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Trabajo propuesto

Área de Conocimiento: Geometría y Topología

Título: Operadores de Dirac

Breve descripción del contenido

1. Se empezará con una introducción a las variedades spin y geometría spin, con
énfasis en los ejemplos.

2. También se hará una introducción a operadores diferenciales en variedades.
3. Se definirá el operador de Dirac y se estudiarán sus propiedades básicas.
4. Se culminará con el estudio espectral del operador de Dirac en variedades com-

pactas. Se harán algunos cálculos concretos. Si llegase el tiempo, se probarían
cotas inferiores del primer autovalor no nulo.

Recomendaciones

Es conveniente cursar la materia Variedades Diferenciables. En el caso de estudiantes
del doble grado de Matemáticas y Física, es interesante cursar la materia Teoría
Cuántica de Campos.

Otras observaciones

Esta propuesta de TFG es adecuada para ser complementada con alguna propuesta
de TFG del Grado en Física. El operador de Dirac juega un papel importante en
Mecánica Cuántica.
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Abstract

This work is a mostly self-contained survey on Dirac operators. It starts by laying the
fundamental building blocks at the heart of spin geometry, specifically its elemental geo-
metrical and algebraic aspects. Thus, the concepts of vector and principal bundles over
manifolds, Clifford algebras, the Pin and Spin groups, the spin representation and the
spinor bundle are explored. A brief commentary on connections and linear differential
operators on manifolds is also provided. Subsequently, the fundamental Dirac operator is
presented, along with a review of its most important basic properties. The last section is
devoted to a study of the Dirac spectrum on compact manifolds, including some explicit
computations and bounds of the lower nonzero eigenvalue.

Keywords— fiber bundles; connections; Clifford algebras; Spin group; spin representa-
tion; spinor bundle; Dirac operator; Dirac spectrum

Resumen

Este trabajo es un estudio esencialmente autocontenido de los operadores de Dirac. Em-
pieza por establecer las bases fundamentales de la geometría espinorial, específicamente
sus aspectos geométricos y algebraicos elementales. Así, se exploran los conceptos de fi-
brados vectoriales y principales, así como las álgebras de Clifford, los grupos Pin y Spin,
la representación espinorial y el fibrado de espinores. También se proporciona un breve
comentario sobre conexiones y operadores diferenciales en variedades. A continuación, se
presenta el operador fundamental de Dirac, junto con un repaso a sus propiedades básicas
más importantes. La última sección está dedicada al estudio espectral del operador de
Dirac en variedades compactas, incluyendo algunos cálculos concretos y estimaciones de
las cotas inferiores del primer autovalor no nulo.

Palabras clave— fibrados; conexiones; álgebras de Clifford; grupo espinorial; repre-
sentación espinorial; fibrado de espinores; operador de Dirac; espectro de Dirac
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Preface

The Dirac operator owes its name to English physicist Paul Dirac, who discovered it during
his studies on the wave operator within the context of quantum mechanics and its relation
to general relativity [1]. It was originally envisioned as a means to describe the probability
amplitude of fermions (particles of half-integer spin). Nonetheless, as is the case with many
objects used by physicists, it soon drew attention from the mathematical community.

The first mathematically sound description of Dirac operators came from M. F. Atiyah and
I. Singer, in their papers on the index of elliptic operators (for example, [2]). Their findings
laid the groundwork for the birth of a whole new field of knowledge: spin geometry.

Any attempt to dive deep into the subtleties of spin geometry leads to numerous interre-
lations between topology, geometry and analysis. Therefore, the study of Dirac operators
entails the need to explore some preliminary concepts belonging to very different fields, in
an effort to bring them together to discuss the construction of such operators, and their
implications within the framework of spin geometry.

This work starts by reviewing some of the essential building blocks needed for the study of
Dirac operators. Namely, it explores the fundamentals of Clifford algebras, spin groups and
spin representations, as well as notions of fiber bundles and Riemannian geometry (such
as differential operators on manifolds). Then, it explicitly introduces the Dirac operator
and analyzes some of its properties, including the explicit computations of its spectrum
on some closed manifolds and estimations of the lower nonzero eigenvalue. No previous
knowledge of spin geometry is required, although a basic background in linear algebra,
differential geometry and topology is recommended.

A reader who is familiarized with spin geometry and differential operators on manifolds
might wish to skip to chapter 3, where the analysis focuses on Dirac operators themselves.
Otherwise, this work provides all the necessary tools for their definition and analysis.
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Chapter 1

Preliminaries on differential
geometry and global analysis

The study of Dirac operator involves concepts related to manifolds and vector bundles, as
well as algebraic notions of algebras and linear representations. Since the purpose of this
work is not to retread the treatment of these subjects from the ground up, the reader will
only be introduced in a thorough manner to the essential tools for the task at hand. Refer
to [3], [4] for a more in-depth look on differential geometry, and to books like [5] for an
extensive review on algebraic topics.

1.1 Fiber bundles

1.1.1 General fiber bundles

A local trivialization (U, φ) with typical fiber F for a smooth surjective mapping π : E →M

is a diffeomorphism φ : π−1(U)→ U × F such that the diagram

π−1(U) U × F

U

φ

π
p

commutes, where p is the projection onto the first factor. A (smooth) fiber bundle with
typical fiber F is a smooth map π : E → M , together with a maximal family of local

1



2 CHAPTER 1. PRELIMINARIES

trivializations {Ui, φi} with typical fiber F so that {Ui} is an open cover of M . It is said
that M is the base space and E is the total space; often, it is simply said that E is a
fiber bundle over M . With this conditions, π becomes a surjective submersion. The fiber
over x ∈ M is Ex := π−1(x), which is a regular submanifold of E. The fiber bundle is
determined by any subfamily of trivializations that cover M .

Given two local trivializations, (Ui, φi) and (Uj , φj), and some point x ∈ Ui ∩ Uj , there
exists a diffeomorphism gij(x) : F → F given by the composition

F ≡ {x} × F
φ−1
i−−−−→ Ex

φj−−−−→ {x} × F ≡ F .
This defines a map to the group of diffeomorphisms of F , gij : Ui ∩ Uj → Diffeo(F ),
which is smooth in the sense that the map (Ui ∩ Uj) × F → F , (x, u) 7→ gij(x)(u), is
smooth. Given a family {Ui, φi} of local trivializations defining the fiber bundle as above,
the corresponding family of maps gij is called a defining cocycle of the fiber bundle, usually
denoted by {Ui, gij}. It satisfies the defining cocycle property

gij(x) ◦ gjk(x) = gik(x) (1.1.1)

for all x ∈ Ui ∩ Uj ∩ Uk; in particular, one gets gii(x) = idF . The defining cocycle
{Ui, gij} describes the fiber bundle over M ; in fact, E ≡ (

⊔
i Ui × F )/∼, where (i, x, u) ∼

(j, x, gij(x)(u)) for x ∈ Ui ∩Uj (this is an equivalence relation by (1.1.1)), and π : E →M

is induced by
⊔
i Ui × F →M , (i, x, u) 7→ x. Thus a fiber bundle π : E →M with typical

fiber F can by given by a defining cocycle; i.e. a collection {Ui, gij}, consisting of an open
covering {Ui} of M , and smooth maps gij : Ui ∩ Uj → Diffeo(F ) satisfying (1.1.1).

Given a subgroup G ⊂ Diffeo(F ), a fiber bundle with (typical fiber F and) structural group
G is a fiber bundle described by a (maximal) defining cocycle {Ui, gij} with values in G;
i.e., with gij : Ui ∩ Uj → G for all i, j. This concept will be used to easily define different
types of fiber bundles. For another subgroup G ⊂ H ⊂ Diffeo(F ), any fiber bundle with
structural group G becomes a fiber bundle with structural group H. The reverse direction
may not be true; if a fiber bundle with structural group H admits a structure of fiber
bundle with structural group G, it is said that its structural group H can be reduced to G.

Let f : N → M be a smooth map between manifolds, and let E be a fiber bundle over
M with defining cocycle {Ui, gij}. Then {f−1(Ui), gij ◦ f} is a defining cocycle over M ,
obtaining a fiber bundle over N with the same typical fiber, which is denoted by f∗E and
called the pull-back of E by f . If E has a particular structural group, then f∗E has the
same structural group.

An isomorphism of fiber bundles πa : Ea → M (a = 1, 2) (with structural group G) is a
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diffeomorphism h : E1 → E2 such that π1 = π2◦h (so that the structural groups correspond
via h in an obvious way). A fiber bundle π : E →M with typical fiber F (and structural
group G) is said to be trivial if it is isomorphic to the fiber bundle (with structural group
G) given by the first factor projection M × F →M .

A (smooth) section of a fiber bundle π : E → M is a smooth map s : M → E such that
π ◦ s = idM . The collection of all smooth sections of π : E →M is denoted by Γ(E). With
more generality, a (smooth) section of π : E →M over an open subset U ⊂M is a smooth
map s : U → M so that π ◦ s is the inclusion map U ↪→ M . The collection of sections of
π : E →M over U is denoted by Γ(U,E).

1.1.2 Vector bundles

A (smooth) real vector bundle of rank r ∈ N is a (smooth) fiber bundle π : E → M with
typical fiber Rr and structural group GL(k,R). Then the real vector space structure of
the typical fiber Rr induces a real vector space structure on every fiber Ex in a canonical
way. Thus the vector bundle can be considered as a smoothly varying family of real vector
spaces Ex parametrized by the points x of M . In other words, a real vector bundle of
rank r is a fiber bundle π : E → M with typical fiber Rr, equiped with a maximal
collection of trivializations, {Ui, φi}, so that every fiber Ex is a real vector space and
φi : Ex → {x} × Rr ≡ Rr is a linear isomorphism.

By using fiberwise scalar multiplication, Γ(E) becomes a module over the ring of real valued
smooth functions on M , C∞(M). In particular, one always has the zero section 0 ∈ Γ(E),
assigning the zero of the fiber Ex to every x ∈ M . The support of a section s of E is the
closure suppσ = {x ∈M : s(x) 6= 0}. The submodule of compactly supported sections is
denoted by Γc(E). Similarly, Γc(U,E) is used for compactly supported sections over an
open subset U . The extension by zero defines a canonical injection Γc(U,E) ↪→ Γc(V,E)

for U ⊂ V ; in particular, Γc(U,E) ↪→ Γc(E).

Isomorphisms and triviality of vector bundles are particular cases of their analogues in
general fiber bundles with a given structural group. If a vector bundle E of rank r over M
is trivial, then Γ(E) ≡ C∞(M,Rr).

All functors of vector spaces, which preserve smoothness on the parameter when applied
to smooth families of vector spaces or linear maps, have natural extensions to vector
bundles over M . These extensions have simple definitions by using defining cocycles. For
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example, let E,F be vector bundles over M with ranks r, q, and defining cocycles {Ui, gij}
and {Ui, hij}, respectively (after refinement, the same open cover can be taken in both
cocycles). Then E ⊕ F is the vector bundle of rank r + q with defining cocycle {Ui, kij},
where kij(x) = gij(x) ⊕ hij(x) ∈ GL(Rr ⊕ Rs) ≡ GL(r + s,R). Similarly, it is possible to
define E ⊗F , E∗,

∧
E, E �E, etc. Here, the notation � is used for the symmetric tensor

product (see [16] for more information on �). Note that E∗ � E∗ is the vector bundle
whose fibers consist of the symmetric bilinear forms on the fibers of E.

Example 1.1.1 (Tangent bundle). Let {Ui, xi} be an atlas of a manifold M of dimension
n. The tangent space TM is the vector bundle over M of rank n defined by the cocycle
given by the differential of the changes of coordinates, D(x−1

j ◦ xi) : Ui ∩ Uj → GL(n,R),
p 7→ D(x−1

j ◦xi)(xi(p)). Its smooth sections are the (tangent) vector fields, and the notation
X(M) = Γ(TM) is used.

An Euclidean structure of a vector bundle E of rank r is the choice of a positive definite
scalar product gx on every fiber Ex such that x 7→ gx is a smooth section g of E∗ �E∗. If
E is equipped with a Euclidean structure, then it is called a Euclidean vector bundle; this
is the same as reducing its structural group to O(r).

An orientation of a vector bundle E of rank r is given by a reduction of its structural
group to SL(r,R), or to SO(r) after equipping it with some Euclidean structure. Not every
vector bundle is orientable; for instance, the orientability of TM as a vector bundle means
the orientability of M as a manifold.

All of the above concepts have obvious complex versions, changing R to C. In this case, the
conjugate bundle E can also be considered, whose fibers are the conjugate vector spaces
of the fibers of E. Then a Hermitian structure on a complex vector bundle E is the choice
of a Hermitian product gx on every fiber Ex defining a smooth section of E∗ � E∗. If E
is equipped with a Hermitian structure, then it is called a Hermitian vector bundle; this is
the same as reducing its structural group to U(r).

Any real/complex vector bundle admits a Euclidean/Hermitian structure [4, pp. 73-76].

For any Euclidean/Hermitian vector bundle E on a Riemannian manifold M ≡ (M, g),
with Riemannian density νg, there is a scalar product 〈 , 〉L2 on Γc(E) defined by

〈s1, s2〉L2 =

∫
M
〈s1(x), s2(x)〉 νg(x) .

The corresponding Hilbert space completion is denoted by L2(E).
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1.1.3 Principal bundles

This is another major group of fiber bundles that will be of interest here. Let G be a Lie
group. Its left translations form a subgroup of Diffeo(G) isomorphic to G. They can be
characterized as the only transformations of G that are equivariant with respect to the
right action on itself by right translations. A (smooth) principal bundle with structural
group G, or a principal G-bundle, is a fiber bundle π : P →M with typical fiber G whose
structural group is the group of left translations on G. By the above characterization of
left translations, it follows that there is a smooth free right action of G on P whose orbits
are the fibers.

Isomorphisms and triviality of principal G-bundles are particular cases of their analogues
for general fiber bundles with a given structural group. A principal G-bundle P is trivial
if it has a section s : M → P : a trivialization M × G → P is given by (x, g) 7→ s(x) · g.
The reciprocal property is obvious.

Example 1.1.2 (Hopf fibration). The Hopf fibration π : S3 → S2 is a principal bundle with
structural group S1. It can be defined by considering S3 and S1 as the standard unit spheres
in C2 and C, giving rise to an action of S1 on S2 by scalar multiplication. Then π : S3 → S2

can be considered as the projection to the orbit space, S3 → S3/S1 ≡ CP1 ≈ S2 [4,
pp. 244]. This principal bundle is nontrivial because the fundamental groups of the total
spaces are different. With more generality, for any free right action of a compact Lie
group G on a manifold P , by the slice theorem, the orbit space P/G is a manifold and the
canonical projection P → P/G is a principal G-bundle.

Example 1.1.3 (Frame bundle). Let η : E → M be a C∞ vector bundle of rank r. A
frame v at a point x ∈ X is an ordered basis for the vector space Ex. In other words, it
is a linear isomorphism e : Rr −→ Ex. The set Fx of all frames at x has a natural right
action by the general linear group GL(r,R): every g ∈ GL(r,R) acts on the frame e via
composition to give a new frame, e ◦ g : Rr −→ Ex. This action is free and transitive on
Fx, since there is a unique invertible linear transformation sending one basis onto another
in Rr. Then

F(E) =
⊔
x∈M

Fx

becomes a GL(r,R)-principal bundle overM , so that the fiber over every x ∈M is Fx, and
the local trivializations canonically induced by the local trivializations of E. This structure
is known as the frame bundle of the vector bundle E [4, pp. 246-247].

Remark 1.1.4. Like in Example 1.1.3, on Euclidean (respectively, Hermitian) vector bun-
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dles, one can similarly define the principal bundle of orthonormal frames with structural
group O(r) (respectively, U(r)). If the bundle is also orientable, the SO(r)-principal bundle
of positively oriented orthonormal frames can also be built. The latter will be a central
piece of this discussion.

Example 1.1.5 (Vector bundle associated to a representation). Let P be a principal
bundle with structural group G and let ρ : G → GL(V ) be a representation of G on a
vector space V . Define the following right G-action on P × V :

(e, v)g = (eg, ρ(g−1)v).

The quotient space P ×ρ V of P ×V by this action is a vector bundle over M with typical
fiber V [6, p. 23]. It is known as the vector bundle associated to P by ρ. The element of
P ×ρ V represented by every (e, v) ∈ E × V is denoted by [e, v].

1.2 Connections

The idea behind connections is extending the notion of the Euclidean directional derivative
to a more general definition. This can be achieved for a wide array of mathematical
structures. This work will keep its focus mostly on vector bundles, since it is the most
useful case for the task at hand. However, some understanding of connections on principal
bundles will be also needed, which will be given using the intuitive idea of parallel transport.

1.2.1 Connections on vector bundles

Let π : E →M be a vector bundle over a manifold M . A connection on E is a linear map

∇ : X(M)⊗ Γ(E) −→ Γ(E)

such that the following properties hold for all X ∈ X(M), s ∈ Γ(E) and f ∈ F := C∞(M):

(i) ∇fXs = f∇Xs.
(ii) ∇X(fs) = (Xf)s+ f∇Xs (Leibniz rule).

Remark 1.2.1. By (i) and (ii), for any p ∈ M , the value of (∇Xs)(p) only depends on
the value of X at p and the values of s along any given smooth path c : (−ε, ε) → M

with c(0) = p and c′(0) = X(p). It follows that ∇ can also be regarded as a linear map
∇ : Γ(E)→ Γ(T ∗M⊗E) (the space of E-valued 1-forms) satisfying ∇(fs) = (df) ·s+f∇s.
This alternative definition is very useful in some cases.
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A connection on a Euclidean/Hermitian vector bundles E over M is said to be compatible
with the metric or metric if, for every X ∈ X(M) and s, t ∈ Γ(E),

Xg(s, t) = g(∇Xs, t) + g(s,∇Xt) .

Any Euclidean/Hermitian vector bundle admits a metric connection [4, pp. 73-76].

The concept of connection leads to several geometric ideas, the most important of which
is the curvature operator. The curvature operator K of a connection ∇ on a vector bundle
E is a linear map

K : X(M)⊗ X(M)⊗ Γ(E) −→ Γ(E)

defined by
K(X,Y )s ≡ KX,Y s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s .

Since K is F-linear (in all three arguments), it is defined pointwise. If K = 0, then ∇ is
said to be flat.

A connection on the tangent bundle π : TM → M of a manifold M is more commonly
referred to as an affine connection. The torsion of an affine connection ∇ is the linear map

T : X(M)× X(M)→ X(M)

defined by
T (X,Y ) = ∇XY −∇YX − [X,Y ] .

This operator is also F-linear (in its two arguments), and therefore it is defined pointwise.
If T = 0, then ∇ is said to be symmetric or torsion-free.

1.2.2 Parallel transport and connections on principal bundles

Let π : E → M be a vector bundle equipped with a connection ∇. For every piecewise
smooth path c : [a, b] → M and v ∈ Ec(a), there is a unique piecewise smooth path
c̃v : [a, b] → E such that c̃v(a) = v, π ◦ c̃ = c (c̃ is a lift of c) and ∇c′ c̃v = 0. Moreover,
for each t ∈ [a, b], the mapping v 7→ c̃v(t) defines a linear isomorphism Pc,t : Ec(a) → Ec(t),
called the parallel transport along c up to t. This parallel transport P determines ∇:

∇c′(a)s =
d

dt
P−1
c,t sc(t)

∣∣∣
t=a
∈ Ec(a) .

Thus a connection can be also described by giving an abstract parallel transport satisfying
certain properties.

Going one step further, the connection on E induces a so-called connection in the principal
frame bundle F(E) (Example 1.1.3), which can be defined by extending the idea of parallel
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transport. For any piecewise smooth path c : [a, b] → M , t ∈ [a, b] and e : Rr → Ec(a) in
Fc(a), let P̂c,t(e) be the composition

Rr e−−−−→ Ec(a)
Pc,t−−−−→ Ec(t) .

This defines a GL(r,R)-equivariant diffeomorphism P̂c,t : Fc(a) → Fc(t), called the parallel
transport in F(E) along c up to t.

The above notion can be extended to define a parallel transport P̂ on a principal G-bundle
P over M , assigning a G-equivariant diffeomorphism P̂c,t : Pc(a) → Pc(t) to any piecewise
smooth path c : [a, b] → M and t ∈ [a, b], satisfying certain properties. Such a parallel
transport is a way to describe connections on principal bundles.

Now, take a representation ρ : G → GL(V ) and consider the associated vector bundle
P ×ρV (Example 1.1.5). Then P̂ induces a connection on P ×ρV , whose parallel transport
P is given by Pc,t([e, v]) = [P̂c,t(e), v].

A more detailed description of connections on principal bundles is far from the main goals
of this survey, so it is omitted. There is a large amount of literature regarding connections
on principal bundles and associated vector bundles. The reader is referred to [4, Section
28], [17, Chapter 2].

1.3 Fundamentals of Riemannian geometry

The most basic notion that this work pulls from differential geometry is that of a Rieman-
nian manifold. A Riemannian metric g on a manifold M is a Euclidean structure on TM .
Every manifold admits a Riemannian metric [4, p. 6]. An isometry between Riemannian
manifolds is a diffeomorphism whose tangent map preserves the Riemannian metric at
every tangent space. Local isometries are similarly defined using local diffeomorphisms.

A particular, and greatly important, case of affine connection is the Levi-Civita connection
of a Riemannian manifold M , which is the unique symmetric metric connection on M [15,
p. 16-17], [6, p. 12]. Henceforth, M will be equipped with the Levi-Civita connection ∇.
The curvature operator of the Levi-Civita connection is often referred to as the Riemann
curvature operator, and denoted by R. In this case, in terms of a local frame (e1, . . . , en)

of TM corresponding to local coordinates xi, the curvature operator can be put in a more
physics-friendly, tensor form:

Rej ,ekel = Riljkei ,



1.4. DIFFERENTIAL OPERATORS 9

where Einstein notation has been used. The Riemann curvature operator satisfies, for all
X,Y,W,Z ∈ X(M),

RX,Y Z +RY,ZX +RZ,XY = 0 (the first Bianchi identity) , (1.3.1)

g(RX,Y Z,W ) + g(RX,YW,Z) = 0 .

The symmetries of R leave only one nontrivial contraction of the indices [15, p. 58-60], [6,
p. 14]. This is known as the Ricci curvature tensor , and can be expressed, in components,
as Ricab = Riaib. It is symmetric.

The last possible contraction is the scalar curvature,

S = gabRicab .

Example 1.3.1 (Flat Euclidean metric). The simplest and most well-known example of a
Riemannian manifold is Rn ≡ (Rn, gc), where, using the standard coordinates on Rn, the
metric gc is given by

gcp ((∂xi)p, (∂xj )p) = δij .

This is often called the standard Riemannian structure on Rn, or the canonical Euclidean
metric. This Riemannian manifold is flat. Reciprocally, any flat Riemannian manifold is
locally isometric to Rn.

Obviously, much more intricate Riemannian manifolds can be built.

1.4 Differential operators

The theory of differential operators on manifolds provides most of the analytical tools one
needs to study Dirac Operators.

Notation 1.4.1. A multi-index is an n-tuple α = (α1, . . . , αn) ∈ Nn. Set |α| =
∑n

k=1 αk.
For each ξ ∈ Cn, let ξα = ξα1

1 . . . ξαnn . Multi-index notation is used for differentiation with
respect to local coordinates xi on a manifold M :

∂|α|

∂xα
≡ ∂|α|

∂(x1)α1 . . . ∂(xn)αn
≡ ∂|α|

∂α1
1 . . . ∂αnn

.

Let E and F be two smooth complex vector bundles over M of ranks r and q, respectively.
A (linear) differential operator of order k onM is a linear map P : Γ(E)→ Γ(F ) satisfying
the following property. For each point p ∈M , take a neighborhood U with local coordinates
xi, and local trivializations of E and F on U , giving rise to identities Γc(U,E) ≡ C∞c (U,Cr)
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and Γc(U,F ) ≡ C∞c (U,Cq). Then P is required to satisfy P (Γc(U,E)) ⊂ Γc(U,F ) (P is
local), and the restriction P : Γc(U,E) ≡ C∞c (U,Cr)→ Γc(U,F ) ≡ C∞c (U,Cq) must be of
the form

P =
∑
|α|≤k

Aα(x)
∂|α|

∂xα
,

where the local coefficients Aα are smooth maps U → Mr×q(C) ≡ Crq with Aα 6= 0 for
some α with |α| = k.

Example 1.4.2 (Connections). A connection ∇ : Γ(E)→ Γ(T ∗M⊗E) on a vector bundle
E over M is a differential operator of order one. In fact, it is universal in the sense that
any differential operator of order one P : Γ(E)→ Γ(F ) on M is a composition

Γ(E)
∇−−−−→ Γ(T ∗M ⊗ E)

A−−−−→ Γ(F ) ,

for some zero order differential operator A.

For a differential operator P : Γ(E) → Γ(F ) of order k on M , its principal symbol σ(P )

is a map that associates each point x ∈ M and each covector ξ = ξjdx
j ∈ T ∗xM (using

Einstein notation), to a linear map

σξ(P ) = ik
∑
|α|=k

Aα(x)ξα : Ex −→ Fx .

There is a coordinate-free way to define σ(P ) as a section of (
⊙k TM) ⊗ Hom(E,F ) [8,

p. 168]. It shows that the principal symbol does not depend on a particular choice of local
coordinates or trivializations of the bundles. However, for the purposes of this work, the
above definition of σ(P ) will suffice as a means to analyze the Dirac operators.

The invariance of the principal symbol under changes in local trivializations and coordinates
allows for different classifications of differential operators, regarding what properties it
possesses for certain classes of operators. The relevant class for this work is the following.
It is said that P is elliptic if, for every nonzero covector ξ ∈ T ∗xM , the principal symbol
σξ(P ) : Ex → Fx is an invertible mapping.

Real differential operators and their symbols are defined in the same manner, only replacing
C with R.

Example 1.4.3 (Laplace-Beltrami operator). Let (Mn, g) be a Riemannian manifold.
Consider the map ∆ : C∞(M) → C∞(M) on the space of smooth functions on M given,
in local coordinates xi, by

∆ =
1
√
g
∂j

(√
g gjk ∂k

)
= gjk

∂2

∂j∂k
+ lower order terms,
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where Einstein notation has been used. Here, gjk dxjdxk is the metric tensor, g = det(gjk)

and (gjk) = (gjk)
−1. This mapping is known as the Laplace-Beltrami operator, and it is

a second order differential operator. The principal symbol is easily determined for any
cotangent vector ξ = ξk dx

k:

σξ(P ) = −gjk ξjξk = −|ξ|2 ,

which is invertible (as a complex linear map) for each ξ 6= 0. The Laplace-Beltrami operator
is hence elliptic.

The following is a fundamental result for elliptic operators, which will be essential for the
study of the Dirac operator in particular:

Theorem 1.4.4. Let M be an n-dimensional compact Riemannian manifold, and let
P : Γ(E) → Γ(E) be a self-adjoint elliptic differential operator of order k > 0. Then,
the spectrum of P is real and discrete. Each eigenspace of P is finite-dimensional and
consists of smooth sections. Moreover, the eigenspaces Eλ (λ ∈ Spec(P )) of P provide an
orthogonal direct sum decomposition for the Hilbert space L2(E),

L2(E) =
⊕
λ

Eλ .

Proof. It is somewhat technical and does not provide much insight on the topic of this
survey. See [8, pp. 196-197]. �





Chapter 2

Spin manifolds and the spinor bundle

The first step in the journey to build the Dirac operator is defining the structure on
which it operates. As previously stated, this endeavor not only requires pulling tools from
differential geometry, but also some algebraic notions. This chapter is devoted to exploring
those notions and intertwining them with previous geometric aspects to further the reader’s
understanding of spin geometry.

2.1 Spin groups and their representations

This section presents the essential algebraic ideas at the heart of spin geometry. They
provide the necessary tools to build the spinor bundle, which is essential in this discussion,
since the Dirac operator acts on the space of its smooth sections.

2.1.1 Clifford algebras

Definition 2.1.1. Let V be a vector space over a commutative field K. Let

T (V ) =

∞⊕
r=0

⊗
r

V

denote the tensor algebra of V (see [7] for more information on tensor algebras). Suppose
q is a quadratic form on V , and define Jq(V ) to be the ideal in T (V ) generated by the
elements of the form v ⊗ v + q(v)1 (where 1 is the unit of T (V )). The Clifford algebra of

13
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the quadratic vector space (V , q) is the quotient

Cl(V, q) = T (V )/Jq(V ).

The product in Cl(V, q) (Clifford product) shall be denoted by “·”. When there is no
confusion, this symbol can be dropped to simplify the notation.

Remark 2.1.2. There is a natural embedding jq : V ↪→ Cl(V, q) given by the composition

V
i−−−−→ T (V )

πq−−−−→ Cl(V, q) ,

where i is the natural inclusion and πq is the canonical projection map (see [8, p. 8] for
the proof that this is an embedding). Thus V can be considered as a subset of Cl(V, q).
Objects of the form jq(v) (v ∈ V ) will be referred to as v ∈ Cl(V, q).

Cl(V, q) can be considered as the associative algebra with unit, generated by elements of
V , and subject to the relations v2 = −q(v)1 (when no confusion is likely to occur, the unit
symbol may be dropped). Hence for all v, w ∈ V ,

v · w + w · v = −2q(v, w), (2.1.1)

where 2q(v, w) = q(v+w)−q(v)−q(w) is the polarization1 of q. If K is not of characteristic
2, then the relations (2.1.1) are enough to describe Cl(V, q), which is not the case if K is
of characteristic 2.

These relations provide a very useful universal characterization of Clifford algebras.

Proposition 2.1.3 (Universal property). Let A be an associative K-algebra with unit,
and let j : V → A be a linear map satisfying j(v)2 = −q(v)1A , for every v ∈ V . Then
j extends uniquely to a K-algebra homomorphism j̃ : Cl(V, q) → A. Moreover, Cl(V, q) is
the only associative K-algebra (up to isomorphism) that satisfies this property.

Proof. (Existence of the homomorphism.) For any linear map f : V → A, there is a unique
K-algebra homomorphism f : T (V )→ A so that the diagram

T (V ) A

V

f

i
f

1Writing q(v, w) is an abuse of notation, since q is a quadratic form. For the sake of simplicity, q and
its associated symmetric bilinear form will both be referred to as q, since there is no confusion as to which
one is being used in each context.
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commutes [7]. In particular, the relation j(v)2 = −q(v)1A guarantees that j = 0 on Jq, so
j descends to Cl(V, q) and j̃ = j ◦ πq.

(Uniqueness of Cl(V, q).) Suppose that C is an associative K-algebra with unit and that
i : V → C is an embedding such that any j that satisfies the conditions in the proposition
can be uniquely extended to a K-algebra homomorphism j̃ : C → A. Then the isomorphism
from V ⊂ Cl(V, q) to i(V ) ⊂ C induces an algebra isomorphism Cl(V, q) C

∼= . �

This characterization is highly useful when discussing other properties of Clifford algebras.

Proposition 2.1.4. Every Clifford algebra Cl(V, q) has a unique canonical antiautomor-
phism t, called the “transpose,” which satisfies, for all v ∈ V ,

t2 = id , t(v) = v .

Proof. Consider the algebra Cl(V, q)o, given by Cl(V, q) with the product ∗ defined by
x∗y = y ·x for all x, y ∈ Cl(V, q). Since it satisfies the universal property, there is a unique

isomorphism Cl(V, q) Cl(V, q)ot . It follows that, for x ∈ Cl(V, q), t(x) = t(x) ∈ Cl(V, q).
The properties of t follow trivially from its definition. �

The transpose t(x) of an element x ∈ Cl(V, q) can also be written as xt.

Proposition 2.1.5. Every Clifford algebra Cl(V, q) has a unique canonical automorphism
α which satisfies, for all v ∈ V ,

α2 = id , α(v) = −v .

Proof. Consider the linear map α0 : V → Cl(V, q), defined by α0(v) = −v. Apply the
universal property to find an automorphism α that satisfies the desired properties. �

The automorphism α yields a useful decomposition of Cl(V, q):

Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q),

where Cli(V, q) = {x ∈ Cl(V, q) : α(x) = (−1)ix} are the eigenspaces of α. Cl0(V, q) is the
even part of Cl(V, q), and Cl1(V, q) is the odd part. Given that α(x · y) = α(x) · α(y), and
taking indexes i, j modulo 2, it is clear that

Cli(V, q) · Clj(V, q) ⊂ Cli+j(V, q).

This makes Cl(V, q) into a Z2-graded algebra. Note that Cl0(V, q) is a subalgebra, but
Cl1(V, q) is not.



16 CHAPTER 2. SPIN MANIFOLDS AND THE SPINOR BUNDLE

As a last annotation on the topic of Clifford algebras, they present an interesting relation-
ship with the exterior algebra

∧• V (also called the “Grassmann algebra”), which is the
Clifford algebra of V defined by the quadratic form q ≡ 0; that is,

∧• V = Cl(V, 0).

Proposition 2.1.6. Every Clifford algebra Cl(V, q) is isomorphic, as a vector space, to
the exterior algebra

∧• V . This isomorphism is natural when K is not of characteristic 2.

Proof. It is not particularly informative for the purposes of this work (see [9]). In the
finite-dimensional case, it is given by the mapping ei1 ∧ · · · ∧ eik 7→ ei1 · · · eik of basis
elements. �

Remark 2.1.7. The proposition means that if V is a vector space of dimension n ∈ N, then
dim(Cl(V, q)) = 2n. Note that Cl(V, q) and

∧• V are not isomorphic as algebras, except
when q ≡ 0.

2.1.2 The Pin and Spin groups

So far, this work has not gone into specific notions of spin geometry. This will change in
this section. Consider the multiplicative group of units in the Clifford algebra:

Cl∗(V, q) = {x ∈ Cl(V, q) : ∃x−1, x−1x = xx−1 = 1}.

This group contains all elements v ∈ V such that q(v) 6= 0. Since v2 = −q(v)1, their
inverses are

v−1 = − v

q(v)
. (2.1.2)

The group P(V, q) ⊂ Cl∗(V, q) generated by the elements v ∈ V such that q(v) 6= 0 contains
some very important subgroups which lie at the heart of spin geometry.

Definition 2.1.8. The Pin group of the quadratic vector space (V, q) is the subgroup
Pin(V, q) ⊂ P(V, q) generated by the elements v ∈ V with q(v) = ±1. The associated Spin
group is just its even part,

Spin(V, q) = Pin(V, q) ∩ Cl0(V, q).

Analysis of the most crucial properties of these groups entails some somewhat cumbersome,
but inevitable, preliminary legwork. If the reader is not interested in technical fiddles, and
wants to get on with topics more directly related to Dirac operators, Theorems 2.1.15 and
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2.1.16 represent the culmination of the work in this section, and provide the necessary
information to advance to the next one.

The first step is introducing the twisted adjoint representation [10], a homomorphism

ρ : Cl∗(V, q) −→ GL(Cl(V, q)), ρx(y) = α(x)yx−1 .

This representation arises as a means to bypass the shortcomings of the usual adjoint
representation. Any of the specialized references in this section provide an explanation as
to why the twisted version is necessary.

From now on, assume that K is not of characteristic 2. This is necessary for the following
line of reasoning.

Proposition 2.1.9. Let v ∈ V ⊂ Cl(V, q) be an element with q(v) 6= 0. Then ρv(V ) = V ,
and for all w ∈ V , the following equation holds:

ρv(w) = w − 2
q(v, w)

q(v)
v.

Proof. From (2.1.2), it follows that q(v)v−1 = −v = α(v). Thus

q(v)ρv(w) = q(v)α(v)wv−1 = α(v)wα(v) = vwv. (2.1.3)

Now, applying (2.1.1) to (2.1.3),

q(v)ρv(w) = −v2w − 2q(v, w)v = q(v)w − 2q(v, w)v.

From this equation, it is clear that ρv(V ) = V , since ρv(v) = −v and ρv fixes any w ∈ v⊥,
thus completing the proof. �

Proposition 2.1.9 shows that ρv(w) is a reflection of w ∈ V across v⊥. This characterization
will be important later.

Using the twisted adjoint representation, the following subgroup can be defined:

P̃(V, q) = {x ∈ Cl∗(V, q) : ρx(V ) = V } .

The norm mapping N : Cl(V, q)→ Cl(V, q) will also be needed:

N(x) := x · α(xt) . (2.1.4)

Proposition 2.1.10. Let V be finite-dimensional and let q be nondegenerate (i.e. there are
no zeroes in its signature). Then the kernel of the homomorphism given by the restriction
of ρ to P̃(V, q),

ρ : P̃(V, q) −→ GL(V ) ,

is the group K∗ of nonzero multiples of the identity in P̃(V, q).
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Proof. It is not overly interesting for this analysis. See [8, pp. 14-15]. �

Proposition 2.1.11. Let V be finite-dimensional and let q be nondegenerate. Then re-
stricting N to the group P̃(V, q) yields a homomorphism

N : P̃(V, q) −→ K∗

into the multiplicative group of nonzero multiples of the identity in Cl(V, q).

Proof. First, it shall be proved that N is well-defined. To that end, note that ρx(v) ∈ V ,
for every x ∈ P̃(V, q), and v ∈ V . Now, apply t to find

t(ρx(v)) = (x−1)tvα(xt) = α(x)vx−1 = ρx(v),

since t(w) = w for all w ∈ V . Hence

xtα(x)vx−1(α(xt))−1 = α[α(xt)x]v[α(xt)x]−1 = ρα(xt)x(v) = v.

From this equality, it follows that ρα(xt)x = id. In other words, α(xt)x ∈ ker(ρ). By
Proposition 2.1.10, α(xt)x ∈ K∗. Apply α to show that xtα(x) = N(xt) ∈ K∗. On the
other hand, t preserves P̃(V, q), so it is clear that N(x) ∈ K∗, and N is well-defined.

Now, to prove that it is a homomorphism, take x, y ∈ P̃(V, q). Then

N(xy) = xyα(yt)α(xt) = xN(y)α(xt) .

Given that N(y) ∈ K∗, it is clear that N(xy) = N(x)N(y), making N a homomorphism
on P̃(V, q). �

Immediate consequences can be inferred from Proposition 2.1.11. To that end, define the
orthogonal group of V with respect to q as

O(V, q) = {λ ∈ GL(V ) : λ∗q = q} ,

where λ∗q is the pullback of q by λ, defined by λ∗q(v) = q(λ(v)).

Corollary 2.1.12. The mappings ρx : V → V for x ∈ P̃(V, q) preserve the quadratic form
q, obtaining a group homomorphism

ρ : P̃(V, q) −→ O(V, q) .

Proof. For x ∈ P̃(V, q), one easily determines N(α(x)) = α(x)xt = α(N(x)) = N(x). Now,
define V × = {v ∈ V : q(v) 6= 0} ⊂ P̃(V, q) (the set of generators of P(V, q)). Then, for
every v ∈ V ×,

N(ρx(v)) = N(α(x)vx−1) = N(α(x))N(v)N(x)−1 = N(v) = q(v),
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where the last equality comes from applying vt = v and vα(v) = q(v) to (2.1.4). Since
ρx(v) ∈ V , it is clear that ρx preserves nonzero q-lengths. Now, apply ρx−1 to show that
ρx(V ×) = V ×, so ρx leaves invariant the set of vectors of zero q-length. It follows that ρx
is q-orthogonal. �

With this corollary, all the preliminary pieces of the analysis of the Pin and Spin groups
start to fall into place. Only one more result is needed before one can proceed.

Theorem 2.1.13 (Cartan-Dieudonné, version of the proof in [11]). Let V be a finite-
dimensional vector space endowed with a nondegenerate quadratic form q. Then every
element λ ∈ O(V,q) can be written as a product of r reflections, i.e.

λ = ρv1 ◦ · · · ◦ ρvr ,

where r ≤ dim(V ).

The Cartan-Dieudonné Theorem, together with Corollary 2.1.12, provide some essential
insight into the properties of the Pin and Spin groups for spaces (V, q) such that V is
finite-dimensional and q is nondegenerate. Recall that, by definition,

P(V, q) = {v1 · · · vr ∈ Cl(V, q) : v1, . . . , vr ∈ V ×} ⊂ P̃(V, q),

so the restriction of ρ to P(V, q) is a homomorphism with a rather simple definition. For
x = v1 · · · vr ∈ P(V, q),

ρx = ρv1 ◦ · · · ◦ ρvr ,
where, by Proposition 2.1.9, ρvi is the reflection accross v⊥i . Thus one finds (with a minor
abuse of notation) the homomorphism ρ : P(V, q) → O(V, q). The Cartan-Dieudonné
Theorem guarantees that this homomorphism is surjective. Moreover, defining SP(V, q) =

P(V, q) ∩ Cl0(V, q) and considering the special orthogonal group

SO(V, q) = {λ ∈ O(V, q) : det(λ) = 1} = {ρv1 ◦ · · · ◦ ρvr ∈ O(V, q) : r is even} , 2

one obtains a new homomorphism SP(V, q) SO(V, q)
ρ .

The end of this analysis is already in sight. The objective now is proving that the homo-
morphism ρ, when restricted to the groups

Pin(V, q) = {v1 · · · vr ∈ P(V, q) : q(vj) = ±1 ∀j = 1, . . . , r} ,

Spin(V, q) = {v1 · · · vr ∈ Pin(V, q) : r is even} ,

is still surjective. The answer, as it turns out, is affirmative when the underlying field K
has the property discussed below.

2This equality comes from the fact that the determinant of a reflection is always -1.
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Definition 2.1.14. Let K be a field of characteristic 6= 2. Then K is spin if at least one
of the equations t2 = ±a can be solved in K for each a ∈ K∗.

Most of the more well-known fields are spin. For example, R and C both verify the spin
condition. The real case holds most of the practical interest for the purposes of this work.

Finally, all the information contained in this section comes together for its main result.

Theorem 2.1.15. Let V be a finite-dimensional vector space over a spin field K. Let q be
a nondegenerate quadratic form on V , and i =

√
−1. There are short exact sequences

1→ F → Pin(V, q)
ρ−→ O(V, q)→ 1 ,

1→ F → Spin(V, q)
ρ−→ SO(V, q)→ 1 ,

where

F =

Z2 = {1,−1} if i /∈ K

Z4 = {±1,±i} if i ∈ K .

Proof. There are two steps in this proof. First, one has to characterize the kernel of ρ and
make sure that it is the image of the monomorphisms F → Pin(V, q) or F → Spin(V, q)

that canonically maps elements of F to their analogues in K (considered as a subset of the
Pin or Spin groups). Then one must check the surjectivity of the mappings ρ.

For the first stage, consider an element x = v1 · · · vr ∈ Pin(V, q) such that x ∈ ker(ρ). By
Proposition 2.1.10, x ∈ K∗. Moreover, x2 = N(v1) · · ·N(vr) = ±1. This characterizes
ker(ρ) for both possible field types.

For the surjectivity of ρ, consider the fact that the reflection ρv is the same as ρtv for
every nonzero t ∈ K. Now, take the q-normalization q(tv) = t2q(v) = ±1. Since K is spin,
at least one of the equations t2 = ±q(v)−1 can be solved in K. Coupling this fact with
the Cartan-Dieudonné Theorem, it is clear that elements of O(V, q) or SO(V, q) can be
written as suitable compositions of r reflections across the orthogonal subspaces of vectors
of q-length 1. The surjectivity of ρ immediately follows. �

Theorem 2.1.15 is the most important result this work has dealt with so far. It characterizes
the Spin group in a way that will be essential in Section 2.1.3. Up until this point, the
line of reasoning has been purposefully kept as general as possible, but now it becomes
necessary to focus on the real case, K = R.
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Let V be an n-dimensional real vector space endowed with a positive definite quadratic
form q, so there is a basis for V ∼= Rn such that

q(x) = x2
1 + · · ·+ x2

n.

For the sake of simplicity, the notation will be simplified to O(V, q) ≡ On, SO(V, q) ≡ SOn.
Similarly, the corresponding Clifford algebra and the Pin and Spin groups will be named
Cln, Pinn, Spinn respectively. In particular, Spinn possesses some interesting properties.

Theorem 2.1.16. Let n ∈ N. The group Spinn satisfies

(i) For n ≥ 2, Spinn is a connected group.
(ii) For n ≥ 3, Spinn is simply connected and ρ : Spinn → SOn is the universal covering

of SOn.

Proof. Consider the short exact sequence

1→ Z2 → Spinn
ρ−→ SOn → 1

given by Theorem 2.1.15. This establishes Spinn as a twofold cover of SOn (since ρx = ρ−x).
To prove that Spinn is connected, it is enough [12, p. 16] to find a path connecting the
elements ±1 ∈ Spinn. To that end, choose two q-orthogonal vectors e1, e2 ∈ Rn such that
q(e1) = q(e2) = 1, and define a path γ : [0, 1]→ Spinn by

γ(t) = cos(πt) + sin(πt)e1e2

=
[
cos
(π

2
t
)
e1 + sin

(π
2
t
)
e2

] [
sin
(π

2
t
)
e2 − cos

(π
2
t
)
e1

]
,

which satisfies γ(0) = 1, γ(1) = −1. The simple connectedness of Spinn, n ≥ 3 follows
from standard computations in homotopy theory. �

Basically, Theorem 2.1.16 states that Spinn is a nontrivial twofold cover of SOn. The reader
should keep this fact in mind for future sections, since it helps to quickly characterize
certain Spin groups. For example, the well-known diffeomorphism SO3 ≈ RP3 implies that
Spin3 ≈ S3.

2.1.3 Spin representation

The application of Clifford algebras, and more particularly, of Spinn, to this work does not
come in a direct, clean-cut way. A basic understanding of their representations is necessary.
With this in mind, consider a quadratic vector space (V, q) over a field K.
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Definition 2.1.17. Let F be a field such that K ⊂ F. An F-representation of Cl(V, q) is
a K-algebra homomorphism

λ : Cl(V, q) −→ EndF(W ) ,

where W is a finite-dimensional vector space over F, and it is called a Cl(V, q)-module over
F. The dimension of the representation is the dimension of W , dimF(W ).

One can define the operation λ(x)(w) between an element x ∈ Cl(V, q) and w ∈W . When
there is no confusion, the notation can be simplified to x · w. This product is referred to
as a Clifford multiplication. For more information on representations, see [5].

As was the case in the previous section, this analysis will focus on Cln and its complex
analogue, ClCn = Cln ⊗R C.

Definition 2.1.18. Consider the following complex vector space:

∆n := C2k ∼=
⊗
k

C2 , n = 2k, 2k + 1 .

This structure is known as the vector space of complex n-spinors. Its elements are called
complex spinors.

It can be proved [12, p. 13] that

ClCn ∼=

EndC(∆n) if n is even

EndC(∆n)⊕ EndC(∆n) if n is odd .

As a result, one can define the spin representation δn of ClCn . In the even case, this is nothing
but the isomorphism δn : ClCn EndC(∆n)

∼= . The odd case is a little more convoluted, since
one needs to compose the isomorphism with the projection onto the first component:

δn : ClCn EndC(∆n)⊕ EndC(∆n) EndC(∆n) .
∼= p1

Now, consider Cln as a subset of ClCn . By taking Spinn ⊂ Cln ⊂ ClCn , one can restrict the
representation δn to obtain the spin representation of Spinn,

δn : Spinn −→ Aut(∆n) ≡ GL(∆n) .

As usual, the same symbol is used to denote both the original mapping and its restriction.

Proposition 2.1.19. The spin representation of Spinn is faithful (i.e. δn is injective).

Proof. If n is even, then ClCn ∼= End(∆n), so the statement is trivial. Moving on to
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n = 2k + 1, as vector spaces, ∆2k = ∆2k+1, and Spin2k can be thought of as a subset of
Spin2k+1. Hence the diagram

Spin2k GL(∆2k)

Spin2k+1 GL(∆2k+1)

i

δ2k

δ2k+1

commutes. This implies that the normal subgroup H := ker(δ2k+1) satisfies

H ∩ Spin2k = {1} .

Now, elements Ã ∈ SO2k can be identified with elements of the form diag(Ã, 1) ∈ SO2k+1.
Given that ρ is surjective, ρ(H) ⊂ SO2k+1 is normal. Moreover

ρ(H) ∩ SO2k = {I} .

Choose A ∈ ρ(H) ⊂ SO2k+1. Its characteristic polynomial has odd degree, so either 1 or
−1 is a root. Since for an orientation-preserving matrix, both complex roots and -1 can
only appear in pairs, 1 has to be a root3, so there is a unit vector v such that A(v) = v.
Thus there is an element B ∈ SO2k+1 such that BAB−1 ∈ SO2k. Since ρ(H) is normal,
this implies BAB−1 = I, hence ρ(H) = {I}. Since −1 /∈ H, this leaves only the option
H = {1}, so δ2k+1 is injective. �

This proposition is not as unassuming as it might look. It actually implies that the spin
representations do not arise as lifts of representations of SOn, since such a lift necessarily
contains {±1} in its kernel.

Going back to the concept of Clifford multiplications (Definition 2.1.17), fix a vector x ∈
Rn ⊂ Cln ⊂ ClCn . Via the representation δn, x can be considered as an endomorphism of
∆n. Since x is arbitrary, the Clifford multiplication of vectors and spinors can be defined
as the linear map

µ : Rn ⊗R ∆n −→ ∆n ,

where µ(x⊗ψ) = δn(x)(ψ) ≡ x ·ψ for x ∈ Rn, ψ ∈ ∆n. Furthermore, this map can be ex-
tended to the exterior algebra

∧•Rn. Let (e1, . . . , en) be a positively oriented orthonormal
basis of Rn. For a multivector w ∈

∧•Rn,
w =

∑
i1<···<ik

wi1...ikei1 ∧ · · · ∧ eik ,

3This is clear by looking at the canonical form of orthogonal transformations. Geometrically, by the
Cartan-Dieudonné Theorem, A ∈ SO2k+1 corresponds to the composition of, at most, 2k reflections across
hyperplanes, so there is always a vector in the intersection of such hyperplanes that remains invariant by
the reflections.



24 CHAPTER 2. SPIN MANIFOLDS AND THE SPINOR BUNDLE

define

µ(w ⊗ ψ) = w · ψ =
∑

i1<···<ik

wi1...ikei1 · · · eik · ψ.

It can be shown [12, pp. 21-22] that µ is a homomorphism of representations of Spinn, and
that for x ∈ Rn and w ∈

∧•Rn, one has the equality

x · (w · ψ) = (x[ ∧ w) · ψ − (xyw) · ψ ,

where y denotes the interior product. Since ψ is arbitrary, the spinor is usually dropped
and, making use of the isomorphism Cln ∼=

∧•Rn, the following equation is used to
characterize the Clifford product by vectors x ∈ Rn ⊂ Cln,

x· ≡ x[∧ − xy . (2.1.5)

The reader should keep (2.1.5) in mind, since it will be used in future sections.

This knowledge about the Clifford multiplication can be used to delve deeper into the
properties of the spin representation. Take the so-called “complex volume form” of Rn,

ωC
n = ib(n+1)/2ce1 · · · en .

In the case n = 2k, the endomorphism

f := δ2k(ω
C
2k) : ∆2k −→ ∆2k

satisfies f(δ2k(g)(ψ)) = δ2k(g)(f(ψ)), since x ·ωC
2k = ωC

2k ·α(x), for every x ∈ Cln [8, p. 22]
(so ωC

2k is central in Cl0n). Hence it is an automorphism of the representation δn. Moreover

(ωC
2k)

2 = i2k(−1)k(2k−1)e1 · · · e2k · e2k · · · e1 = (−1)k(−1)−k(−1)2k = 1 ,

so f2 = id∆n . The spin representation decomposes into two subspaces,

∆2k = ∆+
2k ⊕∆−2k , ∆±2k := {ψ ∈ ∆2k : f(ψ) = ±ψ} .

The spinors belonging to ∆±2k are often referred to as positive and negative Weyl spinors,
respectively. The representation δn splits into δn = δ+

n ⊕ δ−n .

The next step of this analysis is proving some of the properties of ∆2k+1 and ∆±2k. This
will culminate in the proof that the representations δ2k+1 and δ±2k are irreducible.

Proposition 2.1.20. The following affirmations regarding the spaces ∆n hold:

(i) dimC(∆2k+1) = 2k.
(ii) dimC(∆±2k) = 2k−1.
(iii) Let x ∈ R2k and ψ± ∈ ∆±2k. Then x · ψ± ∈ ∆∓2k, so Clifford multiplication induces

homomorphisms µ : R2k ⊗R ∆±2k → ∆∓2k .
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Proof. Property (i) is clear by the definition of ∆2k+1. Property (iii) follows from the
following Clifford relation:

x · e1 · · · e2k = e1 · · · e2k · α(x) = −e1 · · · e2k · x,

for x ∈ Rn \ {0}. This implies that Clifford multiplication by any vector anti-commutes
with f , thus it maps ∆±2k onto ∆∓2k in a bijective manner. Consequently, both subspaces
have the same dimension, and dim(∆±2k) = 2k/2 = 2k−1, obtaining property (ii). �

The irreducibility of these representations is a little trickier, since it requires some algebraic
notions that, albeit well-known, have not been explored here. For the sake of simplicity,
the following lemma, which is key to subsequent propositions, will be cited without proof.

Lemma 2.1.21 (As seen in [12], p. 23). Let V,W be complex vector spaces such that
dim(W ) < dim(V ). Then there are no nontrivial algebra homomorphisms End(V ) →
End(W ).

Proposition 2.1.22. The representations δ±2k are irreducible, i.e., there are no proper
subspaces which are invariant by the representation.

Proof. The treatment is analogous for both subspaces, so only the positive case will be
explained. Proceed by contradiction. Assume that {0} 6= W ( ∆+

2k is a proper invariant
subspace. The Clifford products eiej (i < j) belong to Spin2k, so W is invariant under
Clifford multiplication by them (eiej · W ⊂ W ). Additionally, the set {eiej : i < j}
generates the even part of the complex Clifford algebra, (ClC2k)0. Hence there is a complex
(nontrivial) representation

f : (ClC2k)
0 → End(W ).

Given that (ClC2k)0 ∼= ClC2k−1
∼= End(∆2k−1)⊕End(∆2k−1) and that dim(W ) < dim(∆2k−1),

by Lemma 2.1.21, f is trivial. This contradiction comes from assuming that W is a proper
invariant subspace. �

Proposition 2.1.23. The representation δ2k+1 : Spin2k+1 → ∆2k+1 is irreducible.

Proof. The argument is analogous to the even case. Now,

Spin2k+1 ⊂ (ClC2k+1)0 ⊂ ClC2k+1
∼= End(∆2k+1)⊕ End(∆2k+1).

Let {0} 6= W ( ∆2k+1 be a proper invariant subspace. As before, it follows that W is
also invariant by the action of (ClC2k+1)0 (since it is generated by elements of Spin2k+1), so
there is a nontrivial representation

f : (ClC2k+1)0 −→ End(W ).
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Now (ClC2k+1)0 ∼= ClC2k ∼= End(∆2k). Since dim(W ) < dim(∆2k+1) = dim(∆2k), by
Lemma 2.1.21, f is once again trivial. �

2.2 The spinor bundle

In this section, all the previously discussed geometrical and algebraic notions come together
to finally define the structure on which Dirac operators act.

From now on, given an oriented Riemannian manifold (Mn, g), let FSO(TM) denote the
SOn-principal bundle of its positively oriented orthonormal frames.

Definition 2.2.1. Let (Mn, g) be an oriented Riemannian manifold of dimension n. A spin
structure on (Mn, g) is a Spinn-principal bundle Spin(TM)→M , together with a twofold
covering map Spin(TM) FSO(TM)

η compatible with the respective group actions, i.e.,
such that the diagram

Spin(TM)× Spinn Spin(TM)

M

FSO(TM)× SOn FSO(TM)

η×ρ η

commutes. A spin manifold is an oriented Riemannian manifold with a spin structure.

Not every manifold is spin. The conditions for the existence of a spin structure on a
manifold (Mn, g) are of topological nature [13, p. 2]. Henceforth, when referring to a
manifold M , it will be assumed that it is spin.

Definition 2.2.2. The spinor bundle of a manifold M is the complex vector bundle asso-
ciated to Spin(TM) via the spin representation,

ΣM = Spin(TM)×δn ∆n .

Recall that, for n even, ∆n = ∆+
n ⊕∆−n and δn = δ+

n ⊕ δ−n . Hence the positive and negative
spinor bundles can be defined as

ΣM± = Spin(TM)×δ±n ∆±n ,

so ΣM = ΣM+ ⊕ ΣM−. The spinor bundle is thus a vector bundle with typical fiber ∆n

(or ∆±n , in the positive and negative cases). Elements of ΣM are known as spinors. Just
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as sections of the tangent bundle, X ∈ X(M), are called vector fields, sections of the spinor
bundle, ψ ∈ Γ(ΣM), are called spinor fields4 or, sometimes, just spinors.

The Clifford multiplication of multivectors and spinors can be extended to a Clifford mul-
tiplication on the spinor bundle. One starts with the fiberwise action given by

T ∗M ⊗ ΣM −→ ΣM, X[ ⊗ ψ 7→ X · ψ := δn(X)(ψ),

such that
X · Y · ψ + Y ·X · ψ = −2g(X,Y )ψ. (2.2.1)

Just like in Section 2.1.3, for a k-form w =
∑

i1<···<ik wi1...ike
∗
i1
∧· · ·∧e∗ik , (where (e1, . . . , en)

is a positively oriented orthonormal basis of TM), the Clifford multiplication by ψ is

µ(w ⊗ ψ) = w · ψ =
∑

i1<···<ik

wi1...ikei1 · · · eik · ψ,

so the homomorphism extends to
∧• TM ⊗ ΣM .

Remark 2.2.3. Using the Riemannian metric on M , the orthonormal basis (e1, . . . , en) and
its dual basis, (e∗1, . . . , e

∗
n), can be identified. For the sake of simplicity, when there is no

confusion, the superscript ∗ will be dropped and ei will refer to both each vector and its
dual covector.

Proposition 2.2.4. There is a Hermitian structure 〈· , ·〉 on ΣM such that

〈X · ϕ,ψ〉 = −〈ϕ,X · ψ〉

for every X ∈ X(M) and ϕ,ψ ∈ Γ(ΣM).

Proof. This holds because the spin representation is unitary; see e.g. [14, pp. 129-130]. �

The spinor bundle is a versatile and intricate structure, and a much more in-depth analysis
of it is possible (see, for example, [8, Chapter II]). This very work will eventually dive deeper
into its properties. For now, however, it will be put on the back burner until Section 2.3.

2.3 Connections on spinor bundles

The description of a connection on the spinor bundle uses the concepts recalled in Sec-
tion 1.2.2. IfM is a spin manifold, the Levi-Civita connection on TM induces a connection

4Spinor fields play an essential role in many fields of physics, such as particle physics or quantum
mechanics.
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on the SOn-principal bundle FSO(TM) of positively oriented frames. This connection can
in turn be lifted to one on Spin(TM), via the covering map η : Spin(TM) → FSO(TM).
Finally, one can canonically define an induced vector bundle connection on the associated
spinor bundle. This connection is, at its core, induced by the Levi-Civita connection on
TM , so it shall be called Levi-Civita spinorial connection. See e.g. [18, pp. 42-45] for a
more detailed exposition of this process.

From this point on, when encountering spinorial operators, tensors . . . , the reader should
assume that they are spinorial Levi-Civita quantities. Thus the symbol ∇ will be used
both for the spinorial connection and the Levi-Civita connection on TM . The following
results come from [14, p.140]:

Proposition 2.3.1. Take an orthonormal basis of (σ1, . . . , σ2bn/2c) of ∆n, and a positively
oriented local orthonormal basis (e1, . . . , en) of TM . Let (ψα)1≤α≤bn/2c be any correspond-
ing local spinorial frame, i.e. ψα = [s̃, σα] with η(s̃) = (e1, . . . , en). Then the following
affirmations hold:

1. Locally, the spinorial covariant derivative is given by

∇ψα =
1

4

n∑
i,j=1

g(∇ei, ej)ei · ej · ψα . (2.3.1)

2. The spinorial curvature tensor R∇ can be expressed explicitly in terms of the Riemann
curvature tensor R on TM . This expression is

R∇X,Y ψ =
1

4

n∑
i,j=1

g(RX,Y ei, ej)ei · ej · ψ. (2.3.2)

3. The spinorial covariant derivative is compatible with the Clifford multiplication “·”
and the Hermitian structure 〈 , 〉, i.e., for every X,Y ∈ X(M) and ψ ∈ Γ(ΣM),

X〈ψ,ϕ〉 = 〈∇Xψ,ϕ〉+ 〈ψ,∇Xϕ〉,

∇X(Y · ψ) = (∇XY ) · ψ + Y · ∇Xψ .



Chapter 3

The Dirac operator

By this point, an impatient reader might have begun to wonder when he is finally going to
come across the titular Dirac operators. The answer lies in this chapter. In fact, he might
be surprised by the apparent simplicity of their definition, once all the preliminary pieces
and tools have been put in place. This simplicity, however, is deceiving. They are very
general operators, that can be defined in highly involved vector bundles, so their properties
(such as their spectrum) can be extremely challenging to analyze. This chapter will try to
do so for some of the more essential ones.

3.1 Definition of the Dirac operator

For the sake of clarity, recap the three most important features associated to a spin struc-
ture on a Riemannian manifold (Mn, g):

(i) The spinor bundle ΣM = Spin(TM)×δn∆n with the fiberwise Clifford multiplication
between k-forms and spinors (see Section 2.2).

(ii) The natural Hermitian structure on ΣM (see Section 2.2).
(iii) The Levi-Civita spinorial connection on ΣM (see Section 2.3).

29
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These three structures satisfy three simple compatibility relations, for X,Y ∈ X(M) and
ψ,ϕ ∈ Γ(ΣM):

〈X · ψ,ϕ〉+ 〈ψ,X · ϕ〉 = 0, (3.1.1)

X〈ψ,ϕ〉 = 〈∇Xψ,ϕ〉+ 〈ψ,∇Xϕ〉, (3.1.2)

∇X(Y · ψ) = (∇XY ) · ψ + Y · ∇Xψ. (3.1.3)

By combining the spinorial connection and the Clifford multiplication, the central object
of this review is finally within reach.

Definition 3.1.1 (Fundamental Dirac operator). The fundamental Dirac operator (often
just called Dirac operator) of a Riemannian spin manifold (Mn, g) is a map

D : Γ(ΣM) −→ Γ(ΣM)

defined, for every ψ ∈ Γ(ΣM), by

Dψ =

n∑
i=1

ei · ∇eiψ.

where (ei)1≤i≤n is any local orthonormal basis of TM .

Remark 3.1.2. Using the alternative definition of the spinorial connection given by Re-
mark 1.2.1, the Dirac operator D can be regarded as the composition of the spinorial
connection and Clifford multiplication, via the identity T ∗M ≡ TM given by the metric,

Γ(ΣM)
∇−−−−→ Γ(T ∗M ⊗ ΣM) ≡ Γ(TM ⊗ ΣM)

·−−−−→ Γ(ΣM) .

It follows that D is a first order differential operator (Example 1.4.2).

3.2 Basic properties of the Dirac operator

This section will start by proving a series of lemmas and propositions regarding general
properties of the Dirac operator. They will later feed into more involved lines of reasoning
regarding, for example, its spectrum.

Before diving into these lemmas, the reader should be aware of the following equations.
Under the fiberwise isomorphism Cl(TxM) ∼=

∧•(TxM) that identifies

v · ψ ≡ v ∧ ψ − vyψ , (3.2.1)

the exterior differential, d, and its formal adjoint, δ (the so-called codifferential), can be
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locally written as [14, p. 148]

d =

n∑
i=1

ei∧∇ei , δ = −
n∑
i=1

eiy∇ei , (3.2.2)

so the Dirac operator becomes

D =
n∑
i=1

ei · ∇ei ≡ d+ δ,

which establishes D as the “square root” of the Laplace-de Rham operator1 ∆LdR = dδ+δd,

D2 ≡ (d+ δ)2 = d2 + δ2 + dδ + δd = dδ + δd = ∆LdR .

With this in mind, it is time to start a proper study of D.

Lemma 3.2.1. Let ψ be a smooth spinor field, f a smooth function and ξ a smooth vector
field on a Riemmanian spin manifold (Mn, g). Let grad(f) be the gradient vector field of
f , and d and δ be the differential and codifferential, respectively. Then

(i) [D, f ]ψ = D(fψ)− fDψ = df · ψ = grad(f) · ψ.
(ii) D(ξ · ψ) = −ξ ·Dψ − 2∇ξψ + (d+ δ)ξ[ · ψ.
(iii) D2(fψ) = fD2ψ−2∇grad(f)ψ+(∆f)ψ, where ∆ := δd is the scalar Laplace operator

on (Mn, g).

Proof. Choose a local orthonormal basis (ej)1≤j≤n of TM . Then

D(fψ)− fDψ =
n∑
i=1

ei · ∇ei(fψ)− fDψ

=
n∑
i=1

df(ei)ei · ψ + fDψ − fDψ = df · ψ.

This, together with the identification TM ≡ T ∗M (hence grad(f)· ≡ df ·), proves prop-

1This was actually what Paul Dirac was looking for when studying relativistic wave functions. He
wanted to find a relativistic analogue to the Schrödinger equation that was linear in the time derivatives,
which would enable him to extend the probabilistic interpretation of non-relativistic wave functions to the
relativistic case. As it turns out, the Dirac operator does the job.
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erty (i). Moving on to property (ii),

D(ξ · ψ) =
n∑
i=1

ei · ∇ei(ξ · ψ) =
n∑
i=1

ei · (∇eiξ) · ψ +
n∑
i=1

ei · ξ · ∇eiψ

(2.2.1)
=

n∑
i=1

ei · (∇eiξ) · ψ − ξ ·
n∑
i=1

ei · ∇eiψ − 2
n∑
i=1

g(ξ, ei)∇eiψ

(3.2.1)
=

(
n∑
i=1

ei ∧∇eiξ[
)
· ψ −

(
n∑
i=1

eiy∇eiξ[
)
· ψ

− ξ ·
n∑
i=1

ei · ∇eiψ − 2

n∑
i=1

g(ξ, ei)∇eiψ

(3.2.2)
= −ξ ·Dψ − 2∇ξψ + (d+ δ)ξ[ · ψ .

This proves property (ii). For property (iii),

D2(fψ)
(i)
= D(df · ψ + fDψ)

(i)& (ii)
= −df ·Dψ − 2∇grad(f)ψ + (d+ δ)df · ψ + df ·Dψ + fD2ψ

= fD2ψ − 2∇grad(f)ψ + (∆f)ψ . �

Proposition 3.2.2. The Dirac operator is an elliptic operator.

Proof. Let x ∈ M , ξ ∈ T ∗xM \ {0} and f ∈ C∞(M) such that (df)x = ξ. Consider the
following expression:

D[(f − f(x))ψ](x),

where ψ is a smooth spinor field. It is clear that only the highest order terms survive the
subtraction. Thus it can be identified with the principal symbol in the following manner:

σξ(D)(ψ(x)) = D[(f − f(x))ψ](x)

= (fDψ + df · ψ − f(x)Dψ)(x) = (df)x · ψ(x) = ξ · ψ(x),

where Lemma 3.2.1 (i) has been used. In other words σξ(D) ∈ End(ΣxM) is ξ· (Clifford
multiplication by ξ). Then the ellipticity of D means that ξ· is an isomorphism of ΣxM

for every possible ξ ∈ T ∗M \ {0}. Indeed, using the identity T ∗xM ≡ TxM ,

ξ · ψ = 0 =⇒ ξ · ξ · ψ = 0
(2.2.1)⇐⇒ −|ξ|2ψ = 0⇐⇒ ψ = 0. �

Proposition 3.2.3. If M is a closed2 manifold, then the Dirac operator is formally self-
adjoint with respect to 〈 , 〉L2 .

Proof. Recall the compatibility conditions (3.1.1)-(3.1.3) and choose, at each point x ∈M ,
a synchronous local orthonormal frame (ei)1≤i≤n, that is, a local frame around x such that

2A compact manifold without boundary.
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(∇eiej)(x) = 0, for 1 ≤ i, j ≤ n (this can always be done due to the symmetric nature of
the Levi-Civita connection [17, pp. 146-148]). Then

〈Dψ,ϕ〉(x) =
〈 n∑
i=1

ei · ∇eiψ,ϕ
〉
(x) = −

n∑
i=1

〈∇eiψ, ei · ϕ〉(x)

= −
n∑
i=1

[ei〈ψ, ei · ϕ〉 − 〈ψ,∇ei(ei · ϕ)〉](x)

= −
n∑
i=1

ei〈ψ, ei · ϕ〉(x) + 〈ψ,Dϕ〉(x).

The intuitive idea behind this proof is showing that the sum in the last term is the di-
vergence of a complex vector field, so its integral over M vanishes. This is thanks to the
Stokes theorem for compactly supported vector fields, since ∂M = ∅ because M is closed.
To that end, consider two vector fields X1, X2 ∈ X(M), defined for every Y ∈ TxM by

[g(X1, Y ) + i g(X2, Y )](x) = 〈ψ, Y · ϕ〉(x).

By the properties of the Levi-Civita connection and the normal coordinates,

[div(X1) + i div(X2)](x) =

n∑
k=1

[g(∇ekX1, ek) + i g(∇ekX2, ek)](x)

=

n∑
k=1

[ek(g(X1, ek) + i g(X2, ek))](x) =

n∑
k=1

ek〈ψ, ek · ϕ〉(x).

So the following coordinate independent equality holds:

〈Dψ,ϕ〉 = −div(X1)− i div(X2) + 〈ψ,Dϕ〉,

and it can be integrated over M to prove the formal self-adjointness of D:∫
M
〈Dψ,ϕ〉νg =

∫
M
〈ψ,Dϕ〉νg . �

Remark 3.2.4. The reader should be aware that Proposition 3.2.3 does not prove the self-
adjointness of D as a differential operator on ΣM , it only proves that it is symmetric. Self-
adjointness is far more finicky and subtle, since D and its adjoint D∗ are not necessarily
defined over the same domain (among other technical fiddles). For complete manifolds,
and thus for closed manifolds, symmetric differential operators are essential self-adjoint
[13, pp. 12-13], but this work shall not go into it.

Proposition 3.2.5. Let (Mn, g) be an even dimensional spin manifold. Then its Dirac
operator splits into

D =

(
0 D−

D+ 0

)
,
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using the decomposition Γ(ΣM) = Γ(ΣM+)⊕Γ(ΣM−), where D± : Γ(ΣM±)→ Γ(ΣM∓),
i.e. the Dirac operator maps positive spinors to negative ones and vice versa.

Proof. Recall that, for n = 2k, the complex spinor space decomposes into

∆2k = ∆+
2k ⊗∆−2k , ∆±2k := {ψ ∈ ∆2k : ωC

2k · ψ = ±ψ} .

Since each fiber of ΣM is isomorphic to ∆2k, the action of the complex volume form
translates to an action on Γ(ΣM). Now, take a positive spinor field ψ ∈ Γ(ΣM+). Then

ωC
2k ·Dψ = ωC

2k ·
n∑
i=1

ei · ∇eiψ = −
n∑
i=1

ei · ωC
2k · ∇eiψ

= −
n∑
i=1

ei · ∇ei(ωC
2k · ψ) = −Dψ.

The treatment is analogous for negative spinors. �

Corollary 3.2.6. If (Mn, g) is an even dimensional closed spin manifold, the eigenvalues
of D are symmetric with respect to zero.

Proof. Suppose ψ is an eigenspinor for D, i.e. Dψ = λψ for λ ∈ R (λ is guaranteed to
be real, and ψ to be a smooth spinor field, by Theorem 1.4.4). Use the decomposition
ΣM = ΣM+ ⊕ ΣM− to write ψ = ψ+ + ψ−. By Proposition 3.2.5, it is clear that
Dψ± = λψ∓. Define a new spinor field ψ̃ := ψ+ − ψ−. Then,

Dψ̃ = D(ψ+ − ψ−) = λψ− − λψ+ = −λ(ψ+ − ψ−) = −λψ̃ ,

so ±λ ∈ Spec(D). �

Remark 3.2.7. Using the existence of real or quaternionic Spinn-equivariant structures
αn : ∆n → ∆n anti-commuting with the Clifford multiplication [12, p. 31],

αn(x · ψ) = −x · αn(ψ) , x ∈ Rn, ψ ∈ ∆n ,

it can be shown that the symmetry of Spec(D) also holds for n = 1mod(4). However, the
symmetry can break for n = 3mod(4) [13, p. 16].

Before moving on to the next section, it is worthwhile to look at the simplest explicit
example of the application of the Dirac operator to a spin manifold.

Example 3.2.8 (Dirac operator on Rn). Let M = Rn. Then, ΣRn ∼= Rn × Cbn/2c is a
trivial complex vector bundle. Therefore a spinor field ψ ∈ Γ(ΣRn) can be regarded as a
smooth map ψ : Rn → Cbn/2c. The Dirac operator simplifies to

D =

n∑
i=1

ei · ∂i
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by identifying ∂i = ∇ei . Its square becomes

D2 =

(
n∑
i=1

ei · ∂i

) n∑
j=1

ej · ∂i

 =
n∑

i,j=1

ei · ej · ∂i∂j

= −
∑
i

∂2
i +

∑
i<j

ei · ej · ∂i∂j +
∑
i>j

ei · ej · ∂i∂j

= −
∑
i

∂2
i +

∑
i<j

ei · ej · (∂i∂j − ∂j∂i) = −
∑
i

∂2
i ,

so the square of the Dirac operator acts on smooth maps from Rn to Cbn/2c like the usual
Laplacian of Rn (with a negative sign).

3.3 The Schrödinger-Lichnerowicz formula

Historically, and by construction, the Dirac operator was envisioned as a means to obtain
some sort of “square root” of the Laplacian or one of its multiple generalizations (like the
rough Laplacian or the Laplace-de Rham operator). As it turns out, the Schrödinger-
Lichnerowicz formula establishes this connection by relating D2 to one of them, showing
that they only differ in a very simple curvature expression.

Definition 3.3.1 (Extension of the Hermitian product). The natural Hermitian product
〈 , 〉 on Γ(ΣM) can be extended to Γ(T ∗M ⊗ ΣM) by

(α⊗ ψ , β ⊗ ϕ) = g(α, β)〈ψ,ϕ〉 ,

where the metric extends to covectors by the identity TM ≡ T ∗M . At a point x ∈M , for
ω, η ∈ T ∗xM ⊗ ΣxM and an orthonormal basis (e1, . . . , en) of TxM ,

〈ω, η〉 =
n∑
i=1

〈ω(ei), η(ei)〉.

Definition 3.3.2 (Bochner Laplacian). Consider a vector bundle E over a compact, ori-
ented, Riemannian manifold (M, g), endowed with a metric connection

∇ : Γ(E) −→ Γ(T ∗M ⊗ E).

Take its L2-adjoint (also called the formal adjoint),

∇∗ : Γ(T ∗M ⊗ E) −→ Γ(E),

such that 〈∇∗ϕ,ψ〉L2 = 〈ϕ,∇ψ〉L2 for every ϕ ∈ Γ(T ∗M ⊗ E) and ψ ∈ Γ(E).

The Bochner Laplacian is a second order differential operator defined by

∆B = ∇∗∇,
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which differs to the rough Laplacian ∆R = tr(∇2) by a sign.

The titular formula is not particularly challenging to compute, but it does need some
previous groundwork in the form of the two following lemmas.

Lemma 3.3.3. Taking a synchronous local orthonormal frame (∇eiej)(x) = 0 at each
x ∈M , where (Mn, g) is a closed Riemannian spin manifold, yields

∆Bψ = −
n∑
i=1

∇ei∇eiψ

for every smooth spinor field ψ ∈ Γ(ΣM).

Proof. Choose ψ,ϕ ∈ Γ(ΣM). By the definition of ∇∗,

〈∆Bψ,ϕ〉L2 = 〈∇∗∇ψ,ϕ〉L2 = 〈∇ψ,∇ϕ〉L2 =
n∑
i=1

〈∇eiψ,∇eiϕ〉L2 .

Now, proceeding as in Proposition 3.2.3, define two vector fields X1, X2 ∈ X(M) by

g(X1, X) + i g(X2, X) = 〈ψ,X · ϕ〉

for all X ∈ TM . Thus for every x ∈M ,

div(X1) + i div(X2) =
n∑
k=1

ek〈ψ, ek · ϕ〉 .

Hence
n∑
k=1

〈∇ekψ,∇ekϕ〉 =
n∑
k=1

[ek〈∇ekψ,ϕ〉 − 〈∇ek∇ekψ,ϕ〉]

= div(X1) + i div(X2)−
n∑
k=1

〈∇ek∇ekψ,ϕ〉 .

Integration of this sum over M makes the divergence terms vanish, and the required con-
dition for ∇∗ to be the formal adjoint of ∇ follows. �

Lemma 3.3.4. The Ricci tensor, considered as a symmetric endomorphism of the tangent
bundle Ric : TM → TM (see [12, p. 64]) of the Riemannian spin manifold (Mn, g) with
local orthonormal frame (ei)1≤i≤n satisfies, for every X ∈ TM and ψ ∈ ΣM ,

n∑
i=1

ei ·R∇X,eiψ =
1

2
Ric(X) · ψ,

where Ric(X) = −
∑n

i=1RX,eiei.
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Proof. Use the definition of the spinorial curvature and the first Bianchi identity to find

n∑
i=1

ei ·R∇X,eiψ
(2.3.2)

=
1

4

n∑
i,j,k=1

g(RX,eiej , ek)ei · ej · ek · ψ

(1.3.1)
= −1

4

n∑
i,j,k=1

g(Rei,ejX, ek)ei · ej · ek · ψ −
1

4

n∑
i,j,k=1

g(Rej ,Xei, ek)ei · ej · ek · ψ .

Rearranging indexes on the second sum yields

n∑
i=1

ei ·R∇X,eiψ = −1

4

n∑
i,j,k=1

g(RX,eiej , ek)(ej · ek · ei − ej · ei · ek) · ψ .

Now, apply (2.2.1) to simplify the Clifford multiplication of the basis vectors

ej · ek · ei − ej · ei · ek =− ej · ei · ek − 2δikej + ei · ej · ek + 2δijek

=2ei · ej · ek + 4δijek − 2δikej ,

where δab is the Kronecker delta. Hence

3

n∑
i=1

ei ·R∇X,ei = −
n∑

i,k=1

g(RX,eiei, ek)ek · ψ +
1

2

n∑
i,j=1

g(RX,eiej , ei)ej · ψ

=

n∑
k=1

g(Ric(X), ek)ek · ψ +
1

2

n∑
j=1

g(Ric(X), ej)ej · ψ =
3

2
Ric(X) · ψ . �

With this knowledge, the main result of this section immediately follows.

Theorem 3.3.5 (Schrödinger-Lichnerowicz formula). The Dirac operator D of a closed
Riemannian spin manifold (Mn, g) satisfies

D2 = ∆B +
S

4
id , (3.3.1)

where S = −
∑n

i=1 ei · Ric(ei) is the scalar curvature of (Mn, g).

Proof. At each x ∈ M , choose a synchronous local orthonormal frame. Recall that this
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means (∇eiej)(x) = 0. For any smooth spinor field ψ, using (3.1.3) and (2.2.1),

D2ψ =
n∑

i,j=1

ei · ∇ei(ej · ∇ejψ) =
n∑

i,j=1

(ei · ∇eiej · ∇ejψ + ei · ej · ∇ei∇ejψ)

=
n∑

i,j=1

ei · ej · ∇ei∇ejψ

= −
n∑
i=1

∇ei∇eiψ +
n∑
i<j

ej · ei · (∇ej∇ei −∇ei∇ej )ψ

= ∆Bψ −
1

2

n∑
i,j=1

ei · ej ·R∇ei,ejψ .

The second sum can be simplified further by invoking Lemma 3.3.4,
n∑

i,j=1

ei · ej ·R∇ei,ejψ =
1

2

n∑
i=1

ei · Ric(ei) · ψ = −S
2
ψ .

Since ψ ∈ Γ(ΣM) was arbitrary, this completes the proof. �

Remark 3.3.6. Since, to prove formal adjointness, it is enough to prove it for spinor
fields with compact support on M , and which vanish on ∂M [18, p. 113], [13, p. 12],
the Schrödinger-Lichnerowicz formula can be extended to general compact manifolds.

The Schrödinger-Lichnerowicz formula comes into play in the proof of many more advanced
results. In this work, it will be used for the proof of some lower nonzero eigenvalue bounds.

3.4 Conformal covariance

Let (Mn, g) be a Riemannian spin manifold. It is natural to wonder how the Dirac operator
changes under a conformal change of the metric g := e2ug, where u ∈ C∞(M,R). The fixed
spin structure on (Mn, g) induces a spin structure on (Mn, g). Explicitly, an isomorphism
between the the two SOn-principal bundles is

Gu : FSOg(TM)→ FSOg(TM)

{X1, . . . , Xn} 7→ {e−uX1, . . . , e
−uX1} .

Note that the usual notation ei has been changed to Xi for the sake of simplicity. The new
spin structure is then defined by the following commutative diagram:



3.4. CONFORMAL COVARIANCE 39

Sping(TM) Sping(TM)

FSOg(TM) FSOg(TM)

ηg

G̃u

ηg

Gu

where all the arrows are compatible with the group action. This induces an isomorphism
of the associated spinor bundles, given for a spinor ψ = [s, σ] ∈ ΣM by

G̃u : ΣgM → ΣgM

ψ 7→ ψ = [G̃u(s), σ].

It is easy to check that this map is an isometry with respect to the Hermitian product
〈 , 〉 on the spinor bundle. Combining this with the isometry TgM → TgM determined by
X 7→ X := e−uX yields a relation between the Clifford multiplications “·” and “ · ”,

X ·ψ = X · ψ

for each X ∈ X(M) and ψ ∈ Γ(ΣM). On the other hand, the induced spinorial covariant
derivative follows from an elemental (but somewhat lengthy) calculation starting from the
spinorial covariant derivative for g, given in local coordinates by (2.3.1):

∇Xψ = ∇Xψ −
1

2
X · grad(u) · ψ − 1

2
X(u)ψ . (3.4.1)

A more straightforward derivation of this equation (using connection forms) can be seen
in [18, p. 70]. Using (3.4.1), the conformal covariance of the Dirac operator can be proved.
Without going into much detail, suffice to say that a differential operator P on the spinor
bundle is conformally covariant if there exist a, b ∈ R such that

P (eau ψ) = ebu Pψ

for every conformally transformed metric g and every spinor field ψ ∈ Γ(ΣM).

Proposition 3.4.1. Consider a Riemannian spin manifold (Mn, g) and its conformally
modified analogue (Mn, g). Then, their respective Dirac operators, denoted as D ≡ Dg and
D ≡ Dg, are related in the following manner:

D
(
e−(n−1)u/2ψ

)
= e−(n+1)u/2Dψ .

Proof. Fix a local orthonormal basis (Xi)1≤i≤n of (Mn, g). It is obvious that taking
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(Xi)1≤i≤n = (e−uXi)1≤i≤n provides a local orthonormal basis of (Mn, g) as well. Hence

Dψ =
n∑
i=1

Xi ·∇Xi
ψ =

n∑
i=1

e−2uXi · ∇Xiψ

= e−2u
n∑
i=1

Xi ·
[
∇Xiψ −

1

2
Xi · grad(u) · ψ − 1

2
Xi(u)ψ

]

= e−u
n∑
i=1

[
Xi · ∇Xiψ −

1

2
Xi ·Xi · grad(u) · ψ − 1

2
Xi(u)Xi · ψ

]
.

Now, knowing that X2
i · = −1· , and that

∑n
i=1Xi(u)Xi = grad(u), it is clear that

Dψ = e−u
(
Dψ +

n− 1

2
grad(u) · ψ

)
. (3.4.2)

From this equation and Lemma 3.2.1 (i), it follows that

D
(
e−(n−1)u/2ψ

)
= e−u

[
D
(
e−(n−1)u/2ψ

)
+
n− 1

2
e−(n−1)u/2 grad(u) · ψ

]
= −e−u n− 1

2
e−(n−1)u/2 grad(u) ·Dψ + e−ue−(n−1)u/2Dψ

+ e−u
n− 1

2
e−(n−1)u/2 grad(u) ·Dψ = e−(n+1)u/2Dψ . �

Conformal covariance is another important feature of the Dirac operator. As seen in
Section 4.2.1, it helps to improve certain usual lower eigenvalue bounds via the so-called
“Hijazi inequality”. To that end, it is convenient to define a new, also conformally covariant,
operator, which relates to D in a useful way.

Definition 3.4.2 (Penrose operator). The Penrose (or twistor) operator of a Riemannian
spin manifold (Mn, g) is a map

P : Γ(ΣM) −→ Γ(T ∗M ⊗ ΣM) −→ Γ(ker(·))

where the first arrow is given by the spinorial connection, and the second is given by the
orthogonal projection on the kernel of the Clifford multiplication. In local orthonormal
coordinates (ei)1≤i≤n, it takes the form

Pψ =

n∑
i=1

e∗i ⊗
(
∇eiψ +

1

n
ei ·Dψ

)
= ∇ψ +

1

n

n∑
i=1

e∗i ⊗ ei ·Dψ .

It is trivial to verify that Pψ ∈ Γ(ker(·)). The Penrose operator can also be defined in the
direction of a vector X ∈ X(M), as the map PX : Γ(ΣM)→ Γ(ΣM) given by

PXψ = ∇Xψ +
1

n
X ·Dψ .

Remark 3.4.3. The Penrose operator is particularly useful because it allows for an optimal
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decomposition of the gradient of a spinor. It is obvious that, for every nonzero ψ /∈ ker(D),

1

n

n∑
i=1

e∗i ⊗ ei ·Dψ ∈ ker(·)⊥ ,

so by the Pythagorean Theorem:

|∇ψ|2 = |Pψ|2 +
1

n
|Dψ|2 .

This equation is clearly also true when Dψ = 0, so it holds for all ψ ∈ Γ(ΣM). This
decomposition will be used in a later section.

Regarding the conformal behavior of the Penrose operator, the following statement holds.

Proposition 3.4.4. Consider a Riemannian spin manifold (Mn, g) and its conformally
modified analogue (Mn, g). Then, their respective Penrose operators, denoted as P ≡ Pg

and P ≡ Pg, are related in the following manner:

P (eu/2 ψ) = eu/2 Pψ .

Proof. By definition, for any X ∈ X(M),

PX(eu/2ψ) = ∇X(eu/2ψ) +
1

n
X ·D(eu/2ψ) .

The analysis is more tractable when one separates both terms in this sum. Thus

∇X(eu/2ψ) = eu/2
[
∇Xψ +

1

2
X(u)ψ

]
(3.4.1)

= eu/2
[
∇Xψ −

1

2
X · grad(u) · ψ

]
,

and, secondly,

D(eu/2ψ) = eu/2Dψ +
1

2
e−u/2 grad(u) · ψ

(3.4.2)
= e−u/2

[
Dψ +

n− 1

2
grad(u) · ψ

]
+

1

2
e−u/2grad(u) · ψ

= e−u/2
[
Dψ +

n

2
grad(u) · ψ

]
.

Combining both terms and using X ·ψ = euX · ψ one gets

PX(eu/2ψ) = eu/2
[
∇Xψ −

1

2
X · grad(u) · ψ

]
+ e−u/2X ·

[
1

n
Dψ +

1

2
grad(u) · ψ

]
= eu/2

[
∇Xψ +

1

n
X ·Dψ

]
= eu/2 PXψ . �

With all the basic properties of the Dirac operator in mind, the reader is now ready to
dive into a small survey of the Dirac spectrum on compact manifolds in Chapter 4.





Chapter 4

The Dirac spectrum on compact
manifolds

Study of the Dirac spectrum in general spin manifolds is very complex. Most of them, in
fact, do not allow for an explicit calculation of it, while others only admit an analytical
determination of some of their eigenvalues. This chapter is devoted to the study of the
Dirac spectrum and it is divided in two fronts. First, explicit calculations for some simple
cases are presented. The second part is more general, and it looks over some of the most
well-known lower nonzero eigenvalue bounds in compact manifolds. Nonetheless, aside
from a brief commentary on compact manifolds with boundary in Section 4.2.2, all of the
spin manifolds in this chapter will be closed (compact without boundary).

Before tackling any particular examples, it is worthwhile to prove some general features of
the Dirac spectrum, shared by all closed Riemannian spin manifolds.

Theorem 4.0.1 (General properties of the Dirac spectrum). Let (Mn, g) be a closed
Riemannian spin manifold. The following statements about the spectrum Spec(D) of the
Dirac operator of M hold:

(i) Spec(D) is a discrete, unbounded on both sides, subset of R, and it is symmetric
about the origen if n 6= 3mod(4).

(ii) Each eigeinspace Eλ of D is finite-dimensional and consists of smooth spinor fields.
(iii) The eigenspaces of D provide a complete orthonormal system for L2(ΣM),

L2(ΣM) =
⊕
λ

Eλ .

43



44 CHAPTER 4. THE DIRAC SPECTRUM ON COMPACT MANIFOLDS

Proof. Since the Dirac operator is elliptic and essentially self-adjoint (Remark 3.2.4), The-
orem 1.4.4 applies to the closure of D. Combining this with Corollary 3.2.6 and its sub-
sequent remark proves all claims except for the unboundedness of Spec(D). Proof of this
last statement is not very informative, but a version of it can be seen in [13, pp. 15-16]. �

Moving on, the following definition will be useful for some explicit calculations.

Definition 4.0.2. A Killing spinor on a Riemannian spin manifold (Mn, g) is a spinor
field ψ ∈ Γ(ΣM) which satisfies

∇Xψ = λX · ψ
for every X ∈ X(M), where λ ∈ C is a constant known as the Killing number of ψ. If
λ = 0, ψ is said to be a parallel spinor.

Remark 4.0.3. Note that every Killing spinor is an eigenspinor of the Dirac operator, but
general eigenspinors need not be Killing spinors. In particular, every parallel spinor is also
an eigenspinor of the eigenvalue 0, also known as a harmonic spinor.

4.1 Explicit computations of spectra

In this section, some of the few closed spin manifolds whose spectrum can be completely
or partially determined will be presented.

4.1.1 Flat tori

Let Γ be a lattice, i.e. a discrete, cocompact, additive subgroup in Rn. The flat torus Tn

is defined to be the compact quotient Tn = Γ\Rn by the action of Γ. This manifold can
be endowed with a flat metric, induced by the flat Euclidean metric of Rn.

Henceforth, let (γ1, . . . , γn) be a basis of Γ, and (γ∗1 , . . . , γ
∗
n) its dual basis of the dual

lattice, Γ∗ := {θ ∈ (Rn)∗ : θ(Γ) ⊂ Z}.

It is a known fact [19] that there are 2n different spin structures on Tn. They are given by
the n-tuples (δ1, . . . , δn) where δi ∈ {0, 1} (i = 1, . . . , n), which in turn come from the 2n

group homomorphisms εδ1,...,δn : Γ→ {±1}, defined by εδ1,...,δn(γi) = (−1)δi .

Furthermore, the spinor bundle ΣTn preserves the Clifford multiplication and the co-
variant derivative from ΣRn, and the smooth sections of ΣTn can be identified with the
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Γ-equivariant smooth sections of ΣRn [13, p. 21], i.e.

Γ(ΣTn) ≡ {ψ ∈ Γ(ΣRn) : ψ(γ · x) = γ · ψ(x), ∀x ∈ Rn, ∀γ ∈ Γ} ,

where the Γ-action on both Rn and ΣRn is denoted by “·”. The Dirac spectrum of Tn can
now be computed explicitly.

Theorem 4.1.1 (Dirac spectrum of flat tori). For any positive integer n, the spectrum
of the Dirac operator of the flat torus Tn endowed with the induced flat metric and the
(δ1, . . . , δn)-spin structure is given by

Spec(D) =

{
±2π

∣∣∣∣∣γ∗ +
1

2

∑
i=1

δiγ
∗
i

∣∣∣∣∣ : γ∗ ∈ Γ∗

}
and each γ∗ contributes multiplicity 2bn/2c−1 if its corresponding eigenvalue is nonzero. In
the case δ1 = · · · = δn = 0, the multiplicity of the eigenvalue 0 is 2bn/2c.

Proof. Note thar the spinor bundle of Rn is trivial, i.e. isomorphic to Rn × ∆n. For
ψ ∈ Γ(ΣRn) ≡ C∞(Rn,∆n), the equivariance condition reads

ψ(x+ γk) = (−1)δkψ(x)

for every x ∈ Rn and 1 ≤ k ≤ n. For each γ∗ ∈ Γ∗, denote by θγ the constant 1-form

γ∗ +
1

2

n∑
k=1

δkγ
∗
k ∈ (Rn)∗ .

Now, choose an arbitrary orthonormal basis (σl)1≤l≤2bn/2c of ∆n, which can be extended
to Rn as elements of Γ(Rn ×∆n) ∼= Γ(ΣRn). Define the following spinor field over Rn:

φγ,l = e2iπθγσl .

This spinor field satisfies the equivariance condition. To prove it, apply its definition,

φγ,l(x+ γk) = e2iπθγ(x+γk)σl(x+ γk) = e2iπθγ(γk)φγ,l(x) .

Now, analize the exponential term:

γ(γk) = γ∗(γk) +
1

2

n∑
j=1

δjγ
∗
j (γk) = z +

1

2
δk , z ∈ Z ,

so it follows that

e2iπθγ(γk)φγ,l(x) = eiπδkφγ,l(x) = (−1)δkφγ,l(x) .

Moreover, for any X ∈ Rn

∇Xφγ,l = X(φγ,l) = 2iπθγ(X)e2iπθγσl = 2iπθγ(X)φγ,l ,
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so one can fix an orthonormal basis (e1)1≤k≤n of Rn and apply the Dirac operator,

Dφγ,l =
n∑
k=1

ek · ∇ekφγ,l = 2iπ
n∑
k=1

θγ(ek)ek · φγ,l = 2iπθγ · φγ,l .

There are three separate cases that have to be analyzed. The first one is θγ = 0, which
only happens if γ∗ = 0 and δ1 = · · · = δn = 0. Then, the constant spinor field σl is an
eigenvector associated to the eigenvalue 0. Furthermore, since the torus is flat, i.e. its
scalar curvature is zero, the Schrödinger-Lichnerowicz formula (3.3.1) guarantees that the
kernel of D consists of parallel spinors. Hence, (σl)1≤l≤2bn/2c generates the eigenspace E0,
so 0 is an eigenvalue with multiplicity 2bn/2c.

If θγ 6= 0 and n = 1, then (iθγ/|θγ |)· = ±id on ∆1 = C. Therefore Dφγ,l = ±2π|θγ |φγ,l. In
other words, φγ,l is a nonzero eigenspinor associated to 2π|θγ | or −2π|θγ |. In either case,
taking

γ̃∗ = −γ∗ −
n∑
k=1

δkγ
∗
k ,

one gets

θγ̃ = −θγ .
This ensures that both eigenvalues appear, so each eigenvalue has multiplicity 1.

The last case corresponds to θγ 6= 0, n ≥ 2. As above, consider the operator P = (iθγ/|θγ |)·.
It is an involution (since θ2

γ · ψ = −|θγ |2ψ), and it is parallel, i.e. [P,∇] = 0 (since θγ is
constant). Thus it induces the following orthogonal parallel splitting

∆n = ∆id ⊕∆−id ,

where ∆±id = {ψ ∈ ∆n : Pψ = ±ψ} and both spaces have the same dimension. The latter
claim is proved by taking a vector x orthogonal to θγ . Clifford multiplication between two
orthogonal vectors anti-commutes, so ∆±id corresponds to ∆∓id by the bijection x·.

As a result, the basis (σl)1≤l≤2bn/2c can be replaced by

(σ+
1 + · · ·+ σ+

2bn/2c−1 , σ
−
1 + · · ·+ σ−

2bn/2c−1) ,

where (σ±1 +· · ·+σ±
2bn/2c−1) is a constant orthonormal basis of ∆±id. Changing the notation

from φ±γ,l, the same computations apply, so

Dφ±γ,l = 2iπθγ · φ±γ,l = 2iπ(∓i|θγ |)φ±γ,l = ±2π|θγ |φ±γ,l .

This equation implies that φ±γ,l is a nonzero eigenvector of D, associated to the eigenvalue
±2π|θγ |. Since the spinor fields φ±γ,1, . . . φ

±
γ,2bn/2c−1 are linearly independent, the multiplicity

of each eigenvalue is at least 2bn/2c−1.
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The proof is almost complete. The only point left to explain is that the set {eiγ∗ , γ∗ ∈ Γ∗}
is a Hilbert basis of L2(Tn,C) [20], so the set of spinor fields of the form φ±γ,l is also a
Hilbert basis of L2(ΣTn). This guarantees that no more eigenspinors exist. �

Remark 4.1.2. The reader should be aware of the fact that each eigenspinor has at least
one analogue with which it shares eigenvalues. Indeed, taking

γ∗ = −γ∗ −
n∑
k=1

δkγ
∗
k ∈ Γ∗

provides the same eigenvalue as γ∗, but γ∗ 6= γ∗. Therefore the multiplicity of every
eigenvalue is at least 2 · 2bn/2c−1 = 2bn/2c.

Example 4.1.3 (The circle as a 1-torus). For n = 1, the theorem gives the Dirac spectrum
for 1-spheres of length L > 0, S1(L). Indeed, take γ1 = L, γ∗1 ≡ 1/L. With this notation,
every γ∗ is of the form Z/L, so it follows that

Spec(D) =
2π

L

(
δ

2
+ Z

)
, δ ∈ {0, 1},

where the value of δ fixes one of the 21 = 2 possible spin structures.

A brief note on Bieberbach manifolds

Although the computation of the Dirac spectrum is not particularly complicated in the
case of flat tori, this changes drastically when considering general compact connected flat
manifolds, also known as “Bieberbach manifolds” after the mathematician that proved
that every such manifold M is covered by a flat torus Tn. This ensures that spinors on M
correspond to those on Tn satisfying a certain equivariance condition. The Dirac spectrum
of M is therefore contained in that of Tn.

Nonetheless, the equivariance condition is rather technical, and explicit computation of
the Dirac spectrum on general Bieberbach manifolds is so challenging that only dimension
3 (F. Pfäffle [21]) and some particular higher dimension cases (R. Miatello and R. Podestá
[22]) have been succesfully handled via representation theory. Their results are at a level
of complexity well above that of this work, so trying to go into more detail here seems
rather hopeless.
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4.1.2 Spherical space forms

A space form is a complete Riemannian manifold of constant sectional curvature. In
particular, spherical space forms are connected Riemannian manifolds locally isometric to
the n-sphere Sn = {x ∈ Rn+1 : ||x|| = 1}, endowed with its canonical metric of sectional
curvature 1 (see [23] for a classification of spherical space forms). In fact, the first step in
the determination of their spectra is calculating the spectrum of Sn.

Other space forms are quotientsM = Γ\Sn by the action of suitable finite groups Γ ⊂ SOn.
They are spin only if n is odd and there is a group homomorphism ε : Γ→ Spinn+1 such
that ρ̃ ◦ ε = idΓ, where ρ̃ : Spinn+1 → SOn+1 is the double covering mapping [24].

IfM is spin, eigenspinors ofD on it correspond to ε(Γ)-invariant eigenspinors on the sphere,
so all eigenvalues ofM are also eigenvalues of Sn, only with generally smaller multiplicities.

Dirac spectrum of the n-sphere

There are several methods to determine the spectrum of Sn, n ≥ 2, but the most elemental
one, developed by C. Bär [24], makes use of the notion of Killing spinors. It is known [25]
that the dimension of the space of 1/2-Killing spinors is 2bn/2c. The same is true for the
space of −1/2-Killing spinors. As a result, ΣSn can be trivialized through one kind of
Killing spinors or the other. It also uses the following lemma regarding the scalar Laplace
spectrum on Sn.

Lemma 4.1.4. The eigenvalues of the scalar Laplacian on Sn are

k(n+ k − 1) k = 0, 1, 2 . . .

and each of them has multiplicity

mk =

(
n+ k − 1

k

)
n+ 2k − 1

n+ k − 1
.

Proof. See [26, pp. 159-162]. �

All the pieces are in place for the following theorem.

Theorem 4.1.5 (Dirac spectrum of n-spheres). Let n ≥ 2. The spectrum of the Dirac
operator of Sn is

Spec(D) =
{
±
(n

2
+ k
)

: k = 0, 1, 2 . . .
}
,
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and each eigenvalue has multiplicity

mk =

(
n+ k − 1

k

)
2bn/2c .

Proof. Let ψ be a ±1/2-Killing spinor. Then it is clear that

Dψ =
n∑
i=1

ei · ∇eiψ = ±1

2

n∑
i=1

ei · ei · ψ = ∓n
2
ψ.

Now, for every f ∈ C∞(Sn,R), use Lemma 3.2.1 to find

D2(fψ) = fD2ψ − 2∇grad(f)ψ + (∆f)ψ =
n2

4
fψ ∓ grad(f) · ψ + (∆f)ψ

=
n2

4
fψ ∓ (D(fψ)− fDψ) + (∆f)ψ =

(
n2

4
− n

2

)
fψ ∓D(fψ) + (∆f)ψ .

Rearranging terms yields(
D ± 1

2

)2

(fψ) =

[
∆f +

(n− 1)2

4
f

]
ψ .

Let {fk}k be an L2-orthonormal basis of eigenfunctions of ∆, and {ψi}1≤i≤2bn/2c a trivial-
ization of ΣSn by ±1/2-Killing spinors. Then, the set{

fkψi : k = 0, 1 . . . , 1 ≤ i ≤ 2bn/2c
}

is a complete orthonormal basis of L2(ΣSn), consisting of eigenspinors of (D ± 1/2)2,
associated to the eigenvalues

k(n+ k + 1) +
(n− 1)2

4
=

(
k +

n− 1

2

)2

,

where Lemma 4.1.4 has been used. The multiplicities are computed by combining the
cardinal of the Killing spinor basis with the Laplacian multiplicities,

mk = 2bn/2c
(
n+ k − 1

k

)
n+ 2k − 1

n+ k − 1
.

As a result, the following inclusion holds:

Spec(D) ⊂
{
∓1

2
±
(
n− 1

2
+ k

)
: k = 0, 1 . . .

}
,

hence there are four different kinds of possible eigenvalues for D:

λ+
k :=

n

2
+ k, λ+

−(k+1)
:= −n

2
− k + 1,

λ−k := −n
2
− k, λ−−(k+1)

:=
n

2
+ k − 1.

Denote by m(·) their corresponding multiplicity, where it is clear that

m(λ±k ) +m(λ±−(k+1)) = mk . (4.1.1)

The last step is determining the multiplicity of λ±k . This is done by induction on k.
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Claim. m(λ±k ) = 2bn/2c
(
n+ k − 1

k

)
(k = 0, 1 . . . ).

Indeed, for k = 0, λ±0 both have multiplicity 2bn/2c, since ±1/2-Killing spinors are eigen-
spinors for D, associated to the eigenvalue ∓n/2. On the other hand, λ±−1 = ∓(n/2 − 1)

cannot appear as a result of Friedrich’s inequality (see Section 4.2.1). Hence assume the
claim holds for k, then

m(λ±k+1)
(4.1.1)

= 2bn/2c
(
n+ k

k + 1

)
n+ 2k + 1

n+ k
−m(λ±−(k+2))

= 2bn/2c
(
n+ k

k + 1

)
n+ 2k + 1

n+ k
−m(λ∓k )

= 2bn/2c
[(
n+ k

k + 1

)
n+ 2k + 1

n+ k
−
(
n+ k − 1

k

)]
= 2bn/2c

(
n+ k

k + 1

)
,

so the claim holds for every k = 0, 1 . . . This completely characterizes the spectrum, thus
completing the proof. �

Dirac spectrum of spin spherical space forms

As has already been established, the Dirac spectrum of general spin spherical space forms
is a subset of that of Sn. The only variable left to determine is the multiplicity of each
eigenvalue. C. Bär has also shown that this information is encoded in the following formal
power series:

F±(z) =

∞∑
k=0

m
[
±
(n

2
+ k
)]
zk, (4.1.2)

which converge absolutely for |z| < 1. The following theorem, which will be cited without
proof, gives formulas for F±(z) in terms of the group Γ and the group homomorphism ε.
The idea is that, if this new formula can be turned into a power series of the form (4.1.2),
then the spectrum is characterized by matching both series term by term.

Theorem 4.1.6 (C. Bär [24]). Let Γ\Sn, with n odd, be a spherical space form with a spin
structure fixed by ε : Γ→ Spinn+1. Then,

Spec(D) ⊂
{
±
(n

2
+ k
)

: k = 0, 1, 2 . . .
}

and F±(z) are determined by

F±(z) =
1

|Γ|
∑
γ∈Γ

χ∓(ε(γ))− χ±(ε(γ)) · z
det(idRn+1 − z · γ)

,

where χ± := tr(δ±n+1) : Spinn+1 → C is the character of δ±n+1. Thus the multiplicities of the
eigenvalues are determined by the coefficients of every zk in the series expression around
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zero of the holomorphic functions F±(z).

Among other applications, this theorem allows for explicit calculation of the Dirac spectrum
of spin real projective spaces RPn ≡ Z2\Sn [13, p. 34].

Flat tori and spherical space forms are not the only manifolds that admit an explicit, at
least partial, calculation of the Dirac spectrum. Other examples include some homogeneous
and symmetric spaces. However, this work shall not go further into them. An interested
reader can find more information in the thorough, albeit rather novice-unfriendly, review
by N. Ginoux [13, Chapter 2].

4.2 Lower nonzero eigenvalue bounds

Even though explicit calculations are often rather unfeasible for manifolds other than very
basic examples, that does not mean that study of the Dirac spectrum is a fool’s errand.
Many different estimations for its lower bounds exist (see, for example, [14] or [27]), with
varying levels of complexity and sharpness. While explicit computations require a very
specific kind of manifold, these bounds usually only need relatively mild assumptions.

Upper bound results for specific eigenvalues also exist, but they are more convoluted in
nature than the ones that will be presented here. The reader is referred once again to
N. Ginoux’s book [13, Chapter 5].

In this last section of the survey, the most elemental lower eigenvalue bounds for closed
manifolds are presented. A brief commentary on compact manifolds with boundary is also
provided, although explicit calculations are avoided in this case.

4.2.1 Bounds on closed manifolds

Closed manifolds provide a wide range of tools to obtain some lower eigenvalue estimates
via fairly straightforward reasonings. The most elemental of them arises as a natural
consequence of the Schrödinger-Lichnerowicz formula (Theorem 3.3.5).

Theorem 4.2.1. On a closed Riemannian spin manifold (Mn, g) with positive scalar cur-
vature S, the Dirac operator satisfies

(i) ker(D) = {0}.
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(ii) If λ ∈ R is a nonzero eigenvalue of D, then

λ2 >
1

4
S0 , S0 := infM (S) .

Proof. Consider a nontrivial spinor field ψ ∈ Γ(ΣM). By the Schrödinger-Lichnerowicz
formula, one can write∫

M
〈D2ψ,ψ〉νg =

∫
M
〈∇∗∇ψ,ψ〉νg +

∫
M

1

4
S〈ψ,ψ〉νg .

By definition, ∇∗ is the formal adjoint of ∇, and since D is formally self-adjoint,∫
M
|Dψ|2νg =

∫
M
|∇ψ|2νg +

∫
M

1

4
S|ψ|2νg . (4.2.1)

Since S > 0, Dψ cannot be identically zero, so property (i) is satisfied. To prove prop-
erty (ii), choose an eigenspinor ψ associated to the eigenvalue λ. Rearranging the previous
equation yields ∫

M
|Dψ|2νg −

∫
M

1

4
S|ψ|2νg =

∫
M
|∇ψ|2νg ≥ 0 .

Hence

λ2 − 1

4
S0 ≥ 0 ,

where the equality only holds if ∇ψ = 0. However, this would imply Dψ = 0, which is
forbidden by (i). Therefore the inequality is strict. �

Friedrich’s inequality

The fact that the above inequality is strict is noteworthy. A first step toward sharper
bounds could be trying to obtain one which allowed for the equality to be achieved. Indeed,
this is what German mathematician T. Friedrich achieved with the following inequality,
which bears his name.

Theorem 4.2.2 (Friedrich’s inequality). On a closed Riemannian spin manifold (Mn, g)

(n ≥ 2), any eigenvalue λ ∈ R of the Dirac operator satisfies

λ2 ≥ n

4(n− 1)
S0 .

Proof. It is obvious that the inequality holds if S0 ≤ 0, so only the case S > 0 has to be
explored. Choose an arbitrary ψ ∈ Γ(ΣM) and a local orthonormal basis (ei)1≤i≤n. Then,
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using the Cauchy-Schwarz (CS) inequality,

|Dψ|2 =

∣∣∣∣∣
n∑
i=1

ei · ∇eiψ

∣∣∣∣∣
2

≤

(
n∑
i=1

|ei · ∇eiψ|

)2

(3.1.1)
=

(
n∑
i=1

|∇eiψ|

)2
CS
≤ n

n∑
i=1

|∇eiψ|2 = n|∇ψ|2 .

Combining this with (4.2.1), one gets
1

n

∫
M
|Dψ|2νg ≤

∫
M
|Dψ|2νg −

∫
M

1

4
S|ψ|2νg ,

or, rearranging the integrals,(
1− 1

n

)∫
M
|Dψ|2νg ≥

∫
M

1

4
S|ψ|2νg .

For ψ ∈ Γ(ΣM) such that Dψ = λψ, one has

λ2

∫
M
|ψ|2νg ≥

n

4(n− 1)

∫
M
S|ψ|2νg ≥

n

4(n− 1)
S0

∫
M
|ψ|2νg .

Friedrich’s inequality trivially follows. �

Hijazi’s inequality

Friedrich’s inequality is not impervious to improvements. There are several ways one can go
about finding new lower eigenvalue bounds, but the one that will be presented here makes
use of the conformal covariance of the Dirac operator (see Section 3.4). This method is
owed to O. Hijazi.

Theorem 4.2.3 (Hijazi’s inequality). Let (Mn, g) be a closed Riemannian spin manifold
with n ≥ 2 and u ∈ C∞(M,R). Let g := e2ug be a conformally transformed metric and
denote the scalar curvature of (Mn, g) by S. Then any λ ∈ Spec(D) satisfies

λ2 ≥ n

4(n− 1)
infM

(
Se2u

)
.

Proof. Recall the equation given by Proposition 3.4.1:

D
(
e−(n−1)u/2ψ

)
= e−(n+1)u/2Dψ .

As a result of it, taking φ := e−(n−1)u/2ψ implies

Dψ = λψ =⇒ Dφ = λe−uφ .

Now, since the Penrose operator can also be conformally transformed (Proposition 3.4.4),
it is possible to take the decomposition |P φ|2 = |∇φ|2 − |Dφ|2/n. Combining this with
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the Schrödinger-Lichnerowicz integral (4.2.1) one gets a new integral equality:∫
M
|P φ|2νg =

n− 1

n

∫
M
|Dφ|2νg −

1

4

∫
M
S|φ|2νg .

Suppose that φ comes from an eigenspinor ofD associated to the eigenvalue λ. Rearranging
terms,

n

n− 1

∫
M
|P φ|2νg =

∫
M

[
λ2 − n

4(n− 1)
Se2u

]
e−2u|φ|2 νg ≥ 0 . �

Many more lower eigenvalue bounds exist. Methods for finding improvements on Friedrich’s
inequality are varied, from using parallel forms to introducing the energy-momentum ten-
sor, which is a concept that any physicist would immediately recognize. Nevertheless, for
the purposes of this review, Hijazi’s inequality is enough to illustrate how sharper bounds
can be determined.

4.2.2 Brief note on bounds on manifolds with boundary

The case of general compact Riemannian spin manifolds with boundary is far more involved
than that of closed manifolds. The principal reason for this is that now, boundary condi-
tions must be taken into account. In particular, the most interesting boundary conditions
are those called “elliptic”, which are pseudo-differential operators B : L2(Σ∂M)→ L2(V ),
where V is some Hermitian vector bundle over ∂M ; that guarantee certain existence and
smoothness solutions to the boundary value problem

Dψ = ϕ on M,

B(ψ|∂M ) = χ on ∂M.

In fact, self-adjoint elliptic conditions restrict the Dirac spectrum to real values (see [13,
p. 23ff.] for more information).

There are uncountably many of these conditions, the four most often invoked being the
usual and modified Atiyah-Patodi-Singer boundary conditions (gAPS and mgAPS), the
conditions associated to a chirality operator (CHI), and the MIT boundary condition.
Each one of them presents unique kinks, advantages and disadvantages. One of their many
applications, and the one most closely related to this survey, is the fact that under any of
them, some kind of modified Friedrich’s inequality holds. As an example to close out this
survey, take the following theorem found in [13, p. 69].

Theorem 4.2.4. Let n ≥ 2 and (Mn, g) be a compact Riemannian spin manifold with
nonempty boundary ∂M . If ∂M has nonnegative mean curvature with respect to the inner
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normal, then any λ ∈ Spec(D) under the gAPS boundary condition satisfies

λ2 >
n

4(n− 1)
S0 .

From this theorem, it is inferred that some boundary conditions can impose harsher bounds
on the Dirac spectrum, since now the equality cannot be attained. Nonetheless, different
boundary conditions yield different result, so they are a source of a highly varied and
creative study of the Dirac operators.
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