is due to the contribution of the short strings that they
contribute mostly at high multiplicities pushing upwards the
high multiplicity tail of the distributions. The increase withs
of the short strings contributions is due to the increase of the
invariant mass of the short strings, formed between quarks
and antiquarks of the sea, and to thes-dependence of the
weights. DPM can be generalized to hA and AA collisions
in the following way [73], consider a collision withNA par-
ticipants nucleons of A,NB participant nucleons of B and a
total number ofNc collisions. In this configuration are pro-
duced2Nc strings, of these2NA are stretched between va-
lence quarks and valence diquarks (qA

v −qqB
v ) and (qqA

v −qB
v ).
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The remainingNB − NA valence quarks and diquarks of B
have no valence partner of A and have to form2NB − 2NA

strings with sea quarks and antiquarks of A (qA
s − qqB

v ) and
(q̄A

s − qB
v ). The remaining2Nc − 2NB strings are formed

between sea quarks and antiquarks of A and B (qs − q̄s):

dNAB

dy
=

1
σAB

∑

NA,NB ,Nc

σAB
NA,NB ,Nc

θ(NB −NA)

×
[
NA

(
NqqA

v −qB
v (y) + NqA

v −qqB
v (y)

)

+ (NB −NA)
(
N q̄A

s −qB
s (y) + NqA

s −qqB
v (y)

)

+ (Nc −NB)
(
NqA

s −q̄B
s (y) + NqA

s −qB
s (y)

) ]

+ sym(NA ↔ NB), (21)

where σAB
NA,NB ,Nc

is the cross section forNc inelastic
nucleon-nucleon collisions involvingNA andNB nucleons
of A and B, respectively. This cross section has been stud-
ied extensively [74,75]. The inclusive spectra, as in the p+p
case, are given by a convolution of momentum distribution
and fragmentation functions. In the case of A=B, we have
approximately;

dNAA

dy
≈ 〈NA〉(2Nqq−qv (y) + (2〈k〉 − 2)Nqs−q̄s(y))

+ (〈Nc〉 − 〈NA〉)2〈k〉Nqs−q̄s(y), (22)

where we have introduced the possibility of havingk multiple
scattering in the individual nucleon-nucleon collisions, which
was neglected in Eq. (21). Notice that there is not any reason
to assume that the term proportional toNc is due to hard col-
lisions. There are many soft collisions included in this term.
In the central rapidity region we have2Nk strings which for
heavy nuclei collisions and high energy is very large number,
even larger than 1500. Due to that, we expect interactions
between them and they will not fragment in an independent
way.

In the case of pA collisions, the Eqs. (21) and (22) trans-
form into:

dNpA

dy
=

1
σpA

∑

NA

σpA
NA

[ (
Nqqp−qA

v (y) + Nqp
v−qqA

(y)
)

+ (NA − 1)
(
N q̄p

s−qA
s (y) + Nqp

s−qqA

(y)
) ]

, (23)

whereNA matches with the number of collisions.

3.2. String fusion and percolation

As we have said before, at large energy we expect that the
strings overlap in the transverse plane. The transverse space
occupied by a cluster of overlapping strings splits into a num-
ber of areas with different number of strings overlap, includ-
ing areas where no overlapping takes place. In each area color
field coming from the overlapping strings add together. As

FIGURE 6. Projections of two overlapping strings onto the trans-
verse plane.

a result, the cluster is split in domains with different color
strength. One may assume that emission ofqq̄ pairs in the
domains proceeds independently, governed by the strength
of the color field (string tension) of the corresponding do-
main. Evidently, these new formed strings domains have not
only different color strength. Other assumption that one may
do is that emission ofqq̄ pairs in the domains proceeds inde-
pendently, governed by the strength of the color field (string
tension) of the corresponding domain. Evidently, these new
formed string domains have not only different color field, but
also different transverse area. As an example, let us consider
a cluster of two partially overlapping string as it is shown in
Fig. 6. In this scenario, a simple string with transverse area
S1 emits partons with transverse momentum distribution:

dσ

dyd2p
= C exp

(
−m2

T (pT )
t1

)
, (24)

wheret1 is the tension andm2
T = m + p2

T , beingpT andm
the transverse momentum and the mass of the emitted par-
ton. The tension, according to the Schwinger mechanism,
is proportional to the field, and thus to the color charge of
the ends of the string [76-80], which we denote byQ0. The
mean transverse momentum squared is〈p2

T 〉1 = t1 and pro-
portional toQ0. We denote the mean multiplicity of pro-
duced particles by string per unit of rapidity asµ1 which is
also proportional to the color charge. In Fig. 6, we have the
overlapping of two strings which partially overlap in the area
S(2) (region 2 in the figure), so thatS(1) = S1 − S(2) is the
area in each string not overlapping with the other, whereS1

is the transverse area of a single string. The color density of
a simple string isq = Q0/S1. Then, the color in each of the
non overlapping areas will be:

Q1 = qS(1) = Q0S
(1)/S1, (25)

and in the overlapping area each string will have color:

Q̄2 = qS(2) = Q0S
(2)/S1, (26)

The total color in the overlap area will be a vector sum of
the two overlapping colorsqS2. In this summation, the to-
tal color charge should be conserved [50,51]. ThusQ2

2 =
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( ~Qov + ~Q′
ov)2, where ~Qov and ~Q′ov are the two vector col-

ors in the overlap area. Since the colors in the two strings
may generally be oriented in arbitrary directions respective
to one another, the average of~Qov

~Q′
ov is zero, thenQ2

2 =
~Q2

ov + ~Q′2ov, which leads to:

Q2 =
√

2qS(2) =
√

2Q0S
(2)/S1. (27)

Notice that due to the vector nature, the color in the overlap
is less than the sum of the two overlapping colors. This ef-
fect has important consequences concerning the saturation of
multiplicities and the rise of the mean transverse momentum
with multiplicity, which we will study in the next section.
Thus, assuming independent emission from the three regions
of Fig. 6, we obtain for the multiplicity weighted by the mul-
tiplicity for a single string (µ1):

µ/µ1 = 2(S(1)/S1) +
√

2(S(2)/S1), (28)

and for the mean transverse momentum squares (we divide
the total transverse momentum squared by the multiplicity):

〈p2
T 〉

〈p2
T 〉1

=
2(S(1)/S1) +

√
2
√

2(S(2)/S1)
2(S(1)/S1) +

√
2(S(2)/S1)

=
2

2(S(1)/S1) +
√

2(S(2)/S1)
, (29)

where we have used the propertyS(1) + S(2) = S1. Gener-
alizing to any numberN of overlapping strings, we have:

µ

µ1
=

∑

i

√
ni(S(i)/S1), (30)

〈p2
T 〉

〈p2
T 〉1

=
∑

i(S
(i)/S1)∑

i

√
ni(S(i)/S1)

=
N∑

i

√
ni(S(i)/S1)

, (31)

where the sum runs over all individual overlaps ofni strings
having areasS(i). We have used the identity

∑
i S(i) = NS1.

These equations are not easy to apply because we have to
identify all individuals overlaps of any number of strings with
their areas. However, one can avoid these difficulties realiz-
ing that one can combine all terms with a given number of
overlapping stringsni = n into a single term, which sums
all such overlaps into a total area of exactlyn overlapping
stringsSTot

n . Then, one can write:

µ

µ1
=

N∑
n=1

√
n(STot

n /S1), (32)

〈p2
T 〉

〈p2
T 〉1

=
N∑N

n=1(STot
n /S1)

. (33)

The total area can be easily computed in the thermodynamic
limit. One finds that the distribution of overlap strings over
the total surfaceS in the variablen is Poissonian with mean
ρ = NS1/S, which corresponds to the filling factor in the
percolation context. Therefore, the fraction of the total area

covered by strings will be1− exp(−ρ). Note that the multi-
plicity in Eq. (31) is damped by a factor:

F (ρ) =
µ

Nµ1
=
√

n

ρ
=

√
1− exp(−ρ)

ρ
. (34)

Finally, we can write for the mean values:

µ = NF (ρ)µ1, (35)

〈p2
T 〉 = 〈p2

T 〉1/F (ρ). (36)

In the rest of this review, these last equations will be used
extensively.

3.3. Quenching of the lowpT partons

ThepT distribution of the partons from the decay of a clus-
ter of strings is given by Eq. (24), where the tension is now
scaled by1/F (ρ), then it is computed ast = t1/F (ρ). The
parton will be emitted in different azimuthal direction and
have to travel paths of different longitudes before they of out
and are observed. Parton going through the overlap meet
stronger field than those going only through the field of a
simple string. In this way, the partons loose their energy
passing through the field and the observed distribution will
depend on their azimuthal angle, even if initially they were
emitted isotropically. Radiative energy loss has been exten-
sively studied in QCD for a parton passing through a quark
gluon plasma medium [81,82]. In our case, the situation is
different and is more similar to a charge particle moving in
an external electromagnetic field. The corresponding force
causes a loss of energy, which is given by [83]:

dp(x)
dx

= −0.12e2(eEp(x))2/3, (37)

whereE is the external electric field. This equation leads to
the quenching formula:

p0(p) = p
(
1 + γp−1/3t

2/3
1

)3

, (38)

whereeE/π = t1 can be identified as the longitude of the
path travelled by the parton. The quenching coefficient is
known in QED (is very small), but in our case has to be ad-
justed to the experimental data and it turns out to be very
small of the order of10−2. Retaining the first term of the
equation, we obtain:

p0 − p = 3γp2/3t
2/3
1 , (39)

which will be used to compute the harmonic of thepT dis-
tribution. Notice that due to the smallness of the quenching
parameter, the effect of the quenching is only felt in the az-
imuthal distribution, not in thepT distribution, once the az-
imuthal anglr is integrated. The use of QED formulas for
the QCD case may raise some doubts. However, it has been
shown that at least inN = 4 SUSY Yang Mills case, the
expression is essentially the same [84].
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3.4. Multiplicity distributions

The multiplicity distributions in the DPM of QGSM in p+p
and AA collisions are given by Eqs. (12)-(13) and Eqs. (21)-
(22), respectively. However, as the energy or centrality of
the collision increases one expects interaction among strings.
As discussed before, due to the randomness of the color field
in color space non-abelian field the resulting color field in a
cluster ofn overlapping strings is only

√
n times the strength

of the color field of a single string, giving rise to a suppres-
sion of the multiplicity of particles produced by the cluster.
The same reason lies at the origin of the enhancement of the
meanpT . According to Eq. (34), the multiplicity distribution
in p+p collisions in the central rapidity region is given by:

dNpp

dy
= F (ρp)Ns

pµ1, (40)

whereNs
p is the number of string in the central rapidity re-

gion. In AA collisions, the number of strings stretched be-
tween the sea quark and antiquarks in the central rapidity re-
gion is proportional toN4/3

A −NA, which is the total number
of nucleon-nucleon collisions. Hence, the total number of
strings in a central heavy ion collisions is very large. How-
ever, each string must have a minimum of energy to be pro-
duced and decay subsequently into particles. On the other
hand, the total energy available in the collision grows asA,
whereas the number of strings asA4/3 in the central colli-
sions. Therefore, at not very high energy (for instance RHIC
energies), the energy is not sufficient to produce such huge
number of strings. In order to take into account this energy
conservation effect, one may reduce the number of sea quarks
and antiquarks changing [85]:

N
4/3
A → N

1+α(
√

s)
A , (41)

where:

α(
√

s) =
1
3

(
1− 1

1 + ln(
√

s/s0 + 1)

)
. (42)

Here, the parameters0 marks the energy squared above
which energy conservation effects become small andα → 3.
One thus can write:

dNAA

dy
∼ NA(Nα(

√
s)

A − 1)
dNpp

dy
. (43)

Taking into account the interaction of strings, we can write
a closed formula for the multiplicity distribution in AA in
terms of the multiplicity distribution of p+p, namely [85]:

1
NA

dN

dy

∣∣∣∣
y=0

=
dNpp

dy

∣∣∣∣
y=0

×
(

1+
F (ρNA)
F (ρp)

(Nα(
√

s)
A − 1)

)
, (44)

FIGURE 7. Comparison of the evolution of the mid-rapidity mul-
tiplicity with energy from the CSPM and data for p+p and A-A
collisions. Lines are from the model for p+p (gray), Cu-Cu (blue)
and red lines for Au-Au/Pb-Pb [85-89].

where:

ρNA = ρpN
α(
√

s)+1
A

S1

SNA

, (45)

ρp = Ns
p

S1

Sp
, (46)

andSNA
is the transverse area of the collision formed when

there areNA participant nucleons of the projectile andNA

participant nucleons of the target. Note thatSNA depends on
NA and A.

Moreover, the dependence of the multiplicity on
√

s is
full specified, once the average number of stringsN in a p+p
collision is known. At low energies it is 2, growing as:

Ns
p = 2 + 4

(
r0

Rp

)2 (√
s

mp

)2λ

. (47)

Notice that here a single parameterλ describes the rise of the
multiplicity with energy for both p+p and AA, even though
in central AA collision the multiplicity increase faster than
in p+p collisions due to the energy dependent factorα, aris-
ing from energy conservation. A fit to p+p collisions data
in the range53 <

√
s < 7000 GeV and to AA colli-

sions (Au-Au, Cu-Cu and Pb-Pb) at different centralities for
19.6 <

√
s < 2760 GeV has been done. The values obtained

for the two parameters are
√

s0 = 245 GeV andλ = 0.201.
Figure 7 shows a comparison of the energy dependence re-
sults with data for p+p [85-87] and central Cu-Cu [88] and
for Au-Au and Pb-Pb [89]. The results of the dependence of
the the multiplicity per participant nucleon on the number of
participants is shown in Fig. 8 together with the experimental
data Cu-Cu, Au-Au and Pb-Pb at different energies.

The evolution outside the central rapidity region has been
studied extensively, extending Eq. (43) to all rapidities [90-
95]. The limiting fragmentation property is not satisfied ex-
actly. In Fig. 9, we show the results together with the experi-
mental data for p+p collisions at all rapidities at different
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FIGURE 8. Multiplicity dependence on centrality (Npart). Cu-Cu
(triangles), Au-Au (stars) and Pb-Pb (circles). Curves represent the
model calculations. Blue line for Cu-Cu, green line for Au-Au and
red for Pb-Pb.

FIGURE 9. Comparison of results from the evolution ofdnch/dη
with dependence on pseudorapidity for p+p collisions at different
energies (lines).

energies [94,95] and in Fig. 10 the results for Cu-Cu, Au-
Au [96] and Pb-Pb [97] together the experimental data. In
Fig. 11, we compare the results [95-98] for d-Au collisions
together the experimental data. A good description of all ex-
perimental data is obtained.

The behavior ofdN/dy in p+p and AA collisions is very
similar to the Glasma picture of CGC expressed in Eq. (1).
In fact as the saturation momentum squaredQ2

s behaves like
N

1/3
A , andR2

A asN
2/3
A , the multiplicity per participant is al-

most independent ofNA and only a weak dependence arises
from the logarithmic dependence of the running coupling
constantαs(Qs) ∼ 1/ log(NA). In percolation, the multi-
plicity per participant is also almost independent ofNA and
the only dependence arises from the factor1 − exp(−ρ),
which also grows weakly withNA. Concerning the energy
dependence, this is given byQ2

s, which behaves likesλ,

FIGURE 10. Comparison of results from the evolution ofdn/dη
with dependence on pseudorapidity for (a) Cu-Cu at 200 GeV, (b)
Au-Au 200 GeV. Plot (c) shows(dnch/η)(1/(Npart/2)) for Pb-Pb
collisions at 2.76 TeV.

so that, the same behavior than in percolation. There is an
extra energy dependence in CGC due to1/αs, which corre-
sponds in percolation again to the factor1− exp(−ρ). Since
both are measure of the fraction occupied area by color fields,
it is not surprising the correspondence between1/αs, the oc-
cupying number of gluons, and1− exp(−ρNA

).

3.5. Multiplicity and transverse momentum distribu-
tions

Let us start considering a set of overlapping strings, which de-
pend both on the number of strings and the overlapping area,
which combine to give an average multiplicityN . We may
characterize the different overlaps just by the average multi-
plicity that combines both the number of collisions and the
area. With a lot of overlapping stringsN will change practi-
cally continuously. We can introduce a probabilityW (N)
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FIGURE 11. Comparison of results from the evolution ofdn/dη
with dependence on pseudorapidity at different centralities for
d+Au collisions at 200 GeV.

to have overlaps with sizeN in a collision and write the total
multiplicity distribution as:

P (n) =
∫

dNW (N)P (N, n), (48)

whereP (N, n) is the multiplicity distribution of the overlap
of a givenN , which we take Poissonian with the average
multiplicity N :

P (N, n) =
Nn

n!
exp(−N). (49)

The normalization conditions
∑

n P (n) = 1, and∑
n nP (n) = N lead to the following relations:

∫
dNW (N) = 1, (50a)

〈n〉 = 〈N〉 =
∫

dNNW (N). (50b)

For the weight function we assume the gamma distribution
[99-101]:

W (N) = G(N, kN , τN )

=
τN

Γ(kN )
(τNN)kN−1 exp(−τNN), (51)

whereτN = kN/〈N〉. There are several reasons for this
choice. The growth of the centrality can be seen as a trans-
formation of the cluster size distribution. It start with a set of
single strings with a few clusters formed of a few overlapping
strings. As the centrality increases, there appear more strings
and more clusters composed of more strings. This change
can be considered as substitution of strings in a cluster by the
new formed clusters, defined by a newN corresponding to a
higher color field in the cluster. This transformation, similar
to the block transformation of Wilson type, can be seen as a
transformation of the cluster size probability of the type:

P (x) → x
P (x)
〈x〉 → · · · → xk P (x)

〈xk〉 . . . (52)

Transformations of this type were studied long time ago by
Jona Lasinio in connection with the renormalization group in
probabilistic theory [102], showing that the only probability
distribution functionP (x) which is stable under such trans-
formation are the generalized gamma functions, among them
the simplest one is the gamma function which has one param-
eter less. We point out that transformation of type (52) has
been used previously to study the probability associated with
some special event which are shadowed by themselves and
not for the total of events [103-107]. We will come back to
this point, studying the underlying events when one highpT

particle is triggered. Notice thatW (N) satisfy KNO scaling,
namely the productNW (N) is only a function ofN/〈N〉,
if the parameterk of Eq. (52) is energy independent. This
property is a consequence of the invariance of the gamma
functions under the transformation of type Eq. (51) [107]. Let
us discuss now the transverse momentum distribution (TDM)
f(pT ). As in the case of multiplicity distribution, we con-
sider a cluster which decay in the same way that a single
string with the only difference of its “size”x;

f(pT , x) = exp(−xp2
T ). (53)

Actually,x denotes the inverse of the color field in the cluster,
which depends not only on the size but also on the degree of
overlapping strings inside the cluster. Assuming thatx varies
continuously, one can write the total TMD, similarly to the
multiplicity distribution case as:

f(pT ) =
∫

dxWp(x)f(x, pT ). (54)

We must realize the normalization condition:∫
dp2

T f(pT ) = 〈n〉, (55)

which gives the relation:

〈n〉 =
∫

dxxα2W (αx). (56)

Comparing the latter with Eq. (50b), we can make the iden-
tification Wp(x) = (αx)2W (αx) if we take the gamma dis-
tribution in Eq. (51) forW (N), thenWp(x) turns out up to a
factor to be also the gamma distribution with differentk and
r given by:

Wp(x) =
r

rp
G(x, k + 2, rp), (57)

with rp = αr. So, at the end, both the multiplicity distri-
bution and the TMD are given by a convolution of the clus-
ter distribution and its TMD with the size probabilityW (x)
which in both cases can be taken the gamma distributions al-
though with different parameters. Introducing Eq. (51) into
Eqs. (48) and (54), we obtain:

1
(1 + p2

T /r)k
=

∞∫

0

dx exp(−p2
T x)

×
(

r

Γ(k)

)
(rx)k−1 exp(−rx), (58)
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and:

Γ(n + k′)
Γ(n + 1)Γ(k′)

rk′

(1 + r′)k′(n + k′)n
=

∞∫

0

dN
eNNn

n!

× r′

Γ(k′)(r′N)k′−1
exp(−r′N). (59)

The mean value and the dispersion of the distributions (58)
and (59) are:

〈x〉 =
k

r
,

〈x2〉 − 〈x〉2
〈x〉2 =

1
k

, (60)

〈n〉 = 〈N〉k
′

r′
,

〈N2〉 − 〈N〉2
〈N〉2 =

1
k′

, (61)

〈n2〉 − 〈n〉2
〈n〉2 =

1
k′

+
1
〈N〉 . (62)

The distribution (59) is a negative binomial distribution.
Eqs. (58) and (59) are superposition of clusters and1/k and
1/k′ control the transverse momentum fluctuations and the
fluctuations on the number of string in the cluster. At small
density there are no strings overlapped, andk andk′ go to
infinity. When the density increases, the strings start to over-
lap forming clusters, and therefore thek′ decreases. Their
minimum is reached when the fluctuations in the number of
strings per cluster reach their maximum. Above this point,
increasing the string density, these fluctuations decrease and
thek′ increases. Now, if we take into account that the mean
multiplicity and transverse momentum given by Eqs. (35) and
(36), the Eqs. (58) and (59) become:

f(pT , y) =
dN

dp2
T dy

=
dN

dy

k − 1
k

× F (ρ)
〈p2

T 〉1
1(

1 + F (ρ)p2
T

k〈p2
T 〉1

)k
, (63)

and:

P (n) =
Γ(n + k′)

Γ(n + 1)Γ(k′)

(
k′

〈n〉1F (ρ)

)k′

(
1 + k′

〈n〉1F (ρ)

)n+k′ . (64)

We observe that:

〈n〉 = F (ρ)Ns〈n〉, 〈p2
T 〉 =

k

k − 2
〈p2

T 〉1
F (ρ)

. (65)

Eqs. (63) and (64) give the distributions for any projectile,
target, energy and degree of centrality and are universal func-
tions which depend of only two parameters,〈p2

T 〉1 and〈n〉1,
the average transverse momentum and multiplicity of parti-
cles produced by one string. In case of identified secondary
particles, it should be used the corresponding quantities for
each identified particles,〈p2

T 〉1i and 〈n〉1i. Sometimes in-
stancepT is usedmT . At ρ → ∞ andk → ∞ the TMD

becomesexp(−F (ρ)p2
T /〈p2

T 〉1) very similar to the behavior
atρ → 0. From Eq. (63) we have:

d ln f

d ln pT
=

−2F (ρ)(
1 + F (ρ)p2

T

k〈p2
T 〉1i

) p2
T

〈p2
T 〉1i

. (66)

At p2
T → 0, the latter reduces to−2F (ρ)p2

T /〈p2
T 〉1i and van-

ishes atp2
T = 0. On the other hand, as〈p2

T 〉1π < 〈p2
T 〉1k <

〈p2
T 〉1p, the absolute value of Eq. (66) is larger for pions than

for kaons than for protons, this is the well known hierarchy
that often it is advocated in favor of a hydrodynamic picture
hadronic interactions. However, we describe very well the
data as it is seen in Fig. 12, where we show our results to-
gether the PHOBOS data [103] for central Au-Au collisions.

Let us now discuss the interplay of low and highpT . One
defines the ratio between central and peripheral collisions as:

RCP (pT ) =
f ′(pT , y = 0)/N ′

coll

f(pT , y = 0)/Ncoll
. (67)

The normalization on the number of collisions in the latter,
essentially eliminatesNs from dN/dY , this is true at mid
rapidity. From Eq. (54) and (63) we obtain:

RCP (pT ) =
((k′ − 1)/k′)
((k − 1)/k)

(
F (ρ′)
F (ρ)

)2

×

(
1 + F (ρ)p2

T

k〈p2
T 〉1i

)k

(
1 + F (ρ′)p2

T

k′〈p2
T 〉1i

)k′ . (68)

Here k and k′ are values of the parameterk for TMD for
peripheral and central collisions. In the limitp2

T → 0, as
F (ρ′) < F (ρ) we have:

FIGURE 12. Experimental PHOBOS data on low pt distributions
for pions, kaons and protons along with our results for central Au-
Au collisions at

√
s = 200 GeV.
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FIGURE 13. Ratios for different distributionsk/π, p/π in Au-Au collisions at
√

s =200 GeV at two different centralities : 0-5% (solid
circles), 60-70% (open circles) in comparison with the data.

RCP '
(

F (ρ′)
F (ρ)

)2

< 1, (69)

which is independent ofk andk′. As ρ′/ρ increases the ratio
RCP decreases, in agreement with experimental data. AspT

increases, we have:

RCP (pT ) ∼
1 + F (ρ)p2

T

k〈p2
T 〉1i

1 + F (ρ′)p2
T

k′〈p2
T 〉1i

(70)

andRCP increases. At largepT :

RCP (pT ) ∼ F (ρ)k′

F (ρ′)k
p
2(k−k′)
T . (71)

At low density in the region where decreases with the string
densityk′ < k and RCP (pT ) > 1. It is the Cronin ef-
fect. As ρ′/ρ increases, the ratioRCP increases. With
the growth of the energy of the collision, the energy den-
sity increases reaching the region wherek increases. Now
at ρ′ > ρ andk′ > k, there will be a suppression ofpT . In
the forward rapidity region, the normalization of Eq. (67),
does not cancelNs from dN/dy, since in this regionNs

is proportional toNA instead ofNcoll. Now, an additional
factor (N ′

A/N ′
coll)/(NA/Ncoll) appears inRCP (pT ). As

N ′
coll−NA for central collisions is larger, than for peripheral

collisions, we haveRCP (pT , y = 3) < RCP (pT , y = 0),

thus a further suppression occurs in agreement with experi-
mental data [108]. The results for the TMD forπ+, k+ andp
in Au-Au at

√
s = 200 GeV are in good agreement with the

Phenix data [109]. In Fig. 13, we show the ratios kaons/pion,
and proton/pion as a function ofpT at the two extreme cen-
tralities. The obtained values ofk as a function of the string
density increase as it was expected.

The experimental data on p+p in the range
√

s =23, 200,
630 GeV and 1.38, 7 TeV can also be described by the dis-
tribution of Eq. (63) [110]. In this case, the values ofk de-
creases with energy as expected. At higher energy and high
multiplicity k should increase [66].

Even though the parametrization (63) describes well the
data up to 5-10 GeV/c, most of the considerations concerning
the string fragmentation are only valid for low and interme-
diatepT . In order to include the highpT part of the spectrum
more refined study is necessary.

The differences between the baryon and meson spec-
trum are not only due to the mass differences, which results
〈p2

T 〉1M < 〈p2
T 〉1B . This effect only causes a shift in the max-

imum of the nuclear modified factorR, but keeps the height
at the maximum, contrary to the data. In the fragmentation
of a cluster formed of the overlapping of several strings, the
flavor properties follow from the corresponding properties of
the flavor of the valence partons of the end of the individual
strings, and hence the resulting flavor of the clusterF is the
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FIGURE 14. Scaling behavior of the charged hadron pt spectra presented inz (a) in p+p collisions and (b)pp̄ collisions with different energy
scales. The inset is the distribution of the ratio between the experimental data and the fitted results [116].

flavor composition of the individual stringsf as well as the
color composition. The clusters have higher color and dif-
ferent flavor ends. The fragmentation of a cluster will be by
means of the creation of a pairFF̄ , whereF andF̄ denote
the sets of flavor quarks and antiquarks of the end of the clus-
ter. After the decay, the two newFF̄ strings will be treated in
the same way decaying into moreFF̄ strings until they come
to objects with mass comparable to hadron masses, which
we identified with the observable hadrons by combining the
produced flavor with statistical weights. In this way, the pro-
duction of baryons and antibaryons will be enhanced with
the number of strings of the cluster. The additional quarks
(antiquarks) required to form a baryon (antibaryon) are pro-
vided by the quarks (antiquarks) of the overlapping strings
that form the cluster.

In some sense, the coalescence picture of particle pro-
duction is incorporated in a natural way. An effective way
of taking into account these flavor considerations can be seen
in Ref. [111]. Very often, it is used an exponential instead
of a gaussian for the decay of one string. Indeed, the ten-
sion of a cluster fluctuates around its mean value because the
chromo-electric field is not constant. Such fluctuations lead
to a Gaussian distribution of the string tension [109-113]:

dn

dpT
∼

∞∫

0

dx exp
(
− x2

2〈x2〉
)

exp(−λp2
T /x2), (72)

which give rise to the thermal distribution:

dn

dpT
∼ exp

(
−pT

√
2π

〈x2〉

)
, (73)

where〈x2〉 = π〈p2
T 〉1/F (ρ). The temperature is expressed

as [112,114]:

T (ρ) =

√
〈p2

T 〉
2F (ρ)

. (74)

Now the total TMD is changed and instance of the gamma
distribution in Eq (57) a Tsallis type distribution is obtained,
namely:

f(pT ) =

(
1 +

√
f(ρ)pT

k〈pT 〉1

)k

. (75)

There are several scaling properties found in TMD related to
string percolation. The experimental data for p+p collisions
exhibit a universal behavior in a suitable variablez = p/B
[115,116]. Indeed, the TMD of p+p andpp̄ at all energies are
at the same curve as it is shown in Fig. 14. The parameter
B is found proportional to1/F (ρ) and therefore increasing
with energy. A similar scaling is found in Au-Au collisions
[117] at different centralities.

The experimental data on the meanpT as a function of
the multiplicity show that in p+p, pA and AA collisions all
of them grow, being larger in p+p than in pA and in AA col-
lisions. In PbPb the rise of meanpT with multiplicity is flat-
tened above a certain low multiplicity. The same occurs at
pPb although in this case is flattened at higher multiplicity.
This behavior is understood as a consequence of Eq (63). In
fact, the factor1/F (ρ) is responsible of the rise of〈pT 〉 with
multiplicity because grows with multiplicity. The flattening
of PbPb and pPb is due to the dependence ofk on the string
density. In PbPb for most of the multiplicities, the corre-
sponding string densities are above the percolation threshold.
In this regionk grows withρ, and according to Eq. (63), the
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rise is lowered. In the case of p+p collisions, on the contrary,
the corresponding string densities lie below the critical den-
sity. In this region,k is a decreasing function ofρ, hence
there is not flattening. We expect that at higher energy, larger
than 14 TeV, the critical density will be reached, even in p+p
collisions.

3.6. Transverse momentum fluctuations

The event by event fluctuations of thermodynamical quanti-
ties as the temperature were proposed as a probe for the de-
confined phase. Due to that, the study of the fluctuations on
the meanpT is very interesting. These fluctuations are mea-
sured using the observables:

FpT
=

wdata − wrandom

wrandom
, w =

√
〈p2

T 〉 − 〈pT 〉2
〈pT 〉 , (76)

and the correlation between the transverse momemtum:

〈∆pTi, ∆pTj〉
= Cm ' 2FpT (〈p2

T 〉 − 〈pT 〉2)/〈pT 〉〈N〉, (77)

where∆pTi = (pTi − 〈pTi〉). And:

M(pT ) =
1∑nev,m

k=1 Nacc,k

nev,m∑

k=1

Nacc,k∑

i=1

pTi, (78)

andCm/M(pT ). The last observable is used because sup-
presses the statistical fluctuations in string percolation. The
observableFpT , using Eq. (77) is given by [118]:

FpT
=

√√√√Ns〈pT 〉21µ1 − 2N
3/4
s (Sn

S1
)1/4〈pT 〉1〈pT 〉µ1 + Ns(Sn

S1
)1/2〈pT 〉2µ1

(Ns
S1
Sn

)1/2〈pT 〉21 − 2(Ns
S1
Sn

)1/4〈pT 〉1〈pT 〉+ 〈pT 〉2
− 1. (79)

In Fig. 15, we show the result forCm in Pb-Pb collisions
together the ALICE data. In Figs. 15 and 16, we show the re-
sults forFpT

, Cm,
√

Cm/〈pT 〉 for p+p collisions at 0.9, 2.76
and 7 TeV together the CMS data. In Fig. 16, we show the
results for

√
Cm/M(pT )m as a function of the multiplicity

for p+p at different energies with the experimental data. It
is observed a change in the slope at high multiplicities that
is reproduced in the string percolation, but not for the usual
Monte Carlo code models. In string percolation, the change
of slope arises naturally due to the formation of a large cluster
above a critical density (corresponding to a high multiplicity)
and therefore, suppression of the fluctuations.

3.7. Forward-backward correlations

The width of the KNO scaling shape is related to the fluc-
tuations on the number of strings or the number of clus-
ters (independent color sources). This width is also related
to the forward-backward (F -B) correlations. These correla-
tions can be described by a linear approximation:

〈nB〉 = a + bnF , (80)

wherenF is the number of particles observed in the forward
(backward) rapidity window and the slopeb measures the cor-
relation forward-backward:

b =
〈nF nB〉 − 〈nF 〉〈nB〉

〈n2
F 〉 − 〈nF 〉2 . (81)

Usually, theF andB rapidity intervals are taken separated
by a central rapidity window|y| < yc in such a way that the
short range correlations are eliminated (yc = 0.5) because its
range is less than unit of rapidity. In any multiple scattering
model, the origin of long range correlations is the fluctuations

in the number of elementary scatterings [50,119-124]. Let us
consider symmetricF andB intervals and havingN strings
which decay intoµ1 particles. Then, the slopeb can be split
into short range (SR) and long range (LR) correlations [121]:

b = bSR + bLR =
δF µ1

1 + δF µ1[ωN + Λ(0)]
Λ(yFB)

+
δF µ1

1 + δF µ1[ωN + Λ(0)]
, (82)

whereωN is given by:

ωN =
〈N2〉 − 〈N〉2

〈N〉2 . (83)

Λ(yFB) and δF are the correlation function of one string
with rapidity separationyFB = yF − yB and the accep-
tance of theF or B rapidities, respectively. We also take
δF = ∆yF = ∆yB . For large rapidity window gap between
the F and B intervals, there are not long range correlations in
a single string, thenΛ = 0 andb becomes:

b =
1

1 + 1
δF µ1ωN

. (84)

At low energy, there are not fluctuations in the number of
strings,i.e., ωN → 0, and according to Eq. (84),b → 0.

As the energy or the centrality of the collisions increases,
ω increases as well asb. This behavior can be turned as a
consequence of the formation of a large cluster of overlap-
ping strings and consequently, a decreasing of the number of
independent color sources. Notice that if we fix the multiplic-
ity, we eliminate many of the possible string fluctuations and
therefore,b will be smaller. In CGC, the main contribution to
long range correlations comes from the diagram of Fig. 17,

Rev. Mex. Fis.65 (2019) 197–223



212 I. BAUTISTA, C. PAJARES, AND J. E. RAḾIREZ

FIGURE 15. Scaling behavior of the charged hadronpT spectra
presented inz (a) in p+p collisions and (b) p̄p collisions with differ-
ent energy scales. The inset is the distribution of the ratio between
the experimental data and the fitted results.

which only contributes to short range correlations in such a
way that for a large rapidity gap betweenF andB intervals
we have [125-127]:

b =
1

1 + cα2
s

, (85)

wherec is a constant independent on the energy and central-
ity degree. As the strong coupling constant,αs, decreases
with energy and with centrality,b increases. This behavior is

FIGURE 16. Preliminary results for
√

Cm/M(pT ) as a function
of the multiplicity for p+p at different energies as well as Pb-Pb
collisions at 2.76 TeV together with the experimental data.

FIGURE 17. The leading orden diagram which induces long range
correlations in rapidity. The source of one nucleus is given by thex
and the other by theo. The produced gluon is denoted by the curled
line.

very similar to the one described above for string percolation.
The analysis ofF -B correlations has been extended not only
to two rapidity separated windows, but also to different az-
imuthal windows which help to separate short and long range
correlations [121]. In this case, the coefficientb is given by:

b = bSR + bLS =
δF µ1

1 + δF µ1[ωN + Λ(0, 0)]
Λ(yFB , φFB)

+
δF µ1

1 + δF µ1[ωN + Λ(0, 0)]
, (86)

where nowδF is the product of the acceptance on rapidity
and an azimuthal angle (δF = ∆yF ∆φF = ∆yB∆φB),
Λ(yFB , φFB) is the correlation function of the single string
at rapidities and azimuthal angles separation,yFB = yF −
yB , andφFB = φF−φB . In Fig. 18, it is shown the results of
a separation azimuthal angle of 0◦, 45◦ and 135◦ for p+p
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FIGURE 18. The forward-backward (F -B) correlation coefficient in p+p collisions at 7 TeV from reference [121].

collisions together the ALICE data at 7 TeV. The agreement
is good also at 0.9 and 2.76 TeV [121]. TheF -B correla-
tions have been studied not only for multiplicities in theF -
B intervals, but also for transverse momentum-multiplicity
(pT − n) and transverse momentum correlations(pT − p).
In the(pT − pT ) case, the asymptotic equation for the slope
coefficient is:

b =
ωρµF

ωρµF + 16γ
√

ρ
, (87)

where:

ωρ =
Dρ

〈ρ〉 , γ =
DpT

〈ρ〉2 , (88)

Dρ andDpT are the string density and transverse momen-
tum dispersions respectively,µF is the multiplicity of one of
the symmetric intervals, andγ is a dimensionless coefficient
which depends only of the form of the distribution. For a
Tsallis shape distribution,γ takes the value(k−1)/2(k−4),
which is related to the width of the distribution. In the case
of a thermal distribution its value is 1/2. In Fig. 19, is shown
the ALICE preliminary data for Pb-Pb collisions at 2.76 TeV
as a function of the centrality for a rapidity gap of 0.8 and a
rapidity width of 0.4. The data are in qualitative agreement
with the string percolation model [128,129] which predicted
a rise ofb with centrality up to around 30% decreasing above
this centrality value.

FIGURE 19. Dependence ofbp̄t−p̄t
corr on centrality clases 5% width

determined by the V0, ZDCvsZEM and CL1 estimators from AL-
ICE [165].

3.8. Underlying event of high pT particles and KNO
scaling

The study of the underlying effect can be useful to under-
stand the particle production mechanism. It has been shown
that selecting events of determinate highpT particle and look-
ing at the particles that are in the azimuthal range angles, say
π/3 < |∆φ| < 2π/3, the associated multiplicity distribution
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satisfy approximately KNO [130]. Let us show that this is a
rather general property which is satisfied by events of a de-
termined class of scatterings, for instance diffractive and non
diffractive or inelastic and elastic or soft and hard scatterings.
In a multiple scattering approach, there will be events that is
sufficient to have one elementary scattering of being of this
class to be the final result of this class. The non diffractive,
the inelastic and the hard events satisfy this requirement. It is
said that these events are only shadowed by themselves and
in fact, the evaluation of the cross section for these selected
events only appears the cross section of the elementary cross
section of these events, not the elementary cross section of all
kind of events [131]. Concerning the associated multiplicity
distribution to these events, it is shown that in terms of mul-
tiple scatterings, the original distribution and the new one are
related for a factorN which translate into a multiplicative
factorn in the multiplicity in such a way that [103-107]:

Pc(n) = nP (n)/〈n〉. (89)

If we go on the process of the selection of highpT particles,
we will have the chain:

P (x) → xP (x)/〈x〉 → · · · → xkP (x)/〈xk〉. (90)

In a similar way than the one in Sec. 3.5, the only stable
distributions under these transformation are the generalized
gamma function, being the gamma function the most simple
of them (see Eq. (51)). This function satisfies KNO scaling
if k is independent of energy. We have seen above thatk
increases with the energy for p+p collisions in the studied
range, as1/k controls the width of〈n〉P (n), this distribution
should be narrow as the energy increases as the experimental
data show.

3.9. Bose-Einstein Correlations

The Bose-Einstein Correlations (BEC) are very interesting
in order to determinate the extension of the source of multi-
particle production, as well as to know the degree of coher-
ence of the emitted particles. The correlation strength is char-
acterized by the parameterλ, which can also be interpreted
as a measure of the chaotically of the degree of coherence of
the collisions [132-134]. In this interpretationλ = 1 means
totally chaotic emission, whereasλ = 0 means radiation in a
coherent way. This interpretation should be taken with cau-
tion, because ine+e−, λ = 1 at energies where there are
not production of more than two jets and higher energies,λ
decreases with increasing multiplicity. These facts would ap-
parent indicate a systematic increase of the coherence from
e+e− to p+p collisions, which does not seem reasonable. The
experimental data onλ have been in different kinematic con-
ditions assuming different extrapolations, normalizations and
corrections which makes difficult the comparison with mod-
els, however, the ISR, SPS, RHIC and LHC data allow us to
distinguish some trends. First, for a not very large number of
collisions, the data of SPS with p and O as a projectiles show

a decrease ofλ with multiplicity [135-137]. As the number
of collisions increases no longer decreases, even it increases
reaching values of 0.6-0.7. At SPS energies, the values of
λ are larger at forward than at central rapidity. Notice that
the particle multiplicity is larger at central than in forward
rapidity. All these trends of data can be understood in the
framework of percolation of strings [138,139]. The strings
of the Lund type fragmentation according to totally chaotic
sources,λ = 1, and usually is assumed that there is not BEC
from particles emitted from different strings [140]. Under
this assumptions one can write:

λ = ns/nT , (91)

wherens is the number of identical particles pairs produced
from the same string andnT is the total number of identical
pairs produced in the same kinetic range ofpT andy. The
number of identical pairs produced by each cluster is:

ns =
1
2
µ2

1

〈
Ns∑

n=1

annSn

S1

〉
, (92)

and the total number of pairs of identical particles produced
is:

nT =
1
2
µ2

1

〈(
Ns∑

n=1

an
√

nSn

S1

)2〉
, (93)

wherean is the number of clusters withn strings. The nu-
merical results of the Monte-Carlo simulation that includes
energy conservation to different energies and collisions type
shows the right change of the behavior and approximate to the
scaling ofλ for string densities aroundρ ' 0.8 − 1, which
is in agreement with the experimental data, as is shown in
Fig. 20 [138].

The three body BEC have been also studied in percola-
tion [139], predicting the strength of the three particle BEC,
which is in good overall agreement with data [141].

FIGURE 20. Dependence ofλ on η for different nucleus-nucleus
collisions in the percolating strings framework taking into account
the energy-momentum of the strings. Each point represents a spe-
cific type of nucleus-nucleus collisions. Correlations are calculated
between identical pions fory1cm = y2cm = 0.5 and mT1 =
mT2 = 0.35 GeV/c2 [138].
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3.10. J/Ψ production dependence on the multiplicity

The ALICE collaboration has found a departure from linear-
ity on the dependence ofJ/Ψ production on the multiplic-
ity at very high multiplicity. This departure is larger at cen-
tral than a forward rapidity region. This behavior can be ex-
plained in the frameworks of string percolation [142]. In fact
assuming that as in any hard process, the number of produced
J/Ψ is proportional to the number of elementary collisions,
Ns, we have:

nJ/Ψ

〈nJ/Ψ〉
=

Ns

〈Ns〉 . (94)

From Eq. (35) we can write:

dN/dy

〈dN/dy〉 =
NsF (ρ)

〈Ns〉F (〈ρ〉) , (95)

thus:

dN/dy

〈dN/dy〉 =
(

nJ/Ψ

〈nJ/Ψ〉
)1/2

×
(

1− exp(−nJ/Ψ〈ρ〉/〈nJ/Ψ〉)
1− exp(−〈ρ〉)

)1/2

. (96)

At low multiplicities, Ns is small and the above equation
gives rise to a linear dependence:

nJ/Ψ

〈nJ/Ψ〉
=

dN/dy

〈dN/dy〉 , (97)

FIGURE 21. Results for p+p collisions in the central|y| < 0.9
rapidity range (dashed line) and forward2.5 < y < 2.4 (dotted
line), together with the experimental data for the central (circles)
and forward (squares) rapidly regions from the ALICE Collabora-
tion. The linear behavior (solid line) and the prediction for pPb
collisions (dashed-dotted line) at 7 TeV are also plotted [142].

FIGURE 22. Results without and withJ/Ψ suppression together
the experimental data.

therefore:
nJ/Ψ

〈nJ/Ψ〉
= 〈ρ〉

(
dN/dy

〈dN/dy〉
)2

. (98)

Note that the linear behavior changes to quadratic at high
multiplicities. In Fig. 21, we show the results together with
the experimental data [33], as well as the results for the for-
ward rapidity region together with the experimental data. In
the forward rapidity region we have less number of strings,
and as a consequence, the departure from the linear behavior
starts at higher multiplicity. In both cases, central and for-
ward rapidity region, a good agreement is obtained.

Notice that only there are two assumptions, namely, the
J/Ψ is produced by a hard mechanism and the attenuation
(saturation) of the increase of the multiplicity withNs. At
low multiplicity behaves proportional toNs, but at high mul-
tiplicities goes like

√
Ns. The departure of the linear behav-

ior is a consequence of this attenuation (saturation). At 14
TeV there is some possibility thatJ/Ψ melts [7], due to the
high density reached. In this case, there are not nuclear sup-
pression effects, then we assume that the suppression is pro-
portional to the collision area covered by strings. In Fig. 22
we show the results without and withJ/Ψ suppression to-
gether the experimental data. TheJ/Ψ suppression could be
clearly seen by looking at the dependence on the multiplicity
of the ratio between theJ/Ψ production and events with a
high pT particle (thus with a linear dependence onNs and
consequently on the multiplicity). The result for this ratio is
shown in Fig. 23.

3.11. IncoherentJ/Ψ photoproduction

The incoherent photo production ofJ/Ψ has been studied
experimentally [143,144] and theoretically [145]. The cross
section ofPbp → PbJ/ΨX probes the fluctuations on the
number of elementary scattering of the dipoleqq̄ (obtained
from the virtual photon) on the partons of the proton via the
reactionγ(q2)p → J/ΨX. The increase of these fluctuations
gives rise to an increase of the cross section in agreement with
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FIGURE 23. Scale ratio ofJ/Ψ production over the total charged
particle production.

FIGURE 24. Comparison of the multiplicity dependence of the rel-
ative yield ofΩ, Θ andΛ baryons normalized to pion multiplicity
for p+p and pPb collisions for the model (up) and experimental data
(bottom) [146].

data, but as the energy increases, the number of elementary
collisions increases and, assuming that these collisions have
a transverse size around 0.3fm, they start to overlap forming
clusters of these hot spots. Above a critical point, the num-
ber of independent sources decreases, and so the fluctuations,
and therefore the cross section. Above a critical percolation
energy (around 500 GeV), the cross section starts to decrease.
This prediction can be tested at LHC experiments.

3.12. Strangeness enhancement

The overlapping of the strings modify the strength of the
color field, and hence the string tension of the formed cluster.
Due to this, the decay of these clusters produced naturally an
enhancement of the strangeness [146-148]. In addition to this
effect, as the clusters have at their extremes complex flavorF
andF̄ formed from the individual flavors of the single strings,
the decay will produce more baryons and anti-baryons than
in the fragmentation of single strings. There is not any quan-
titative evaluation of this effect in the production of strange
baryons. In the case of the strangeness enhancement with
multiplicity seen in p+p collisions [149], a simplified model
of string percolation which taken into account only the dif-
ferent string tension of the cluster is able to describe qualita-
tively the data [146]. In Fig. 24 are shown the model results
(up) and the experimental data (bottom).

4. Azimuthal dependence of the momentum
distributions

4.1. Collective flow and ridge structure

The clusters formed by the strings have an asymmetric form
in the transverse plane and acquires dimensions comparable
to the nuclear overlap. This azimuthal asymmetry is at the
origin of the elliptic flow in string percolation. The partons
emitted at some point inside the cluster have to pass through
the strong color field before appearing in the surface. The
energy loss by the parton is proportional to the length, and
therefore, thepT is of the particle will depend on the di-
rection of the emission as shown in Fig. 25. Monte-Carlo
simulation has been done taking into account this energy loss
[150]. The results of this simulation for the different harmon-
ics [150,151]

FIGURE 25. Scheme of the azimuthal dependence modify by the
escape probability of a parton on the nuclear overlap [152].
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FIGURE 26. Comparison between the prediction of percolation
model (red stars and blue squares) and the experimental data (error-
bars in green and pink) for

√
s = 200 GeV and

√
s = 2.76 TeV

(centralities 10%-20%) [153].

are in reasonable agreement with experimental data on the
pT and centrality dependence. The azimuthal dependence in
this way is very similar to evaluate the probability to escape
a parton of the nuclear overlap from the initial clusters loca-
tion. One way of doing that is defining:

Rφ =
RA sin(φ− α)

sin α
, α = arcsin

(
b

2RA
sin φ

)
, (99)

where b is the impact parameter. We also defineρφ =
ρ(R/Rφ)2, and substituting in thepT distribution, we obtain:

f(F (ρφ),p2
T ) ' f(F (ρ), p2

T )

×
[
1 +

∂ ln f(F (ρ), R2)
∂R2

(R2
φ −R2)

]
. (100)

Thus, the elliptic flow can be computed as follows:

v2(p2
T ) =

2
π

π/2∫

0

dφ cos(2φ)

×
[
1 +

∂ ln f(F (ρ), R2)
∂R2

(R2
φ −R2)

]
. (101)

Note that the latter is an analytical close expression for all
energies, centralities, projectiles, and targets.

The transverse momentum dependence ofv2 was com-
puted using Eq. (101) for Pb-Pb at 2.76 TeV and Au-Au at
200 GeV for 10 - 20% centrality is shown in Fig. 26 together
the experimental data. A good agreement is also obtained at
all centralities and rapidities [152-154], as well as the hierar-
chy onv2 of π, k andp. The ridge structure was seen first at
RHIC in Au-Au and later at LHC in Pb-Pb collisions. This
structure has been also observed in p+p and pA collisions at
high multiplicity at LHC, as it was anticipated by string per-
colation [155].

In string percolation correlations can arise from the su-
perposition of many events with different number and type

FIGURE 27. Correlation coefficientC(φ) for p+p collisions at 7
TeV with triple multiplicity [156].

FIGURE 28. Correlation coefficientC(φ) for p-Pb collisions at
5.02 TeV for central collisions compared to the data (ZYAM pro-
cedure) [156].

of string. In this way, there appears long range correlations
in rapidity. However, passing to the azimuthal dependence,
if the emission of strings is isotropic, the correlations due
to their distribution in different events will be also isotropic.
Also in the central rapidity region, the inclusive cross section
is approximately independent of rapidity. This generates a
plateau in they−φ distribution rather than a ridge, with only
a peak at smally andφ due to short range correlations. This
conclusion is also valid if one averages the inclusive cross
sections over all events with the resulting loss of azimuthal
angle dependence. So, the ridge can only be obtained in an
event by event basis. In this way we performed our evalua-
tions [154].

In Fig. 27, we show the results [156] forC(φ12) for event
with triple multiplicity than minimum bias in p+p collisions
at 7 TeV compared to the experimental data. In Fig. 28, we
show the results for central pPb at 5.02 TeV compared to the
data and in Fig. 29, the results for Au-Au 0%-10% of cen-
trality at 200 GeV and its comparison with experimental data
[156]. An overall agreement is obtained in spite of the ap-
proximations done in the computation.

Rev. Mex. Fis.65 (2019) 197–223



218 I. BAUTISTA, C. PAJARES, AND J. E. RAḾIREZ

FIGURE 29. Correlation coefficientC(φ) for Au-Au at 200 GeV
for 10% of the most central events against the experimental
data [156].

In the case of p+p collisions, to obtain the ridge structure,
we need to consider high multiplicity events (three times the
minimum bias multiplicity shown in Fig. 29). This is due
to the fluctuations needed to have sizable long correlations
which are only obtained for these events. These fluctuations
are also crucial to describe the higher harmonics of the az-
imuthal distributions.

We can conclude that string percolation is able to describe
the ridge structure seen in p+p, pA and AA collisions. The
ridge is obtained from the superposition of many events with
different number and types of clusters of strings. There is not
any essential difference between high multiplicity p+p for pA
collisions and AA collisions. The collective flow is obtained
from the configuration of the initial state as clusters of over-
lapping clusters and the interaction of the produced partons
with the color field of the clusters. This interaction could be
interpreted as final state interaction, but as far as the parton
have these interactions before hadronization, it should be re-
garded as well as initial state interaction. In the production
of heavy particles, due to their short formation time, they can
be formed before than the parton get out the surface collision
area. This is certainly true for central heavy ion collisions. In
this case, the energy loss by the parton would be smaller, and
thus the elliptic flow. As the elliptic flow for central collisions
is small, the effect is difficult to be observed.

4.2. Elliptic flow scaling and energy loss

In Sec. 3.3, we discussed the quenching of lowpT partons. A
parton emitted from the decay of a cluster with tensiont and
momentump due to the energy loss in its way to get out the
overlap collision area, obeys the distribution:

P (pT , φ) = C exp(−pT /T ) exp(−8p
2/3
T T 1/3l(φ)). (102)

Here the temperature,T , is proportional to the squared root
of the string tensiont. The departure from the thermal dis-
tribution is due to the quenching formula in Eq. (38). The
lengthl(φ) is the length of the path needed by the parton to
get out.

FIGURE 30. v2 scaled byε1QA
s L for 10-20%, 20-30%, 30-40%

and 40-50% Au-Au collisions at 200 GeV and Pb-Pb collisions at
2.76 TeV vsτ . The dashed black line is a fit to data according to
aτ b with a = 0.126 ± 0.0076 andb = 0.404 ± 0.025, solid blue
line corresponds toτ1/3 [157].

We will take proportional to the product of the eccentricity of
the overlap area andL, which is the length independent of the
eccentricity that we will take proportional to(1 − N

1/3
A )/2,

the number of collisions of a parton with a nucleus. We define
the eccentricity as:

ε =
2
π

π∫

0

dφ cos 2φ
R2 −R2

φ

R2
. (103)

We expect that the elliptic flow were proportional to the
strength of the quenching, so:

v2 ∼ p
2/3
T T 1/3Lε. (104)

Using the dependence ofQs on the energy and centrality
[154] and takingT proportional toQs, we have that [157]:

v2

QA
s εL

∼
(

pT

Qs

)2/3

= τ1/3, (105)

where we have choice, the scaling variableτ = p2
T /Q2

s. In
Fig. 30, the experimental data of Phenix [158] and ALICE
[159] at different centralities are shown versus the scaling
functionτ1/3. Also, the best fit of the formtb is shown, giv-
ing a value ofb=0.404, which is not very different from 1/3.
Taking into account the crude approximations done in deriv-
ing the scaling formula Eq. (104), the result is very remark-
able, confirming the quenching of partons inside the overlap
surface of the colliding objects.

5. Thermodynamics of string percolation

The thermodynamics of the string percolation can be ad-
dressed by extracting the temperature from the transverse
momentum distribution. We also can extract the suppression
factorF (ρ), and hence, the local initial temperature, as well
as the Bjorken initial energy densityε, which are given by
[113,112]:

T =

√
〈p2

T 〉1
2F (ρ)

ε =
3
2
〈mT 〉
Sτp

dN

dy
, (106)
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FIGURE 31. Energy densityε/T 4 vsT/Tc.

whereS is the overlap area andτp is the production time, that
we takeτp = 2.4~/〈mT 〉 [160].

In Fig. 31, we plot the obtained energy density overT 4

as a function ofT/Tc together the lattice result. Notice that
T , which characterizes the percolation clusters, measures the
initial temperature of the system, since the clusters cover
most of the area of the collision; this local temperature be-
comes a global temperature. In this way, the critical string
density corresponds to the critical temperature. In relativistic
kinetic theory, the ratio between the shear viscosity and the
entropy density is give by [161]:

η

s
=

Tλmfp

5
, (107)

where the mean free path isλmfp ∼ 1/nσtot, beingn the
number density of a free gas of quarks and gluons, andσtot

the transport cross section. In string percolation, the density
numbers is the effective number of sources per unit of vol-
ume isn = Nsources/5L [55], whereL is the longitudinal
string length∼1 fm. The effective number of sources is the
area covered by strings(1−exp(−ρ))S divided by the area of
one effective stringF (ρ)S1. On the other hand, the transport
cross section is the area of the effective string. Collecting all
these, we have:

η

s
=

TL

5(1− exp(−ρ))
. (108)

In Fig. 32, we show the behavior ofλmfp, T andλmfpT as
a function of the string density. In Fig. 33, we show the ratio
η/s as a function of the temperature. In the same figure are
plotted evaluations in the case of weak QGP and string quark
gluon plasma (sQGP), as well as AdS/CFT result [18].

The arrows marks are the result of string percolation for
Au-Au and Pb-Pb at RHIC and LHC energies. Belowρc as
the temperature becomes close toTc, the string density in-
creases and the area is filled rapidly andλmfp andη/s de-
crease sharply. AboveTc, the area is not covered as fast and

FIGURE 32. λmfp, T andλmfpT as functions of the percolation
density parameterρ.

FIGURE 33. Shear viscosity ratioη/s vsT/Tc.

the relatively decreasing ofλmfp is compensated by the ris-
ing of temperature, resulting in a smooth increase of theη/s.
The behavior ofη/s is governed by the fractional are covered
by strings, what is not surprising becauseη/s is the ability to
transport momenta at large distances and that has to do with
the density of voids in the matter. Notice that the values of
the ratio for highT values approach the weak coupling limit.

Moreover, the mean value of the trace of the energy mo-
mentum tensorTµ

µ = ε − 3P is a measure of the deviation
of the conformal behavior, and thus, identifies the interaction
still present in the medium. In a classical theory with mass-
less quarks vanishes, but in any quantum field theory is not
zero, because the scale needed to be renormalized, breaking
the conformal symmetry. It is the well known trace anomaly.
We find that the reciprocal ofη/s is in quantitative agreement
with the trace anomaly over a wide range of temperatures.
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FIGURE 34. Comparison between the trace anomaly of the energy
momentum tensor and inverse of theη/s ratio. Note that both vari-
ables have a maximum value at the same temperature point.

The minimum corresponds to the maximum of(ε − 3P )/T
as it is seen in Fig. 34.

On the other hand, it is possible to determine the speed of
sound,cs, by assuming the 1D Bjorken expansion, using the
energy density, the initial temperature, and the trace anomaly
given by the string percolation. Starting from the equations:

1
T

dT

dτ
= −c2

s

τ
,

dT

dε

dε

dτ
=

T

τ
, (109)

whereτ is the proper time andcs is the sound speed. Since
s = (ε + P )/T and∆ = (ε− 3P )/T 4, one gets:

dT

dε
=

c2
s

s
. (110)

From the above equations, it is possible writecs in terms of
ρ in the following way:

c2
s = −1

3

(
exp(−ρ)
F (ρ)2

− 1
)

+ 0.0191
(

∆
3

)(
exp(−ρ)
ρF (ρ)4

− 1
ρF (ρ)2

)
, (111)

whereF (ρ) is the scaling function in Eq. (34). In Fig. 35,
we showcs as a function of the temperature. It is observed a
very good agreement with lattice calculations.

Another interesting thermodynamic variable which can
be determined is the bulk viscosity. Starting from [162]:

ηb

τΠ
=

(
1
3
− c2

s

)
(ε + P )− α

p
(ε− 3P ), (112)

whereτΠ is the corresponding relaxation time. Substituting
the entropy density and the trace anomaly in the latter, we
found that:

ηb

τΠs
=

(
1
3
− c2

s

)
T − α

9
∆T 4

s
. (113)

FIGURE 35. Squared sound speed as a function ofT/Tc.

FIGURE 36. Ratio between the bulk viscosity and the entropy den-
sity as a function ofT/Tc.

Note that this last expression depends on the sound speed,
trace anomaly and entropy density, which has already been
computed in the string percolation context. In Fig. 36, we
plot the bulk viscosity over the entropy density as a function
of the temperature, which has a maximum close toTc.

6. Summary

The string percolation describes successfully most of the ex-
perimental data in the soft region, namely, rapidity distri-
butions, probability distributions of multiplicities and trans-
verse momentum, strength of BE correlations as a function
of multiplicities, forward-backward multiplicities aspT cor-
relations, strangeness enhancement, elliptic flow and ridge
structure.

The string percolation, although is not derived directly
from QCD, has a clean physical ground and it has the funda-
mental QCD feature. The non abelian character is reflected
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in the coherent sum of the color fields which gives rise to an
enhancement of the meanpT and a suppression of the multi-
plicity. The confinement of the fields is reflected in the small
transverse size of the strings, as well as the transverse cor-
relations length. The scaling observed in the transverse mo-
mentum distribution is a consequence of the invariance under
the size of the clustersof strings.

The collective behavior of the multiparticle production
has its origin in the cluster configuration formed in the ini-
tial state of the collisions, followed by the interactions be-
tween the produced partons with the color fields, giving rise
to energy loss. Due to that, the elliptic flow satisfies an uni-
versal scaling law valid for all centralities and energies. At
low pT , the thermal distribution of thepT distributions allows
us to define temperature as a function of the string density,
which can be regarded, at large cluster size, as the global tem-
perature and compute the energy and entropy density, which
presents a jump at the critical temperature corresponding to
the percolation critical density. Using the kinetic transport
theory, it is shown that the ratio between the shear viscosity
over entropy density, which presents a minimum close toTc

(and a maximum in the bulk viscosity). The inverse of this
ratio is very close to the trace anomaly, including it smooth
decreasing with temperature. The behavior of the speed of
sound with temperature is also in agreement with lattice QCD
calculations. It is remarkable that string percolation repro-
duce the behavior of the main thermodynamics magnitudes
as functions of the temperature.
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