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HIGHLIGHTS 

1. OMPs cometabolic biotransformation was proved with aerobic heterotrophs. 

2. OMPs biotransformation yield did not correlate with the heterotrophic activity. 

3. kbiol increased with the heterotrophic activity for most compounds. 

4. The primary carbon source and the OMPs followed a simultaneous removal. 
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ABSTRACT 10 

Several studies have shown that organic micropollutants (OMPs) are biotransformed 11 

cometabolically in activated sludge systems. However, the individual role of 12 

heterotrophs in the microbial consortium is still not clear, i.e., there is still a gap 13 

regarding the influence of the heterotrophic activity on the cometabolic 14 

biotransformation kinetics and yield of the OMPs. Aiming to answer these questions, 15 

experiments with increasing primary substrate concentrations were performed under 16 

aerobic heterotrophic conditions in a continuous stirred tank reactor operated at several 17 

organic loading rates (OLR) with fixed hydraulic retention time. Moreover, the 18 

individual kinetic parameters were determined in batch assays with different initial 19 

substrate concentrations using the sludges from the continuous reactor. A set of 15 20 

OMPs displaying a variety of physicochemical properties were spiked to the feeding in 21 

the ng L
-1

 - µg L
-1

 range. Results reveal that the biodegradation of the primary carbon22 

source and the biotransformation of the OMPs occur simultaneously, in clear evidence 23 

of cometabolic behaviour. Moreover, we conclude that the OMPs biotransformation 24 

kinetic constant (kbiol) shows a linear dependence with the OLR of the primary substrate 25 

for most of the compounds studied, suggesting that the heterotrophic activity seriously 26 

affects the OMPs biotransformation kinetics. However, under typical activated sludge 27 

systems operating conditions (hydraulic retention times above 8 h), their 28 

biotransformation yield would not to be significantly affected. 29 

Keywords: biotransformation kinetic constant; heterotrophs; pharmaceuticals; 30 

wastewater treatment plant; yield 31 
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1. INTRODUCTION32 

Organic micropollutants (OMPs) including industrial chemicals, pharmaceuticals, 33 

personal care products, pesticides and hormones are released daily and carried in 34 

residual waters from households, hospitals, industries and agriculture before they reach 35 

wastewater treatment plants (WWTPs) (Luo et al., 2014). WWTPs are only capable of 36 

removing them to a certain extent, depending on the compound and the process applied, 37 

and have become the main source of OMPs release to the environment (Kasprzyk-38 

Hordern et al., 2009). 39 

Since OMPs are present in WWTPs at very low concentrations, in the ng L
-1

 and g L
-1

40 

range, they are not capable of supporting microbial growth and, therefore, a primary 41 

substrate is required to induce the enzymatic action that allows OMPs biotransformation 42 

through cometabolism (Fischer and Majewsky, 2014). As a result, OMPs are 43 

biotransformed within the metabolic pathways of the microbial populations present in 44 

WWTPs (Alvarino et al., 2018a; Müller et al., 2013). The most common biological 45 

treatment in WWTPs is based on an activated sludge system, which typically involves 46 

heterotrophic and autotrophic nitrifying activities (Gernaey and Sin, 2013). The 47 

combination of nitrifiers and heterotrophs provides a broader range of enzymatic 48 

activities, helping to remove a wider variety of OMPs and to a higher extent. For 49 

instance, Fernandez-Fontaina et al. (2016) reported that the presence of aerobic 50 

heterotrophs enhanced the removal of sulfamethoxazole in activated sludge, and Men et 51 

al. (2016) determined that when the nitrifying population was inhibited the 52 

biotransformation of bromoxynil was considerably reduced. 53 

The action of heterotrophic bacteria is fundamental in most WWTPs since they are 54 

responsible for the biological removal of organic matter (Majewsky et al., 2011). In 55 

fact, some facilities are designed only with this purpose and the main microbial activity 56 
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they present is heterotrophic (Metcalf & Eddy, 2014). Moreover, the importance of 57 

heterotrophs is gaining interest in the novel conceptions of WWTPs, where the A-58 

stages, working at high organic loading rates (OLR) and short solid retention times 59 

(SRT), operate basically under heterotrophic conditions (Jimenez et al., 2015). 60 

Heterotrophs are fast growers, have short doubling times (K. Kim et al., 2020) and, 61 

compared with autotrophs, possess a more efficient metabolism and a higher diversity 62 

of organisms (Holtmann and Sell, 2002). Besides, Maeng et al. (2013) and Majewsky et 63 

al. (2010) have indicated that heterotrophic bacteria may be involved in the removal 64 

yield and degradation rates of OMPs when primary substrates are present. The positive 65 

effect of the heterotrophic metabolism on the biotransformation of multiple OMPs has 66 

been previously reported, as for diclofenac (Nguyen et al., 2019), 17-ethinylestradiol 67 

(Larcher and Yargeau, 2013) and ibuprofen (Alvarino et al., 2018a), among others. 68 

Furthermore, Fernandez-Fontaina et al. (2016) even showed that heterotrophs can be 69 

more favourable than autotrophs for biotransformation, as in the case of 70 

sulfamethoxazole. Nonetheless, due to the complexity of the heterotrophic metabolism, 71 

the contribution they make to the effectiveness and the biotransformation kinetics of the 72 

OMPs in WWTPs is still not clear. 73 

To characterize OMPs biotransformation, a pseudo-first order kinetic model is 74 

commonly assumed and the resulting biotransformation kinetic constant (kbiol) largely 75 

depends on the physicochemical properties of each particular pollutant (Lema and 76 

Suarez, 2017). In fact, Falås et al. (2016) concluded that kbiol varies more depending on 77 

the nature of the OMPs than on the experimental conditions. However, kbiol, as a kinetic 78 

constant, is also affected by the reactor operating conditions (such as temperature, pH 79 

and oxidation reduction potential), the presence and availability of co-substrates and the 80 

biochemical versatility of the sludge, as several studies demonstrate (Barceló, 2012; 81 
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Petrovic et al., 2013). For instance, Alvarino et al. (2016) reported kbiol values of 0.09 82 

and 0.05 L g VSS
-1

 d
-1

 for sulfamethoxazole under aerobic heterotrophic and 83 

autotrophic denitrifying conditions, respectively; Gulde et al. (2014) reported kbiol 84 

increments of one order of magnitude for atenolol at pH 8 compared to pH 6 under 85 

activated sludge conditions and Li et al. (2005) reported that 17-estradiol increased its 86 

kbiol value from 1.8 to 3.3 L g VSS
-1

 h
-1

 when increasing the temperature from 20 to 87 

35ºC in batch experiments with activated sludge. Nonetheless, conversely, there are so 88 

far no conclusive studies regarding the influence of the OLR and the heterotrophic 89 

activity on kbiol. 90 

The role of the OLR in the removal of the OMPs is, in fact, a topic of current and 91 

general interest in biological systems, but results still do not show a clear trend. For 92 

instance, Kora et al. (2020) showed that increasing the OLR improved the removal of 3 93 

out of 5 OMPs spiked in a methanogenic-aerobic moving bed biofilm reactor and 94 

Moya-Llamas et al. (2018) found better biodegradations for 6 OMPs at higher OLRs in 95 

a UASB reactor coupled to a MBR. On the contrary, in a moving biofilm bed reactor 96 

Abtahi et al. (2018) reported for some OMPs a maximum removal at the highest OLR 97 

tested and for others at the lowest OLR and Carneiro et al. (2020) reported a negative 98 

impact of increasing OLRs in the biodegradation of citalopram and sulfamethoxazole in 99 

anaerobic fix bed biofilm reactors. Finally, differently to these studies, Gonzalez-Gil et 100 

al. (2018b) found no correlation between variations in the OLR and the 101 

biotransformation of most OMPs in methanogenic digesters. 102 

The objective of the present study is to extend the knowledge behind OMPs 103 

biotransformation processes under exclusively aerobic heterotrophic conditions. More 104 

specifically, research is focussed on assessing the OMPs cometabolic biotransformation, 105 

aiming to determine the relationship between the intensity of the heterotrophic activity 106 
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and the OMPs biotransformation rate, with a particular focus on evaluating the effect on 107 

kbiol. The implications of understanding such linkage could be of great importance to 108 

design biological systems able to maximize OMPs removal. To reach these goals, a 109 

series of experiments in a continuous stirred tank reactor (CSTR) operated at different 110 

OLRs were performed, as well as batch experiments set with different initial chemical 111 

oxygen demand (COD) concentrations.  112 

 113 

 114 

2. MATERIALS AND METHODS 115 

2.1 Organic micropollutants 116 

This study focused on 15 OMPs commonly present in WWTPs that display a wide 117 

variety of chemical structures, physicochemical properties and applications (Table S3). 118 

The compounds were: the antibiotics erythromycin (ERY), roxithromycin (ROX), 119 

trimethoprim (TMP), sulfamethoxazole (SMX); the anti-inflammatories ibuprofen 120 

(IBP), naproxen (NPX); the neuro drugs carbamazepine (CBZ), diazepam (DZP); the 121 

musk fragrances celestolide (ADBI), galaxolide (HHCB), tonalide (AHTN); the biocide 122 

triclosan (TCS) and the endocrine disruptors estrone (E1), 17-estradiol (E2), 17-123 

ethinylestradiol (EE2). The OMPs were purchased from Sigma-Aldrich (Germany), 124 

except for the musk fragrances, which were acquired from Ventos (Spain). Depending 125 

on the substance, stock solutions were prepared in HPLC-grade acetone or methanol 126 

and stored at -20C. 127 

2.2 Aerobic Heterotrophic Reactor 128 

A 5 L continuously stirred lab-scale reactor (Figure S1), connected to a 2 L settler, was 129 

set at 25C and operated at four different OLRs (0.2, 0.4, 0.6 and 0.8 g COD L
-1

 d
-1

, that 130 
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resulted in 0.4, 0.6, 1.1 and 2.7 g COD g VSS
-1

 d
-1

), selected trying to cover typical 131 

conditions of activated sludge WWTPs (Lema and Suarez, 2017; Metcalf & Eddy, 132 

2014). Each experimental stage was maintained for one month and the OLR was 133 

changed by varying the organic matter concentration in the feeding while keeping 134 

constant the hydraulic retention time (HRT). The reactor was inoculated with sludge 135 

from a conventional activated sludge reactor of a WWTP near Santiago de Compostela 136 

(Spain). The WWTP was designed for 184000 population equivalents, receives an 137 

influent COD ranging between 0.2 - 0.7 g L
-1

 and operates with approximate SRT and 138 

HRT values of 10 d and 8 h, respectively. The feeding consisted of a synthetic mixture 139 

of sodium acetate and acetic acid as primary carbon source (in concentrations that 140 

ensured operation at neutral pH), ammonium chloride, potassium dihydrogen 141 

phosphate, calcium chloride and magnesium sulfate (Table S1). Acetate was selected as 142 

the carbon source for being an easily biodegradable substrate, optimal for microbial 143 

growth, as well as for being directly metabolized through the Krebs cycle (Nelson and 144 

Cox, 2017). Even though varying carbon sources lead to the expression of different 145 

enzymatic activities and to varying enzymatic regulation levels, the mineralization of 146 

organic matter typically requires the involvement of the Krebs cycle. Thus, the use of 147 

acetate ensures that the enzymatic activities present in the bioreactor are also present in 148 

WWTPs that deal with more complex carbon substrates. Moreover, other trace nutrients 149 

were also added to promote the growth of aerobic heterotrophic microorganisms (Table 150 

S2). The HRT was set to 1 d to provide sufficient time to the microorganisms to achieve 151 

the maximum biotransformation they are capable of, at the same time as minimizing 152 

possible changes in the microbial population caused by an HRT too long. Besides, to 153 

avoid nitrification, allylthiourea solution was added in the feeding with a concentration 154 

of 5 mg L
-1 

and the SRT was maintained below 8 d to minimize the presence of slow-155 
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growing microorganisms and favour the heterotrophic activity (Achermann et al., 2018). 156 

Aeration was provided to the reactor ensuring oxygen concentrations between 3.5 and 157 

7.5 mg O2 L
-1

. After a start-up period of a few days, selected OMPs were spiked in the 158 

feeding at a concentration of 10 g L
-1

, except for the musk fragrances and hormones, 159 

whose concentration was 40 and 1 g L
-1

, respectively. These concentrations were 160 

selected according to typical WWTPs influent concentrations (Table S3) (Besha et al., 161 

2017; Clara et al., 2011; Luo et al., 2014; Petrie et al., 2014; Tran et al., 2018a; 162 

Verlicchi et al., 2012; Verlicchi and Zambello, 2015).  163 

To monitor the operation of the reactor, the conventional parameters shown in section 164 

2.4.1. were determined 2-3 times per week. Also, once the steady state was reached at 165 

each OLR, inlet and outlet OMPs concentrations were measured (solid and liquid phase) 166 

by taking three samples from the feeding and the reactor vessel in three consecutive 167 

days. Each of the three inlet samples were taken exactly 24 h (the HRT set in the 168 

reactor) before the outlet sample in order to minimize possible slight changes in the 169 

influent OMPs concentration. 170 

2.3 Batch assays 171 

Batch assays were set to observe if variations in the heterotrophic microbial activity, 172 

determined as the maximum COD specific activity, affected the OMPs 173 

biotransformation kinetics and, particularly, the kbiol. The experiments were performed 174 

with COD initial concentrations of 0.2, 0.4, 0.6 and 0.8 g L
-1

 by varying the sodium 175 

acetate and acetic acid concentration and maintaining the micro and macronutrients 176 

used in the aerobic heterotrophic reactor. The biomass was taken from the aerobic 177 

heterotrophic reactor working at the respective OLRs to ensure that the microbial 178 

population was adapted to the experimental conditions of the assays. For each batch, 18 179 

flasks were prepared, three for each time point in order to have triplicates (0, 1, 3, 8, 24 180 
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and 48 h). At each of the mentioned times, 3 flasks were taken to determine the 181 

concentration of the OMPs. The volatile suspended solids (VSS) concentration was set 182 

in all cases to approximately 0.80 g VSS L
-1

 and the temperature and stirring were fixed 183 

at 25C and 150 rpm (Innova 4300 Incubator Shaker – New Brunswick Scientific). 184 

Neutral pH was ensured using punctual additions of NaOH or HCl when necessary and 185 

an oxygen concentration above 4.5 mg O2 L
-1

 was maintained during experimentation. 186 

The conventional parameters shown in section 2.4.1. were determined for each time 187 

point, except for the solids and nitrogen concentrations which were measured at times 0, 188 

24 and 48 h. OMPs analysis was performed (solid and liquid phase) by taking samples 189 

from the flasks at each time point. 190 

2.4 Analytical methods 191 

2.4.1 Conventional parameters 192 

Total suspended solids (TSS), VSS, total and soluble COD, ammonium (NH4
+
), nitrate 193 

(NO3
-
) and nitrite (NO2

-
) concentration, pH and temperature were measured according 194 

to Standard Methods (2012). Dissolved oxygen (O2) concentration was analysed using a 195 

multiparameter Hach HQ40d, with a luminescent optical probe (Ritter). In all cases, the 196 

analysis was performed in triplicate. Further information can be seen in Table S4. 197 

2.4.2 Organic micropollutant analysis 198 

Samples were centrifuged at 3500 rpm for 10 min (except those from the reactor 199 

feeding, lacking a solid fraction). Then, the supernatants and the feeding samples were 200 

prefiltered (AP4004705, Millipore) and filtered at 0.45 m (HAWP04700, Millipore). 201 

Lastly, solid-phase extraction (SPE) was performed with 200 mL samples and 60 mg 202 

Oasis HLB cartridges (Waters, Milford, MA, USA), as described in detail by 203 
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Fernandez-Fontaina et al. (2013). The quantification of antibiotics (ERY, ROX, SMX, 204 

TMP), neuro drugs (CBZ, DZP) and hormones (E1, E2, EE2) was performed using an 205 

Agilent G1312A liquid chromatograph with a binary pump and automatic injector HTC-206 

PAL (CTC Analytics) connected to a mass spectrometer API 4000 triple quadrupole 207 

(Applied Biosystems). Musk fragrances (ADBI, HHCB, AHTN), anti-inflammatories 208 

(IBP, NPX) and the biocide (TCS) were quantified using a gas chromatograph (Varian 209 

CP-3900) coupled with an ion trap spectrometer (Varian CG-2100). All OMPs analyses 210 

were performed in triplicate. Further information regarding the recoveries and limits of 211 

quantification and detection of the OMPs can be found in Table S5. Overall, the 212 

recoveries in the liquid matrix ranged between 70-95% and in the solid matrix between 213 

50-60%, while the limits of quantification and detection ranged between 0.006-0.505  g 214 

L
-1

 and 0.002-0.168  g L
-1

, respectively. 215 

The solid phase of the samples was frozen and lyophilized. Then, ultrasonic solvent 216 

extraction (USE) was performed based on the procedure described by Ternes et al. 217 

(2005). The USE technique consisted of three sequential extractions with methanol and 218 

two with acetone performed to freeze-dried samples of approximately 0.5 g. During 219 

each extraction, the samples were sonicated for 15 min and centrifugated at 1500 rpm 220 

for 5 min. Then, the supernatants were combined, filtered through glass wool, 221 

evaporated (TurboVap LV, Biotage) flowing nitrogen (200 kPa, 30 °C) and resuspended 222 

in water. Finally, SPE and OMPs quantification were performed as described for the 223 

liquid phase. The sorption for the OMPs was minimal for all compounds (less than 10% 224 

of the total removal), except for the fragrances which showed a 15% of sorption, 225 

approximately. These results are consistent with literature information (Alvarino et al., 226 

2018b; Tran et al., 2018b) and, for this reason, throughout the document only the 227 

biotransformation of the OMPs will be discussed. 228 
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2.5 Mass balance and determination of OMPs biotransformation yield and rate 229 

Removal of OMPs was associated with three mechanisms: volatilization, sorption to the 230 

sludge and biotransformation. Volatilization and sorption are based on OMPs transfer 231 

due to equilibrium processes between the liquid-gas and liquid-solid phases, 232 

respectively, while biotransformation consists of the removal of the compounds, which 233 

is typically calculated for the dissolved OMPs (Pomiès et al., 2013). The mass balances 234 

considered for the liquid and solid phase are expressed as shown in the following 235 

equations (Eq. 1 and Eq. 2): 236 
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       (1) 238 

   

  
  

       

 
   

        

 
  

   

  
 
        

  
   

  
 
          

       (2) 239 

with: 240 

CW dissolved OMPs concentration (µg L
-1

) 241 

Cs  OMPs concentration in the solid phase (µg L
-1

) 242 

Fin  inlet OMPs flow rate (µg d
-1

) 243 

Fout  outlet OMPs flow rate (µg d
-1

) 244 

V  bioreactor volume (L) 245 

Volatilization depends on the physicochemical properties of the OMPs and the 246 

operating conditions of the process. In an activated sludge process, volatilization can 247 

occur due to stripping, which is controlled by the air flow, the OMPs concentration and 248 

the Henry’s constant, and due to surface volatilization, which usually is not taken into 249 

account as a result of its lower relevance (Ltd I C Consultants, 2001). Volatilization can 250 
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be neglected when a compound has a Henry constant below 10 Pa m
3
 mol

-1
 and its 251 

Hc/Kow (Henry’s constant divided by the octanol-water partition coefficient) is lower 252 

than 10
-4 

(Ltd I C Consultants, 2001). This is the case of the 15 OMPs studied in this 253 

work (Table S3) and therefore volatilization was not considered in the calculations. 254 

The sorption term consists of an equilibrium between the liquid and solid phase, where 255 

OMPs simultaneously undergo sorption and desorption phenomena. Since the OMPs are 256 

present at low concentrations, normally a linear model is assumed (Pomiès et al., 2013), 257 

as shown below (Eq. 3 and Eq. 4): 258 

 
   

  
 
        

                          (3) 259 

 
   

  
 
          

                     (4) 260 

with: 261 

ksor  sorption kinetic constant (L g
-1

 d
-1

) 262 

kdesor  desorption kinetic constant (d
-1

) 263 

XTSS total suspended solids concentration (g L
-1

) 264 

The partition coefficient (Kd), shown in (Eq. 5), is the ratio between the kinetic 265 

constants: 266 

    
    

      
 

  

        
           

Kd  partition coefficient (L g
-1

) 267 

Pseudo-first order kinetics are typically used to model the OMPs biotransformation rate 268 

(rbiol), represented in (Eq. 6) (Schwarzenbach et al., 2003): 269 

 
   

  
 
                 

                                 (6) 270 
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The biodegradation kinetic constants were calculated performing mass balances to the 271 

batch experiments, as shown in (Eq. 7): 272 

          
         

                            

              
       (7) 273 

with: 274 

Cw0  dissolved OMPs concentration at time 0 (µg L
-1

) 275 

Cwt  dissolved OMPs concentration at time t, where the slope is maximum (µg L
-1

) 276 

The biotransformation yield (Eq. 8) and the specific biotransformation rate (Eq. 9) were 277 

calculated as shown in the equations below. Throughout the document, both parameters 278 

were taken into account to describe the behaviour of the OMPs. The yield was used to 279 

determine the biotransformation efficiency of the compounds and the biotransformation 280 

rate provided information regarding the cometabolic behaviour of the OMPs, as well as 281 

a better insight of the reactor performance. 282 

                            
                   

   
           (8) 283 

                                        
        

                   

        
           (9) 284 

with: 285 

Fwout  outlet dissolved OMPs flow rate (µg d
-1

) 286 

Fsout  outlet OMPs flow rate in the solid phase (µg d
-1

) 287 

The outlet OMPs flow rate in the solid phase (Fsout) is calculated as shown in (Eq. 10): 288 

                                                                        (10) 289 

where: 290 

CS’ OMPs concentration in the solid phase (µg g
-1

) 291 
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F outlet flow rate (L d
-1

) 292 

2.6 Statistical analysis 293 

To determine if the yields and specific biotransformation rates of the OMPs were 294 

statistically different at the tested primary substrate specific biodegradation rates, R 295 

software 3.6.2. was used. The statistical tests were performed at a 5% significance level 296 

(p < 0.05). 297 

 298 

 299 

3. RESULTS AND DISCUSSION 300 

3.1 Biotransformation yield 301 

Fig. 1 shows the biotransformation yield, i.e. the biotransformation percentage, of the 302 

selected OMPs at the 4 organic loading rates in the aerobic heterotrophic reactor. The 303 

biotransformation extent varied considerably among OMPs, being their behaviour 304 

characterized as (i) low biotransformation (below 20%) for CBZ and DZP, (ii) medium-305 

low biotransformation (20-50%) for TMP, (iii) medium-high biotransformation (50-306 

80%) for ERY and (iv) high biotransformation (over 80%) for ROX, SMX, IBP, NPX, 307 

TCS, ADBI, HHCB, AHTN, E1, E2 and EE2.  These results are consistent with 308 

literature information (Alvarino et al., 2018b; Fernandez-Fontaina et al., 2016; Khunjar 309 

et al., 2011). 310 

Figure 1 311 

It can be observed that the biotransformation yield of most OMPs remained constant 312 

throughout the different OLRs (biotransformation differences below 10 percentage 313 
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points and not statistically significant; p > 0.05 ). Only one value for ERY (experiment 314 

with 1.1 g COD g VSS
-1

 d
-1

) and another for IBP (experiment with 2.7 g COD g VSS
-1

 315 

d
-1

), significantly (p < 0.05) deviated (between 15-20 percentage points) to the values of 316 

the other three conditions. These events for ERY and IBP cannot be attributed to a 317 

specific trend or behaviour. Therefore, overall, the results of Fig. 1 indicate that 318 

increasing the aerobic heterotrophic cometabolism did not affect the OMPs 319 

biotransformation yield under the conditions tested. Several hypotheses could explain 320 

this behaviour. The first one is that the enzymes involved in the OMPs 321 

biotransformation might not be increasingly stimulated at higher OLRs. According to 322 

Stadman (1970), in catabolic pathways, enzymes can be classified as “constitutive” 323 

enzymes,  whose concentration is independent of the presence of their substrates, and 324 

“inducible” enzymes, that are produced when their immediate substrates or suitable 325 

derivatives are present. If the enzymes involved in the biotransformation of the OMPs 326 

belong to the first class and were not increasingly stimulated, the yield could have 327 

remained stable even at higher OLRs. A second hypothesis is that the maximum 328 

cometabolic rate towards OMPs is already reached at the lowest OLR and, therefore, 329 

increasing the degradation rate of the primary substrate (acetate) does not have an effect 330 

on the OMPs. In this regard, it is commonly assumed that the oxidation rate of a non-331 

growth substrate (OMPs) should always be linked to the oxidation rate of a growth 332 

substrate (acetate) proportionally; however, some studies have shown that this is not 333 

necessarily always the case (Criddle, 1993; M. H. Kim et al., 2020). Thirdly, the OMPs 334 

may have already achieved their biotransformation limits due to thermodynamic 335 

constraints. This event could be caused by the reversibility of the biological reactions, 336 

leading to a chemical equilibrium between the parent compound and the transformation 337 

product, as it has been previously suggested (Gonzalez-Gil et al., 2019). Lastly, the 338 
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primary metabolism may increase the specific biotransformation rate, but the HRT may 339 

have been high enough to hide this effect, showing the same biotransformation yield in 340 

all cases. In common biological treatments, as in activated sludge, the optimal HRT for 341 

OMPs removal is 24 h or longer (Boonnorat et al., 2019). Nevertheless, it has been 342 

proven that lower times may be sufficient to achieve the maximum biotransformation 343 

extent for several compounds (Boonnorat et al., 2019; Ejhed et al., 2018). Overall, the 344 

results shown in Fig. 1 are insufficient to determine which of these four hypotheses is 345 

more likely, being necessary to evaluate the behavior of the biotransformation rate. 346 

3.2 Specific biotransformation rate 347 

In Fig. 2, it can be observed the direct relationship between the OMPs biotransformation 348 

rate and the specific sludge activity: the higher the specific biodegradation rate of the 349 

growth substrate, the higher the OMPs specific biotransformation rate (Eq. 9). The 350 

dependence of the biotransformation rate of the secondary substrates (OMPs) with the 351 

biodegradation of the primary substrate (acetate) is a clear prove of cometabolism 352 

(Lema and Suarez, 2017). When the concentration of the primary substrate is increased 353 

(i.e., a higher OLR is applied), a higher microbial activity of the biomass is achieved. 354 

Hence, if an increment of the OMPs biotransformation rate also occurs, it indicates that 355 

they are been cometabolized by the same enzymes involved in the metabolism of the 356 

growth substrate. In Fig. 2, the differences in the specific biotransformation rates were 357 

statistically significant (p < 0.05) for all experimental conditions and all OMPs tested. 358 

Figure 2 (A, B and C) 359 

Despite all OMPs following a cometabolic biotransformation trend, there are some 360 

differences between the compounds, which do not show a homogeneous impact of the 361 

OLRs in their biotransformation rates. For instance, while the biotransformation rate of 362 
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TCS or SMX only slightly increases between the conditions of 0.4 g COD g VSS
-1 

and 363 

0.6 g COD g VSS
-1

, other compounds such as ADBI, HHCB and AHTN are much more 364 

affected. The explanation for this variability could be related to the enzymatic 365 

biotransformations. It is very likely that the OMPs are biotransformed by different 366 

enzymes present in the heterotrophic metabolism and that their affinity for such 367 

enzymes varies, leading to changes in their cometabolic biotransformation rates. In fact, 368 

according to Kim et al. (2020), the cometabolic biotransformation is influenced by the 369 

ratio of the initial growth to non-growth substrate concentration and the specificity 370 

constant (the kinetic efficiency, that measures how efficiently an enzyme converts 371 

substrates into products) ratio of the growth and non-growth substrates, which could be 372 

different for each compound. 373 

Overall, the specific OMPs biotransformation rates at 2.7 g COD g VSS
-1 

d
-1

 were 374 

around 2.5- and 4-times fold the values obtained in the experiment performed at 0.4 g 375 

COD g VSS
-1 

d
-1

. Nevertheless, it is noticeable that in comparison to the other 376 

compounds, ERY, TMP, E1, E2 and EE2 (Fig. 2) showed reduced rate increments 377 

between the experiments performed at 1.1 and 2.7 g COD g VSS
-1

 d
-1

 (although still 378 

significantly different (p < 0.05)). These lower changes at the higher OLRs could 379 

indicate that those compounds are close to reaching a maximum cometabolic 380 

biotransformation rate (Gonzalez-Gil et al., 2018), likely determined by some 381 

thermodynamic constraints, as suggested in the third hypothesis of section 3.1. In any 382 

case, Fig. 2 shows that neither the first hypothesis (enzymatic stimulation was not 383 

occurring at higher OLRs) nor the second (the maximum cometabolic rate had been 384 

achieved at the lowest OLR) were taking place. Therefore, the best explanation for the 385 

results of Fig. 1 is that, although the biotransformation rates varied with the OLR, the 386 

HRT was high enough to hinder an effect on the biotransformation yield. 387 
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Previous studies have also proven the cometabolism of OMPs in different 388 

environments. For example, Fernandez-Fontaina et al. (2012) reported a cometabolic 389 

effect in the biotransformation of IBP, ERY, ROX and AHTN, among others, in 390 

nitrifying reactors, likely due to the action of ammonia monooxygenase. Similarly, 391 

Majewsky et al. (2011) determined that the heterotrophic active fraction was correlated 392 

with the removal extent of pharmaceuticals such as DCF and SMX. Interestingly, under 393 

anaerobic conditions, González-Gil et al. (2018b) reached a methanogenic activity high 394 

enough not to show a relationship with the biotransformation rate of most OMPs, 395 

contrary to previous anaerobic studies with lower activities of the primary substrate 396 

(Alvarino et al., 2014). 397 

The cometabolic effect proved in this study might imply that reactors operating at 398 

higher OLRs could have an improved performance. Higher OLRs are often related to an 399 

increased microbial activity and to a larger expression or activity of the enzymes 400 

involved in the metabolism of the primary substrates, leading to a higher catalytic 401 

activity in the reactor which could enhance the cometabolic biotransformation of the 402 

OMPs. Therefore, high load WWTPs are likely to have a better performance in OMPs 403 

biotransformation by increasing their yield or, if a limitation has been reached (as in 404 

Fig.1), by being able to achieve in a shorter amount of time the same biodegradation 405 

yield than low load WWTPs, allowing operations at shorter HRTs. 406 

3.3 Influence of heterotrophic activity on the OMPs biotransformation constant 407 

In previous sections, it was shown that a higher heterotrophic activity leads to a higher 408 

specific OMPs biotransformation rate, indicating that heterotrophs are key on rbiol. 409 

Based on Eq. 6, it seems that the influence of the heterotrophic activity on rbiol occurs 410 

through changes on kbiol. Thus, batch tests were conducted to determine the correlation 411 
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between the microbial activity and kbiol, as well as between the removal of the primary 412 

substrate and the pollutants. 413 

Studying the interaction between the OMPs and the growth substrates can help to 414 

understand their dynamics and control the fate of the pollutants by properly managing 415 

the primary substrates. As shown in Fig. 3, the biotransformation of the OMPs 416 

(exemplified for ROX, SMX, NPX and HHCB) occurs simultaneously to the 417 

degradation of the primary carbon source (acetate). This finding agrees with the 418 

common cometabolic biotransformation theory, where the OMPs, induced by the 419 

presence of the primary substrate, enter its metabolic pathway and undergo 420 

simultaneous biodegradation (King et al., 1997). OMPs do not yield enough energy to 421 

support microbial growth and their biotransformation occurs fortuitously when their 422 

chemical structure is modified thanks to the enzymatic action that degrades the primary 423 

substrate. Similarly to the findings shown in Fig. 3, Aeming et al. (2019) determined 424 

that the removal of 4 endocrine disruptors (fluoranthene, benzo(b)fluoranthene, 425 

benzo(a)pyrene and NP) had a synchronal fate to the organic matter during anaerobic 426 

digestion and composting. According to the results shown in Fig. 2 and Fig. 3, it is 427 

proved that the main driver during the heterotrophic biotransformation of OMPs is the 428 

presence of the growth substrate due to cometabolism. 429 

Figure 3 430 

As previously indicated, the kbiol of a particular compound depends on its 431 

physicochemical properties and in the environmental conditions (pH, temperature and 432 

oxidation reduction potential, among others). Interestingly, as shown in Fig. 4, we found 433 

out that the specific activity of the sludge, caused by the primary substrate, also affects 434 

the value of kbiol. A positive correlation (with an R-square value between 0.80 and 0.96) 435 

is observed between kbiol and the maximum COD specific activity for all non-436 
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recalcitrant OMPs, with the exceptions of HHCB and ADBI. This proves that rbiol is 437 

influenced by the microbial activity through the variation of kbiol. Since it was not seen a 438 

limitation in the increasing tendency of kbiol, which maintained the linearity throughout 439 

the assays, it can be speculated that higher kbiol values could be obtained at even higher 440 

specific COD activities. Nonetheless, we do not have enough data to prove this theory 441 

and experiments at higher heterotrophic activities would be required for confirmation. 442 

It is worth comparing the results from Fig. 2 and Fig. 4, which showed some 443 

differences. For instance, ERY showed almost 4-fold increases in its specific 444 

biotransformation rate (Fig. 2) while its kbiol values only showed 2-fold increments (Fig. 445 

4). These discrepancies were also observed in other compounds such as E1 and ROX. 446 

One explanation for such behaviour could be that media conditions and especially 447 

process conditions, such as operating in batch mode rather than in a continuous manner, 448 

could lead to a different intensity in the metabolic responses, in agreement with the 449 

results from Park et al. (2018). Besides,  microorganisms may have followed different 450 

enzymatic routes in the batch and reactor experiments to degrade the substrates due to 451 

variations in the initial feeding concentrations, in consonance with previous studies 452 

showing that the concentration of the metabolites plays a key role in the pathway 453 

selection and metabolic flux (Wegner et al., 2015). Despite these differences, overall 454 

both continuous and batch experiments provide consistent and complementary 455 

conclusions. 456 

Figure 4 (A and B) 457 

Throughout the experiments, the influence of the heterotrophic activity on kbiol varied 458 

among the OMPs. For instance, in the case of the hormones, while E1 increased its kbiol 459 

almost 20-fold, E2 only increased it 2-fold and in the case of the fragrances, while 460 
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AHTN duplicated its kbiol, ADBI and HHCB did not show any variation. These findings 461 

show that the influence of the heterotrophic activity is substance-specific. 462 

The reported results show that the biotransformation of a particular OMP would depend 463 

on the characteristics of the microbial population and their specific performance. From 464 

our results, and considering the findings of Majewsky et al. (2010) and Gonzalez-Gil et 465 

al. (2018b), it can be concluded that at low microbial activities, the kbiol of a compound 466 

does not vary, at intermediate activities the kbiol increases in a linear manner, and 467 

finally, when the microbial activity is sufficiently high, it reaches a plateau and kbiol 468 

remains constant. Our findings suggest that, for the range of heterotrophic activity 469 

studied, the majority of the selected OMPs were in the region where kbiol increases 470 

linearly. The exceptions of HHCB and ADBI could indicate that they would have 471 

required lower or higher microbial activities, proving that kbiol is influenced both by the 472 

microbial activity and the nature of the compound. 473 

To better understand the influence of the microbial activity on the biotransformation of 474 

the OMPs, Table 1 shows an estimation of the biotransformation rates that could be 475 

achieved for ROX, NPX, SMX and HHCB (the remaining compounds can be found in 476 

Table S6) in a real activated sludge system designed to only remove organic matter, as 477 

well as the HRT that these OMPs would require for complete biotransformation 478 

according to the experimental kbiol values (Fig. 4). For instance, in the case of NPX, 479 

assuming an inlet concentration of 10 g L
-1

, a kbiol equivalent to 0.7 L g VSS
-1

 d
-1

 480 

would provide a biotransformation rate of 14 g NPX L
-1 

d
-1

 and an HRT of 17 h would 481 

be required.  On the other hand, a kbiol of 3.8 L g VSS
-1

 d
-1

 would lead to a 482 

biotransformation rate of 76 g NPX L
-1 

d
-1

 and an HRT of 3 h could be sufficient for 483 

total NPX removal. The results indicate that higher heterotrophic activities could 484 

considerably reduce HRT requirements thanks to improved OMPs specific 485 
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biotransformation rates. Moreover, except for DZP and CBZ, which are recalcitrant 486 

under heterotrophic conditions, all the OMPs would be almost completely removed 487 

after 8 h (Tables 1 and S6). Accordingly, promoting the heterotrophic activity with 488 

higher OLRs would not have significant effects on the biotransformation yield at typical 489 

HRTs of activated sludge systems, supporting the findings of Fig. 1. 490 



22 
 

Table 1. Biotransformation rate and HRT required for full biotransformation of ROX, NPX, SMX and HHCB in a real WWTP based on the kbiol 491 

values obtained in the batch assays. The XVSS value used is a typical solids concentration in WWTPs (Metcalf & Eddy, 2014), and the Cw 492 

value is in the range of typical influent OMPs concentrations in WWTPs (Luo et al., 2014; Petrie et al., 2014). 493 

OMPs 
Specific biotr. rate 

(g COD g VSS
-1

 d
-1

) 

kbiol  

(L g VSS
-1

 d
-1

) 

XVSS  

(g L
-1

) 

CW  

( OMP L
-1

) 

Biotransformation rate 

( g OMP L
-1

 d
-1

) 

HRT required for 100% 

biotransformation (h) 

ROX 

0.4 1.6 

2 10 

32 7.6 

0.6 2.4 49 4.9 

1.1 3.4 68 3.5 

2.7 4.0 81 3.0 

NPX 

0.4 0.7 

2 10 

14 17.1 

0.6 2.8 56 4.3 

1.1 3.4 68 3.5 

2.7 3.8 76 3.2 

SMX 

0.4 1.0 

2 10 

20 12.0 

0.6 2.0 40 6.0 

1.1 2.6 52 4.6 

2.7 2.9 58 4.1 

HHCB 

0.4 5.0 

2 10 

100 2.4 

0.6 3.9 78 3.1 

1.1 6.7 134 1.8 

2.7 5.2 104 2.3 
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4. CONCLUSIONS  494 

In this study, experimental data evidenced that higher OLRs lead to higher OMPs 495 

biotransformation rates and that the removal of the organic matter and the OMPs occurs 496 

simultaneously, proving cometabolism as the main mechanism behind the 497 

biotransformation of OMPs under aerobic heterotrophic conditions. The enhancement 498 

of the  OMPs biotransformation rate occurred due to increases in their respective kbiol 499 

values, showing that the biotransformation kinetic constant is not only dependant on the 500 

compound and the environmental conditions, but also on the intensity of the metabolic 501 

activity. Besides, the influence of the heterotrophs in kbiol is proved to be compound 502 

dependent. On the other hand, the cometabolic trend does not necessarily involve an 503 

improvement in the biotransformation yield of the compounds providing that a 504 

sufficient HRT is applied. In fact, in this work, it is shown that the effectiveness did not 505 

improve at higher specific degradation rates of the primary substrate. Hence, the 506 

variation of the WWTP organic load, the management of the organic substrates and the 507 

control of the microbial activity appear as key parameters governing OMPs 508 

biotransformation. 509 

 510 
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Fig. 1. OMPs biotransformation yield achieved in the aerobic heterotrophic reactor operated 

with fixed HRT (1 day) at 4 different specific organic loading rates of the primary substrate. 
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Fig. 2. Specific OMPs biotransformation rate (µg OMP g VSS-1 d-1) at 4 specific 

biodegradation rates of the primary substrate (g COD g VSS-1 d-1). A) OMPs fed at 1 µg L-1 d-

1. B) OMPs fed at 40 µg L-1 d-1. C) OMPs fed at 10 µg L-1 d-1. 
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Fig. 3. Representation of the biotransformation trend followed by ROX, SMX, NPX and 

HHCB for the experimental batch with [COD]0 = 0.4 g L-1. Similar results were obtained for 

the rest of OMPs and COD evaluated (data not shown). 
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*The kbiol of TMP could not be determined. 

Fig. 4. OMPs biotransformation kinetic constant (kbiol) vs the maximum COD specific activity 

achieved in each batch assay. A) OMPs that showed a positive correlation. B) OMPs that 

showed a negative correlation. In each graph is stated the R squared value (R2).  
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