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We present an up to cubic curvature correction to General Relativity with the following features: (i) its 
vacuum spectrum solely consists of a graviton, (ii) it possesses well-behaved black hole solutions which 
coincide with those of Einsteinian cubic gravity, (iii) its cosmology is well-posed as an initial value 
problem and, most importantly, (iv) it entails a geometric mechanism triggering an inflationary period in 
the early universe (driven by radiation) with a graceful exit to a late-time cosmology arbitrarily close to 
�CDM.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is a well-known fact that higher curvature corrections tend 
to improve the renormalization properties of General Relativity 
(GR) [1]. It is also widely understood that GR should be seen 
as providing a low energy effective dynamics of the gravitational 
field. Therefore, higher curvature corrections are expected to be 
there and become relevant at somewhat higher energies. Depend-
ing upon the scale at which they become relevant, causality might 
be at stake pointing towards the existence of a richer structure in-
volving higher-spin fields [2].

Several modifications of gravity have been proposed throughout 
the years in order to provide a proper cosmological evolution (see 
[3,4] and references therein). Particularly important for all these 
alternatives is the explanation of the accelerated periods in our 
universe. Some of the proposals were successful explaining late-
time acceleration while others accounted for an inflationary period 
in the early universe. Currently, none of the proposals can both 
explain inflation adequately and evolve smoothly into a late time 
acceleration era without invoking extra degrees of freedom.

In this letter, we present an up to cubic curvature correction 
to General Relativity whose vacuum spectrum solely consists of a 
graviton. While it possesses a black hole solution coinciding with 
that of so-called Einsteinian Cubic Gravity [5–7], its cosmology is 
significantly different. Contrary to what turns out to be a generic 
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feature of higher curvature gravities, the set of Friedmann equa-
tions remain second order, thereby defining a well-posed initial 
value problem in a FLRW universe. Most interestingly, it entails a 
geometric mechanism triggering an inflationary period in the early 
universe with a graceful exit to a late-time cosmology arbitrarily 
close to �CDM.

2. The theory

Restricted to four space-time dimensions, it was recently shown 
[8] that there are four possible cubic Lagrangians, which can be 
constructed as linear combinations of the ten possible terms,
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ab ,
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a ,

L7 = Rab Rab R , L8 = R3 ,

L9 = ∇a Rbc∇a Rbc , L10 = ∇a R ∇a R ,

whose static spherically symmetric vacuum solutions are of the 
type ds2 = − f (r)dt2 + dr2/ f (r) + . . . and solve a single field equa-
tion E t

t = Er
r = 0 —at the quadratic level, the same conditions 

uniquely lead to the Lanczos-Gauss-Bonnet combination, which is 
a boundary term—. Two of them are actually zero, corresponding 
to the six-dimensional Euler density, χ6, and

L3 − 1
(L4 +L8) − 2(L5 +L6 −L7) = 0 .
4
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The remaining two can be chosen to be.1

P = 12L1 +L2 − 12L5 + 8L6 , (1)

C = L3 − 1

4
L4 − 2L5 + 1

2
L7 . (2)

Their dynamics in vacuum is free of ghosts and any kind of mas-
sive modes. It solely consists of a graviton [5]. For this reason, the 
Lagrangian P —discovered earlier— has been coined Einsteinian 
Cubic Gravity (ECG) [5]. The inclusion of C , although identified in 
[8], has not been considered so far in the literature for a reason: 
its equations of motion are identically null when evaluated on a 
black hole ansatz. This led to the misleading conclusion that C is 
somehow trivial and can be neglected.

The situation changes drastically, in fact, when one considers a 
cosmological scenario. If we consider a FLRW ansatz in the realm 
of ECG,

ds2 = −dt2 + a(t)2
(

dr2

1 − kr
+ r2d�2

)
, (3)

where d�2 is the metric of the unit round sphere, d�2 = dθ2 +
sin2 θdφ2, the resulting equations of motion for a(t) are fourth-
order. This may become problematic from the point of view of 
both dealing with a well-posed initial value problem and expe-
riencing a causal evolution. On the other hand, this is a standard 
issue in the realm of f (R) gravities [10], where it can be dealt 
with by converting it into an equivalent scalar-tensor theory; the 
fields doubling drives the dynamics into a system of second-order 
ordinary differential equations [11].

It is natural to ask whether the Lagrangian C can play a signif-
icant role to alleviate this problem —although trivial when evalu-
ated in a black hole ansatz, by its own it also leads to fourth-order 
differential equations for a(t). Interestingly enough, the answer 
turns out to be yes! There is a single combination of P and C that 
—while preserving all the nice features of ECG— leads to a cos-
mological scenario where the set of Friedmann equations remains 
second order; we call the resulting theory Cosmological Einsteinian 
Cubic Gravity (CECG),

S =
∫

d4x
√−g

[
1

2κ
(R − 2�) + β (P − 8C)

]
, (4)

which is characterized by a single parameter, β . Now, the propa-
gating physical modes and the effective gravitational coupling κeff

of such a higher curvature gravity can be obtained from the fast 
linearization procedure given in [12], where it is shown that, be-
sides the graviton, there may exist two massive modes, a ghosty 
graviton with mass mg and a scalar mode with mass ms . The val-
ues for mg , ms and κeff are model dependent. In the case of (4), 
the massive modes decouple, mg , ms → ∞, while

1

κeff
= 1

κ
+ 48β�2 ;

see Table 2 and eqs. (2.26) and (2.27) in [12]. These are the con-
ditions for the theory to be Einsteinian; i.e., free of massive and 
ghost-like propagating modes.2 Furthermore, among all cubic cur-
vature theories constructed from P and C , that governed by action 
(4) is the only one leading to a second-order ordinary differential 
equation for a(t) in a FLRW universe.

1 These Lagrangians are not to be confused with the two independent Riemann3

invariants whose coefficients can be fixed from the S-matrix [9]. In four dimensions, 
since χ6 vanishes, only one of these terms, L2, is non-trivial.

2 To be more precise, these modes do not propagate in vacuum. The theory may 
develop instabilities beyond the linearized regime or around other backgrounds.
3. Cubic cosmology

Let us thoroughly analyze the resulting cosmology. The field 
equations resulting from action (4) are

Gμν + EP
μν + EC

μν = κTμν, (5)

where Gμν is the Einstein tensor (including the cosmological 
term), while EP

μν and EC
μν result from the variation of P and C . 

After considering k = 0 for a flat spatial curvature in the metric 
(3), and plugin it into the equations of motion, we obtain a modi-
fied Friedmann dynamics:

H2
(

1 + 16βκ H4
)

= 1

3
(� + κρ) (6)

and

Ḣ = � − κ P − 3H2 − 48βκ H6

2 + 96βκ H4
, (7)

where H ≡ ȧ/a and our matter source is an ideal fluid; in natural 
units:

Tμν = ρuμuν + P
(

gμν + uμuν

)
. (8)

From (6) and (7) we can recover the standard Friedmann equations 
by setting β = 0. The Hamiltonian constraint (6) is used to verify 
the numerical solution of equation (7), which is a first order ordi-
nary differential equation that can be written as Ḣ = F (H, ρ, P ). 
The initial conditions can be set to H(ain), P (ain) and ρ(ain) for 
some value ain �= 0 (just like in GR). Taking β � 0 we have no di-
vergencies and the usual theorems for differential equations guar-
antee a well-posed initial value problem.

It is worth noticing at this point that we are bound to have 
a different evolution for H(t) than the standard one, without 
the need of adding any kind of scalar field or effective energy-
momentum tensor whatsoever. By substituting (6) in (7) we obtain

ä

a
= H2 − κ(P + ρ)

2 + 96βκ H4
. (9)

For the inflationary period and for late time acceleration, ä > 0. In 
the GR framework, we need to invoke some field such that P < 0
in order to obtain a positive acceleration at early times [13]. In the 
same sense works the addition of the cosmological constant for 
the late time acceleration: it is necessary in order to prevent the 
deceleration of the universe.

In the present proposal, the evolution of the acceleration de-
pends on the factor 96βκ H4, which modules the evolution of 
κ(P + ρ) and allows H2 to dominate for some periods, making 
it possible to obtain inflation and late time acceleration in purely 
geometric terms. If β were negative3 we would reach a singularity 
in the past; Ḣ would not be determined at that point, the initial 
value problem would be ill-defined and the Kretschmann scalar 
would diverge.4 Thereby, we choose β > 0.

In alternative theories of gravity, it is a widespread habit to de-
fine an effective energy-momentum tensor, in such a way that the 
corrections can be seen as the addition of some kind of fluid. Such 
fluid should be tested in order to avoid ill behaviors (e.g., ghosts 
or massive modes). In our proposal, this is not necessary: with the 
simple re-definition of the critical density, accordingly to (6),

3 Notice that this is precisely the sign necessary to obtain well-behaved black 
hole solutions in this theory [6,7]. We thank Pablo Bueno for pointing this to us.

4 See, for example, the analogous case of Lovelock cosmology in [14].
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Fig. 1. Comparison of the age of the universe where A is GR, while B and 
C are CECG with β = 10−16 and 10−17, respectively. In all cases we con-
sider the �CDM framework and the currently accepted values for �0

i . The 
interior frame displays a zoom into early time.

ρc = 3H2

κ
(1 + 16βκ H4) , (10)

we avoid the inclusion of extra components. In order to explore the 
capability of this theory to trigger a viable universe and whether it 
can provide both an inflationary period and late time acceleration, 
we numerically integrate the field equations. As usual, the evolu-
tion of the matter content goes like ρm = ρ0

ma−3 with Pm = 0 and 
radiation goes as ρr = ρ0

r a−4 with Pr = 1/3ρr . From eq. (6) it can 
be seen already that a(t) ∝ t3/2 at early times if β > 0.

4. Cosmological exploration

In the present letter we want to explore robust features of our 
proposal leaving for the future a more detailed exploration of the 
full parameter space. Therefore, we will consider and compare just 
three cases that give us enough pieces of evidence to reach generic 
and interesting conclusions: A. General Relativity (i.e., β = 0), B. 
CECG with β = 10−16, and C. CECG with β = 10−17. In all cases we 
consider the �CDM framework and the standard values for �0

m =
0.3089, �0

r = 8.4 × 10−5 and �0
� = 0.691 found by Planck 2015 

[15].
We performed a numerical integration of the field equations (7)

and analyzed the following observables: the age of the universe, 
its early and late time acceleration, the evolution of the matter, 
radiation and dark energy densities, and the evolution of the Hub-
ble parameter for low values of the redshift z. The integration is 
performed from the present to the past, the values for β were cho-
sen just for the sake of comparison against the GR predictions; it 
must be ultimately obtained from experimental data. The results 
are plotted and discussed below.

Under the present proposal the age of the universe is affected 
in an interesting direction when compared to General Relativity. As 
shown in Fig. 1, both in the B and C scenarios, a(t) displays a char-
acteristic shape that generically makes this theory able to produce 
an accelerated epoch at early times, a(t) ∼ t3/2. This is confirmed 
in Fig. 2, where we analyze the acceleration given by (9). We dis-
play the acceleration at two selected ranges, from 0 < a/a0 < 0.02
where we can notice the evolution in comparison to GR. In the 
cases B and C the acceleration comes from very large positive val-
ues, then goes to negative and from there on the evolution fits the 
one followed in GR. For late-times, a/a0 > 0.02, the evolution is 
practically the same as in GR+�CDM; the comparison at these val-
Fig. 2. Big frame: Evolution from early to late time acceleration for the A, 
B and C cases. Interior frame: Early time acceleration for B and C cases 
(log − log scale).

Fig. 3. Evolution of the densities �m , �r and �� for the B (top panel) and 
D (bottom panel) cases (both plotted using dashed lines) in comparison to 
General Relativity, which is displayed in solid-lines.

ues of z will make more sense when we explore the evolution of 
the Hubble parameter H/H0 (see Fig. 4).

The interior frame of Fig. 2 shows the evolution at early times 
for the cases B and C. In both scenarios the acceleration goes like 
ä ∼ a−1/3 during several e-folds. This evolution is limited on phys-
ical grounds just by the Planck length, lP , otherwise the singularity 
a = 0 would apparently be reached. The inflationary period in this 
theory transits smoothly to the standard behavior in GR at late 
times, solving in this way the graceful exit problem.

We show the evolution of the densities �m , �r and �� for 
two cases in Fig. 3, the one we called B and, in order to trigger 
the discussion, an extra case D with �� = 0, β = 10−3, �0

m = 0.9
and �0

r = 0.1. This way we are able to notice the importance 
of the cosmological constant in the present framework. We split 
them into two panels in order to show the direct comparison of 
both cases B and D with GR. From the top figure it is clear that 
the evolution of �m , �r and �� are, basically, the same in A 
and B. Matter dominated epoch occurs and �m = �r is reached 
at the same value of z (or ln(a) in the case of the figure). Instead, 
when we consider the case D, the evolution of �m , �r and ��

go differently: even when matter domination is well behaved, the 
matter-radiation equality time is reached at lower values of z. Al-
though this can be seen as a reason to rule out this latter model, a 
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Fig. 4. Evolution of the Hubble parameter H/H0 for A, B and C cases.

thorough analysis of the parameter space seems necessary before 
reaching a definitive conclusion.

In order to have the insight to compare our predictions, at the 
background level, with observational data for late time cosmology, 
we compute H(z)/H0. Fig. 4 shows the evolution of the Hubble 
parameter for the cases A, B and C. As expected, they are arbitrarily 
close at late times, thereby making possible to match for instance 
with supernovae Ia observations [16,17]. For higher values of z (in 
the figure, z ∼ 150, but this value certainly depends on the choice 
of β), the evolution in cases B and C goes slower than the one in 
GR. Close to the CMB the values of H(z)/H0 for the cases B and 
C are very different from those obtained in General Relativity; this 
is simply telling us that a realistic5 β must be even smaller than 
10−17.

5. Discussion

In this letter we presented a novel gravitational theory which, 
while enjoying all the nice features of the recently proposed 
Einsteinian Cubic Gravity [5], possesses an additional remark-
able property concerning its cosmology: the scale factor obeys a 
second-order field equation in the case of an isotropic and homo-
geneous four-dimensional universe. The modification depends on 
a single parameter; it is purely geometric and has the potential 
to provide both an accelerated inflationary epoch at early times 
as well as a late time evolution that is arbitrarily close to GR in 
the �CDM framework. For these reasons we called it Cosmologi-
cal Einsteinian Cubic Gravity. Both the early and late time evolutions 
are phenomenologically viable provided the parameter β is suffi-
ciently small. In the past, the universe appears to have displayed 
accelerated expansion, a(t) ∼ t3/2; albeit a power law, a number 
of e-folds can be obtained from the instant when the scale factor 
was given by the Planck length, lP . The inflationary period has a 
graceful exit.

We have also briefly discussed a case in which the cosmological 
term vanishes in order to show that, despite of the expected diffi-
culties to deal with the late time cosmology, the matter-radiation 
equality time is reached at lower values of z than those cus-
tomarily expected (although these results depend on the choice 
of parameters —including the matter, radiation and dark energy 
densities— and a full analysis is required before arriving at cate-
gorical conclusions).

In comparison with the usual modifications of gravity proposed 
to solve cosmological controversies, the value of β in this theory 
is not just a parameter to be fixed by observations; in our case, 
it can be seen as a new fundamental gravitational constant. It is 

5 The world realistic should be taken with a grain of salt; we introduce a novel 
mechanism of geometric inflation that for large curvatures must certainly be com-
plemented by the introduction of the whole series of higher-curvature corrections 
[18] and possibly by the inclusion of a scalar field [19].
natural to expect that it originates from a UV complete theory of 
gravity as the result of an effective Wilsonian low-energy integra-
tion, albeit in such case we would also expect a whole tower of 
higher curvature corrections being equally relevant than the cubic 
terms (see, for example, [18]). On the other hand, the cubic ac-
tion studied in this article can be thought of as a modification of 
General Relativity valid on its own, without invoking a UV origin 
that we ultimately ignore. Further analysis should be performed in 
order to constrain β . Current observations of late time cosmologi-
cal tracers such as supernovae [20], cosmic chronometers [21] and 
baryonic acoustic oscillations [22,23], as well as the Cosmic Mi-
crowave Background [15], can be used to explore the best-fitted 
values of the parameters �0

m , �0
r , �� and β .

It is worth mentioning that the evolution of H(z) predicted in 
this theory might help in reducing the conflicting difference of 
∼ 3.5σ between the value of the Hubble constant, H0, predicted 
by Planck 2015 [15] and the one found when more local sources 
are analyzed (see, for example, [23]). On the other hand, a forecast 
could be cooked up in order to have ready-to-test predictions in 
the light of the releases of EUCLID [24] or DESI [25] experiments.

Finally, we must mention that different scenarios should be 
explored in order to pass other gravitational tests [26], and fur-
ther constrain the value of β in an independent way. For instance, 
the existence of compact objects has been an issue in some other 
modifications of gravity [10], and it is certainly a problem to be ad-
dressed in our currently proposed cubic theory. At this stage, our 
proposal should be understood as a novel mechanism whose phe-
nomenological implementation ultimately needs to be examined in 
greater detail.
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