Endoprótesis Híbrida E-vita Open no tratamiento da patoloxía complexa do arco aórtico. Revisión bibliográfica e de serie de casos.

Endoprótesis Híbrida E-vita Open en el tratamiento de la patología compleja del arco aórtico. Revisión bibliográfica y de serie de casos.

E-vita Open Hybrid Endoprosthesis in the treatment of complex pathology of the aortic arch. Literature and case series review.

Autor: Alexis David Piazza Álvarez
Titor: Gerardo Baños Rodríguez
Cotitúras: Beatriz Acuña Pais e María Ángela Varela Martínez
Departamento: Anestesioloxía e Reanimación

Xuíno 2022
TABLA DE ABREVIATURAS ... 4

1 RESUMEN .. 6

2 INTRODUCCIÓN .. 9

2.1 Recuerdo anatómico ... 10
 2.1.1 Ramas y origen embriológico ... 11

2.2 Definición de la patología del arco aórtico .. 13
 2.2.1 Aneurisma ... 14
 2.2.2 Sudoaneurisma ... 14
 2.2.3 Síndromes aórticos agudos ... 15

2.3 Epidemiología ... 17
 2.3.1 Aneurisma de aorta torácico ... 17
 2.3.2 Síndromes aórticos .. 17

2.4 Etiología. Factores de riesgo .. 18

2.5 Clínica ... 21

2.6 Diagnóstico por imágenes ... 23

2.7 Diagnóstico diferencial .. 25

2.8 Tratamiento del aneurisma del arco aórtico ... 26
 2.8.1 Tratamiento médico .. 26
 2.8.2 Tratamiento quirúrgico .. 28
 2.8.3 Seguimiento tras intervención aórtica torácica 33

3 JUSTIFICACIÓN DEL TEMA: INTRODUCCIÓN .. 35

4 OBJETIVOS .. 35

5 MATERIAL Y MÉTODOS ... 36

5.1 Tipo de estudio .. 36

5.2 Sujetos a estudio .. 36

5.3 Recogida de variables .. 36

5.4 Variables a estudio .. 36

5.5 Comité de ética .. 36

6 RESULTADOS .. 37

6.1 Características de los pacientes .. 37

6.2 Intervención ... 38
 6.2.1 Técnica quirúrgica .. 38
 6.2.2 Resultados intraoperatorios .. 38
 6.2.3 Estancia hospitalaria ... 39

6.3 Seguimiento de los pacientes .. 39

7 DISCUSIÓN .. 40

8 CONCLUSIÓN .. 42

9 BIBLIOGRAFÍA .. 43
TABLA DE ABREVIATURAS

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT</td>
<td>Aneurisma de aorta torácica</td>
</tr>
<tr>
<td>AATD</td>
<td>Aneurismas de aorta torácica y disecciones</td>
</tr>
<tr>
<td>ACV</td>
<td>Accidente cerebrovascular</td>
</tr>
<tr>
<td>ARA II</td>
<td>Antagonista del receptor de aldosterona</td>
</tr>
<tr>
<td>ASI</td>
<td>Arteria subclavia izquierda</td>
</tr>
<tr>
<td>BCP</td>
<td>Bypass cardiopulmonar</td>
</tr>
<tr>
<td>CAD</td>
<td>Enfermedad de arterias coronarias</td>
</tr>
<tr>
<td>CCA</td>
<td>Cirugía cardiovascular</td>
</tr>
<tr>
<td>CEC</td>
<td>Circulación extracorpórea</td>
</tr>
<tr>
<td>CEIM</td>
<td>Comité de Ética de la Investigación con medicamentos</td>
</tr>
<tr>
<td>DA</td>
<td>Disección aórtica</td>
</tr>
<tr>
<td>DLP</td>
<td>Dislipemia</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>EACTS</td>
<td>Asociación europea de cirugía cardio-torácica</td>
</tr>
<tr>
<td>EPOC</td>
<td>Enfermedad pulmonar obstructiva crónica</td>
</tr>
<tr>
<td>ESC</td>
<td>Sociedad española de cardiología</td>
</tr>
<tr>
<td>ESVS</td>
<td>Sociedad europea de cirugía vascular</td>
</tr>
<tr>
<td>FBN1</td>
<td>Fibrilina 1</td>
</tr>
<tr>
<td>FET</td>
<td>Trompa de elefante congelada</td>
</tr>
<tr>
<td>GLUT-10</td>
<td>Transportador de glucosa</td>
</tr>
<tr>
<td>HAC</td>
<td>Hospital Alvaro Cunqueiro</td>
</tr>
<tr>
<td>HI</td>
<td>Hematoma intramural</td>
</tr>
<tr>
<td>HTA</td>
<td>Hipertensión arterial</td>
</tr>
<tr>
<td>ICP</td>
<td>Intervención coronaria percutánea</td>
</tr>
<tr>
<td>IEOR</td>
<td>Registro internacional de E-vita Open</td>
</tr>
<tr>
<td>IOT</td>
<td>Intubación orotraqueal</td>
</tr>
<tr>
<td>IR</td>
<td>Insuficiencia renal</td>
</tr>
<tr>
<td>ISGLT2</td>
<td>Inhibidores del cotransportador de sodio-glucosa tipo 2</td>
</tr>
<tr>
<td>IRAD</td>
<td>Registro internacional de disección aórtica</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenoso</td>
</tr>
<tr>
<td>LSD</td>
<td>Síndrome de Loeys-Dietz</td>
</tr>
<tr>
<td>MEP</td>
<td>Potenciales evocados motores</td>
</tr>
<tr>
<td>Abreviatura</td>
<td>Definición</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>PCH</td>
<td>Parada circulatoria hipotérmica</td>
</tr>
<tr>
<td>PCS</td>
<td>Perfusion cerebral selectiva</td>
</tr>
<tr>
<td>PCR</td>
<td>Parada cardiorespiratoria</td>
</tr>
<tr>
<td>RCP</td>
<td>Reanimación cardiopulmonar</td>
</tr>
<tr>
<td>RMN</td>
<td>Resonancia magnética nuclear</td>
</tr>
<tr>
<td>SAA</td>
<td>Síndrome aórtico agudo</td>
</tr>
<tr>
<td>SED-IV</td>
<td>Síndrome de Ehlers-Danlos tipo IV</td>
</tr>
<tr>
<td>SSEP</td>
<td>Potenciales evocados somatosensoriales</td>
</tr>
<tr>
<td>TAC</td>
<td>Tomografía axial computarizada</td>
</tr>
<tr>
<td>TEVAR</td>
<td>Reparación endovascular de aorta torácica</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Factor de crecimiento transformante beta</td>
</tr>
<tr>
<td>UAP</td>
<td>Úlcera aórtica penetrante</td>
</tr>
</tbody>
</table>
1 RESUMEN

La patología compleja del arco aórtico, en la que se engloban una serie de enfermedades como síndromes aórticos agudos y aneurismas, ha supuesto un reto en el diagnóstico y en el abordaje terapéutico de los últimos años. Su característico patrón asintomático predispone a una valoración tardía que conlleva, por lo tanto, a una mayor dificultad en su posterior tratamiento. Pese a ello, las técnicas de imágenes resultan de utilidad, tanto en la detección de eventos agudos de esta patología, como en el seguimiento de pacientes con diagnóstico precoz de aneurisma del cayado aórtico.

El tratamiento médico tiene como finalidad retrasar la progresión de estas enfermedades, a la espera de que el paciente presente indicación quirúrgica. En el ámbito quirúrgico, resaltamos que la asociación de la patología de arco aórtico a la aorta descendente ha hecho imprescindible el uso de técnicas quirúrgicas híbridas, gracias a sus mejores resultados.

La técnica de trompa de elefante congelada (FET) con prótesis E-vita Open, supone un diseño híbrido de elección para patología compleja del arco aórtico. Se trata de una combinación de cirugía abierta del cayado aórtico y endovascular de la porción distal de la aorta torácica.

Se presenta un estudio observacional descriptivo retrospectivo a partir de 5 pacientes que han sido sometidos a la técnica quirúrgica, trompa de elefante congelada, con E-vita Open en el C.H.U. Álvaro Cunqueiro de Vigo. El objetivo principal es describir los resultados de una serie de pacientes intervenidos a través de esta técnica. Como objetivos secundarios estudiaremos los resultados postoperatorios y las complicaciones asociadas a esta intervención quirúrgica (FET), tanto a corto plazo como a largo plazo.

Palabras claves: patología de arco aórtico, aneurisma de arco aórtico, trompa de elefante congelada, E-vita Open.
1 RESUMO

A patoloxía complexa de arco aórtico, na que se engloban una serie de enfermedades como síndromes aórticos agudos e aneurismas, supuxo un reto no diagnóstico e na abordaxe terapéutica dos últimos anos. O seu característico patrón asintomático predispón a unha valoración tardía que implica, polo tanto, unha mayor dificultade no posterior tratamento. A pesar diso, as técnicas de imaxe resultan de utilidade, tanto na detección de eventos agudos de esta patoloxía, como no seguimento de pacientes con diagnóstico precoz de aneurisma do cayado aórtico.

O tratamento médico ten como finalidade atrasar a progresión destas enfermidades, á espera de que o paciente presente una indicación de ciruxía. No ámbito quirúrxico, resaltamos que a asociación da patoloxía do arco aórtico coa aorta descendente fixo imprescindible a utilización de técnicas quirúrxicas híbridas, grazas aos seus mellores resultados.

A técnica de trompa de elefante conxelada (FET) coa prótesis E-vita Open é un deseño híbrido de elección para este tipo de patoloxía. Trátase dunha combinación de ciruxía aberta do cayado aórtico e endovascular da porción distal da aorta torácica.

Preséntase un estudo observacional descritivo retrospectivo de 5 pacientes sometidos á técnica quirúrxica, trompa de elefante conxelada, con prótesis E-vita Open no C.H.U. Álvaro Cunqueiro de Vigo. O obxectivo principal é describir os resultados dunha serie de casos intervidos mediante esta técnica. Como obxectivos secundarios estudaremos os datos postoperatorios e as complicacións asociadas a esta intervención quirúrxica (FET), tanto a curto como a longo prazo.

Palabras claves: patoloxía do arco aórtico, aneurisma do arco aórtico, trompa de elefante conxelada, E-vita Open.
1 ABSTRACT

The complex pathology of the aortic arch, which includes a series of diseases such as acute aortic syndromes and aneurysms, has been a challenge in diagnosis and therapeutic approach in recent years. Its characteristic asymptomatic pattern predisposes to late assessment, which therefore leads to greater difficulty in subsequent treatment. Despite this, imaging techniques are useful, both in the detection of acute events of this pathology, and in the follow-up of patients with an early diagnosis of aortic arch aneurysm.

Medical treatment is intended to delay the progression of these diseases, while waiting for the patient to present an indication for surgery. In the surgical field, we highlight that the association of pathology of the aortic arch with the descending aorta has made the use of hybrid surgical techniques essential, thanks to their better results.

The frozen elephant trunk technique (FET) with the E-vita Open prosthesis is a hybrid design of choice for complex pathology of the aortic arch. It is a combination of open surgery of the aortic arch and endovascular surgery of the distal portion of the thoracic aorta.

A retrospective descriptive observational study is presented from 5 patients who have undergone the surgical technique, frozen elephant trunk, with E-vita Open at the C.H.U. Alvaro Cunqueiro of Vigo. The main objective is to describe the results of a series of patients operated on through this technique. As secondary objectives we will study the postoperative results and the complications associated with this surgical intervention (FET), both in the short term and in the long term.

Keywords: aortic arch pathology, aortic arch aneurysm, frozen elephant trunk, E-vita Open.
2 INTRODUCCIÓN

El abordaje quirúrgico para el tratamiento de patología del arco aórtico implica la manipulación de los troncos supraaórticos, esto requiere dos consideraciones fundamentales: minimizar la isquemia cerebral y prevenir embolismos aéreos o de ateromatosis (1).

Historia de la cirugía de aorta:
El estudio de la patología aneurismática y sus posibles tratamientos se remontan al siglo 2 D.C de la mano de Antyllos y Galen, con los intentos de anastomosis próximo-distales a partir de la resección del segmento afectado. Si bien han pasado más de 1800 años desde estos descubrimientos, no fue hasta 1.760 cuando Morgagni reportó el primer caso descrito de disección aorta, para que posteriormente, en 1773, Alexander Monro describiese por primera vez las tres paredes arteriales y su característica destrucción en aneurismas y pseudoaneurismas (2).

Por otra parte, Rudolph Matas, pionero en la cirugía vascular, desarrolló entre 1888-1940 varios procedimientos de endoaneurismorrafia y mejoró las técnicas de ligaduras arteriales. El más avanzado de estos, consistía en la reconstrucción de la pared arterial con el uso de tubos de goma como endoprótesis.

Con la llegada de la segunda guerra mundial, las severas lesiones traumáticas de grandes vasos propiciaron avances de la mano de Crafoord y Gross, como es la coartación de aorta, con el objetivo de aumentar la posibilidad de reconstrucciones arteriales. Este tratamiento obtuvo unos resultados significativamente mejores que el abordaje estándar de ligaduras y anastomosis de vasos sanguíneos.

A finales de la década de los 40 y principios de los 50, se llevaron a cabo las primeras técnicas quirúrgicas con homoinjertos de aneurismas de aorta, por parte de cirujanos como Gross DuBost o Shumaker. Cabe destacar que, en 1953, DeBakey and Cooley realizaron una reanastomosis con homoinjerto de 15 cm para resecar un aneurisma de aorta descendente de unos 20 cm de largo y diámetro mayor.

Durante la década de 1950s, el grupo de Houston, formado por: DeBakey, Cooley, Crawford y asociados, desarrollaron sistemáticamente sustituciones, tanto de aorta ascendente como descendente y toracoabdominal con el uso de injertos. Este grupo implantó el uso de Bypass cardiopulmonar en las resecciones de aorta ascendente y arco aórtico, por las complicaciones neurológicas que conllevaba la realización de este tipo de cirugía. Como dato curioso, Cooley y colegas consiguieron plantear una cirugía de sustitución de aneurisma de arco aórtico que englobaba una pequeña porción de aorta descendente, sin Bypass cardiopulmonar. En su lugar llevaron a cabo la anastomosis de injertos temporales desde la aorta ascendente hasta la zona distal de la descendente y hacia las dos carótidas, permitiendo la continuidad del flujo sanguíneo.

No fue hasta la llegada de la década de los 60s, momento en el cual Bentall y Bono introducen un nuevo abordaje, que consiguieron encontrar una solución para patologías de aorta ascendente que incluían una disfunción de la propia válvula o un aumento del diámetro de la raíz aórtica. La técnica consistía en la resección de la aorta ascendente, raíz aórtica y válvula aórtica, con la posterior sustitución a partir de un injerto, que incluía válvula protésica y al que se
anastomosaban los ostium de las arterias coronarias. Esta ultima anastomosis se llevó a cabo siguiendo la técnica de Wheat, procedimiento por el cual se recortan en forma de botones los ostium y se unen al injerto para obtener una mayor estabilización (3).

Como vemos la evolución se ha basado en retos a la hora de disminuir las complicaciones y mejorar la eficacia de las intervenciones quirúrgicas. Pese a ello, en casos de patología compleja del arco aórtico, no se había conseguido establecer un tratamiento adecuado por su alta morbilidad, hasta la llegada de técnicas como la prótesis Open E-vita, con unos resultados prometedores. En esta, la consideración crítica a tener en cuenta ante el abordaje quirúrgico se basa, no solo en la aproximación sino, en la protección cerebral ante isquemia o tromboembolismos perioperatorios, sin dejar de lado posibles eventos cardiovasculares fatales (1).

OBJETIVO

El objetivo del presente trabajo es describir el tratamiento de patología del arco aórtico y presentar una serie de casos de pacientes intervenidos para tratar esta entidad.

2.1 **RECUERDO ANATÓMICO**

La aorta es una de las arterias principales del cuerpo humano. Se trata de un conducto singular por el cual la sangre es expulsada por el ventrículo izquierdo a la circulación sistémica (4), con una media en la vida adulta de unos 200 millones de litros (5).

Morfológicamente, es dividida por el diafragma en aorta torácica y abdominal. Con respecto a la abdominal esta se subdivide en suprarrenal e infrarrenal, mientras que la torácica se compone de aorta ascendente, arco aórtico y aorta descendente, destacando la raíz aórtica y el anillo aórtico previos a la rama ascendente. (figura 1)

![figura 1: segmentos de aorta ascendente y descendente. APD: arteria pulmonar. Imagen y título extraídos del artículo de la Guía ESC 2014 de Raimund Erbel et al (5).](image-url)
Histológicamente, se compone de tres capas:
- Túnica íntima interna: delimitada por el endotelio.
- Túnica media gruesa: formada por fibras concéntricas elásticas y colágeno. Lamina elástica interna y externa, así como fibras musculares lisas.
- Túnica adventicia: compuesta por fibras de colágeno vasa vasorum y vasos linfáticos.

Aparte de ser el conducto transportador de flujo sanguíneo de nuestro cuerpo, la aorta tiene una función importante en la regulación de las resistencias vasculares y la frecuencia cardíaca, a través de receptores localizados en la aorta ascendente y arco aórtico. Aumentando o disminuyendo estos conceptos dependiendo de la presión arterial sistémica. Por otro lado, las capas elásticas y de colágeno que caracterizan las túnicas media y adventicia, posibilitan el fenómeno de segunda bomba (función de windkessel) lo cual permite la perfusión de las arterias coronarias durante la diástole.

Destacar también, que los diámetros normales en personas adultas no superan los 40 mm y se van estrechando conforme avanzamos distalmente en la aorta. Su aumento es influenciado por diversos factores como edad, sexo, tamaño corporal (estatura, peso y área de superficie corporal) y presión arterial. Pese a existir esta expansión patológica observamos a su vez un aumento en el radio arterial por envejecimiento de la pared arterial, y se cree que se debe a un aumento de las fibras de colágeno y elastina y a la elevada presión arterial, característica de una amplia proporción de la población. Estando esta expansión en torno a 0,9 mm en varones y 0,7 mm en mujeres por cada década de la vida (4,5).

2.1.1 Ramas y origen embriológico

Recuerdo embriológico:
- Durante la 4ª y 5ª semanas del desarrollo embrionario el saco aórtico envía una rama a cada nuevo arco y da origen a un total de cinco pares de arterias.
- La aorta ascendente y la porción proximal del cayado de la aorta, así como la arteria braquiocefálica se forman a partir del saco aórtico.
- Del tercer arco aórtico nacen la arteria carótida primitiva y la primera porción de la arteria carótida interna.
- Del lado izquierdo del cuarto arco aórtico, se forma parte del cayado de la aorta, entre la carótida común y la subclavia izquierda. Del lado derecho, se forma el segmento más proximal de la arteria subclavia derecha (6).

Cabe destacar la importancia del origen embriológico de las distintas porciones de la aorta torácica para poder entender la patología aórtica en función del segmento afecto.
Anatomía por ramas:

1. **Aorta ascendente:** tiene su origen en la base del ventrículo izquierdo concretamente en el orificio aórtico, al nivel del borde inferior del tercer cartílago costal izquierdo. Desde el cual sigue una trayectoria ascendente, anterior y ligeramente hacia la derecha llegando al nivel del segundo cartílago costal derecho, zona en la que da paso al cayado aórtico (7).

2. **Cayado aórtico:** representa la continuación de la aorta torácica ascendente, iniciando a nivel del borde superior de la segunda unión costoesternal del lado derecho. Prosigue paralelo al lateral izquierdo de la tráquea hasta llegar, adyacente, al borde inferior de la vértebra T4, donde se continúa con la aorta torácica descendente.

 En su camino, concretamente en la convexidad superior salen tres ramas hacia zonas corporales superiores:

 - **Tronco braquiocefálico:** se divide en subclavia derecha irrigando la extremidad superior derecha y arteria carótida común derecha, la cual se dirige a zonas del cuello y cabeza derechas.
 - **Arteria subclavia izquierda:** irriga la extremidad superior izquierda.
 - **Arteria carótida común izquierda:** irriga zonas izquierdas de cabeza y cuello.

 En contraposición, los cirujanos y anatomistas quirúrgicos suelen usar otra delimitación en la que el inicio del cayado se establece en el ostium proximal de la arteria innominada y finaliza en el ostium de la subclavia izquierda. (7,8)

3. **Aorta descendente:** esta zona se corresponde con la continuación del cayado aórtico a la altura de la vértebra T4 y finaliza anterior al borde inferior de la vértebra T12, lugar donde atraviesa el hiato aórtico del diafragma hacia el abdomen. Superiormente sigue un trayecto lateral a la columna vertebral, aproximándose a la línea media inferiormente, para situarse anterior a los cuerpos vertebrales torácicos inferiores. En su recorrido proporciona una serie de ramas: pericárdicas, bronquiales, esofágicas, frénicas superiores, mediastínicas, intercostales posteriores y subcostales (7).

4. **Aorta visceral:** la aorta entra en la cavidad abdominal a través del hiato aórtico diafragmático a nivel de la vértebra T12 para bifurcarse inferiormente en las dos arterias ilíacas. Origina diferentes ramas a lo largo de su trayecto:

 - **Tronco celíaco:** su nacimiento coincide con el borde superior de la vértebra lumbar L1 y su función es principalmente irrigar el intestino proximal. Se divide a su vez en tres ramas: arteria gástrica izquierda, arteria hepática común y arteria esplénica. En el 65-70% de las veces da lugar primero a la arteria gástrica izquierda para posteriormente dividirse en arteria hepática común y arteria esplénica. El restante porcentaje corresponde a la división de las tres arterias contiguamente.
 - **Arteria mesentérica superior:** se origina a nivel de la vértebra L1 a 0,2-2 cm del tronco celíaco en el borde anterior de la aorta y se encarga de irrigar al intestino distal.
- Arterias renales: nacen ambas de las caras laterales de la aorta a nivel de L1-L2 para otorgar irrigación a los riñones, siendo el origen de la arteria renal izquierda superior a la derecha.
- Arterias gonadales: se originan levemente superior a la arteria mesentérica inferior, para irrigar las gónadas masculinas y femeninas.
- Arteria mesentérica inferior: suele emerger de la aorta desde su cara anterolateral izquierda a nivel de la vértebra L3. Irriga el colon descendente y recto, uniéndose a través de la arteria cólica izquierda con ramas de la arteria mesentérica superior con el objetivo de dar flujo sanguíneo a las restantes zonas del colon. (7)

5. **Variaciones anatómicas de los troncos supraaórticos:** la anatomía de los troncos supraaórticos explicada anteriormente se cumplen en el 84% de los casos. Resulta, por lo tanto, importante diferenciar las diferentes posibilidades anatómicas a la hora de realizar el abordaje terapéutico. Destacamos la variante denominada arco bovino (11% de los casos) en la que la arteria carótida común izquierda emerge de un orificio común o un único tronco. También importante, es la variabilidad que se establece cuando el origen de las arterias vertebrales se observa en el propio cayado aórtico en lugar de sus respectivas subclavias (4-5%). Por último, comentar que el nacimiento individual de los troncos supraaórticos se asocia a subclavias aberrantes, en las cuales, estas se originan posterior a la salida de la otra subclavia dando fisiológicamente un robo de flujo sanguíneo. (7,8)

![Diagrama del arco aórtico](image)

2.2 DEFINICIÓN DE LA PATOLOGÍA DEL ARCO AÓRTICO

Englobamos dentro de la patología del arco aórtico todas aquellas enfermedades que afecten al mismo. El arco aórtico es la porción de la aorta que incluye la aorta desde el origen del tronco braquiocefálico hasta la porción distal del ostium de la arteria subclavia izquierda.
Los cambios morfológicos más comunes, a encontrar dentro de la enfermedad del arco, son los aneurismas, seudoaneurismas, las disecciones, los hematomas intramurales y la úlcera aórtica penetrante. (5)

2.2.1 Aneurisma

Se define aneurisma como una dilatación aórtica que incluye las tres capas de la pared vascular (íntima, media y adventicia), mayor a 1,5 veces el diámetro del segmento sano adyacente (9). Desafortunadamente en muchas ocasiones la patología del arco aórtico no se presenta de forma aislada, sino que se acompaña de afectación de segmentos adyacentes, lo que invalida esta primera definición y nos obliga a definirla como aquella dilatación patológica de un segmento de vaso sanguíneo, que abarca las tres capas de la pared vascular (íntima, media y adventicia) teniendo al menos un incremento del 50% de diámetro, en comparación con un vaso con aspecto normal (10).

Podemos distinguir dos tipos de aneurisma a partir de su aspecto macroscópico: el aneurisma fusiforme con una dilatación difusa y circunferencial que comprende todo el segmento alterado; y sacular en el que se produce una evaginación del vaso con afectación parcial.

En cuanto a la clasificación topográfica, nos referimos a abdominales en aquellos que se sitúan infradiafragmáticos y torácicos a aquellos con localización supradiafragmática. En estos últimos incluimos la patología del arco aórtico, a la vez que, de la aorta ascendente y descendente. (4)

El aneurisma del arco aórtico como enfermedad aislada, es una entidad poco frecuente. Por el contrario, la asociación de diversas zonas de la aorta torácica (ascendente y descendente) con el cayado aórtico prevalece en mayor número al anterior. Por ello, pese a ser anatómicamente lesiones diferentes deberemos plantear un abordaje terapéutico quirúrgico conjunto, como explicaremos a continuación (10).

2.2.2 Seudoaneurisma

El seudoaneurisma aórtico, también denominado falso aneurisma, se define como una dilatación aórtica por rotura de las capas de la pared arterial, a excepción del tejido conectivo periaórtico, diferenciándose del aneurisma por esa rotura de la última capa. Dentro de sus posibles complicaciones destacamos dos procesos:

- Presión que excede la tensión máxima de la capa de tejido conectivo dando lugar a una rotura fatal.
- Progresivo aumento de tamaño pudiendo originar fístulas, compresión o erosión de estructuras circundantes con las manifestaciones clínicas que ello conllevaría dependiendo de la zona afecta, como explicaremos a continuación. (5)
2.2.3 Síndromes aórticos agudos

Dentro de esta patología se engloban estos procesos: disección aórtica, hematoma intramural y úlcera aórtica penetrante.

Los SAA se definen como procesos agudos de la aorta con características similares. Hay una ruta común para las distintas manifestaciones que, finalmente, acarrean la rotura de la íntima y de la media, lo que podría resultar en un hematoma intramural, úlcera aórtica penetrante o en la separación de las capas de la aorta provocando una disección aórtica. Es, propiamente, la hemorragia en la media la que a través de una respuesta inflamatoria de lugar a la dilatación y rotura de la zona alterada. (5)

2.2.3.1 Disección aórtica torácica

Se produce tras la erosión de la capa íntima de la pared arterial, permitiendo el paso de sangre desde la luz verdadera (aorta) hacia la luz falsa (túnica media) (11).

- **Clasificación:**
Las dos clasificaciones mayormente utilizadas son la de DeBakey y la de Stanford (Figura 3). En la DeBakey tipo I o Stanford tipo A, el desgarro de la capa íntima se encuentra en la porción proximal de la aorta ascendente con extensión a las demás zonas. Con menor frecuencia la podemos localizar en el arco aórtico o la aorta descendente. En la DeBakey tipo II, solo se afecta la aorta ascendente finalizando el desgarro proximalmente al tronco braquiocefálico. Por último, la DeBakey tipo III o Stanford tipo B engloba la aorta descendente (IIIa) o se extiende hasta la porción abdominal o hasta las arterias ilíacas (IIIb). Se puede a su vez extender proximalmente hacia el arco aórtico con localización distal a la arteria subclavia izquierda (12).

![figura 3: clasificaciones de DeBakey y Stanford en la disección aórtica. Imagen y título extraídos de Cardiac Surgery de kirklin (12).](image)

Según las guías actuales y de acuerdo con la clasificación de Stanford de la disección aórtica, se considera una disección tipo A si la aorta ascendente está involucrada, independientemente
de la ubicación del desgarro de entrada. Se considera tipo B cuando la aorta ascendente no está involucrada y la disección se localiza distal al origen de la arteria subclavia izquierda (12,13). Como hay evidencia de que los pacientes con roturas íntimales en el arco, tienen un curso clínico diferente que aquellos con una entrada en la aorta descendente, el documento europeo recientemente publicado por la Asociación Europea de Cirugía Cardio-Torácica (EACTS) y la Sociedad de Cirugía Vascular (ESVS) sobre cirugía abierta y las intervenciones endovasculares del arco aórtico han introducido el concepto de disección no A/no B como una entidad clínica separada (13).

2.2.3.2 Hematoma intramural

Las guías actuales de la ESC definen el hematoma intramural (HI) como un engrosamiento > 5 mm de la pared aórtica en forma circular o de semiluna, con ausencia de membrana de disección, ruptura de la íntima o flujo de luz falsa (5). Pese a que las guías definen esta entidad de forma separada, resulta complicado diferenciarla de las disecciones en pruebas de imágenes. Consta a su vez de una dependencia de tiempo ya que se ha observado que después de 24-48h, tras las pruebas de imágenes, ocurrían nuevas roturas de la íntima.

Con respecto a los factores pronósticos de esta patología partimos de dos supuestos:

- Sin erosión o ulceración de la íntima: en la que se incluyen como factores de progresión la asociación con la aorta ascendente, un diámetro aórtico > 50mm y dolor persistente.
- Con erosión o ulceración de la íntima: en este caso se incluyen el dolor persistente y úlcera asociada a la aorta ascendente con un diámetro inicial máximo de >20mm y una profundidad de >10mm. (13)

2.2.3.3 Úlcera aórtica penetrante

La úlcera aórtica penetrante (UAP) se define como una ulceración de una placa aterosclerótica penetrante a través de la lámina elástica interna, dentro de la media. La historia natural de esta lesión se caracteriza por una dilatación aórtica progresiva y por el desarrollo de aneurismas saculares o fusiformes, que suelen acelerarse en la aorta ascendente (UAP tipo A). Las UAP suelen encontrarse en el marco de una aterosclerosis extensa de la aorta torácica, pueden ser múltiples y variar en tamaño y profundidad dentro de la pared del vaso. La localización más frecuente de las UAP es la aorta torácica descendente media y baja (UAP tipo B) (5). Existe evidencia de que esta entidad pueda desarrollar un hematoma intramural, una disección aórtica o un aneurisma de aorta (13).

Clasificación temporal de los síndromes aórticos:

Una vez diagnosticado un síndrome aórtico debemos clasificarlos según el tiempo de evolución en:
- Agudo: aquel síndrome aórtico diagnosticado los primeros 14 días de síntomas.
- Subagudo: se denomina así, ante un diagnóstico entre el día 15 y 90.
- Crónico: sería aquel diagnosticado después de los 90 días. (5)
2.3 EPIDEMIOLOGÍA

2.3.1 Aneurisma de aorta torácico

La prevalencia e incidencia de los aneurismas de aorta resulta complicado determinarla por su frecuente patrón asintomático. Sin embargo, se estima que la incidencia de aneurisma aórtico torácico (AAT) ronda los 10 casos por 100.000 personas-año. Mientras que los aneurismas que afectan al arco aórtico suponen el 10% de todos los AAT (10). En el aspecto genético se ha descubierto que hasta un 20% de AAT poseen variantes genéticas específicas, de tal modo, que solo incrementa el riesgo de sufrir aneurismas en esta zona (14).

El riesgo de padecer la enfermedad es dos veces mayor en hombres que mujeres, estando la edad media en la sexta-séptima década de la vida (10,14). Se ha observado un incremento en estos últimos años, aunque no ha quedado claro si es debido a una mejora en las técnicas de diagnóstico o a un aumento en la incidencia de la propia patología (10).

2.3.2 Síndromes aórticos

a) Disección aórtica:

Hay pocos datos actualizados sobre esta patología. Aun así, en el estudio de Oxford vascular, en el que se estudiaron a 155 pacientes, la incidencia se estima en 6/100.000 personas/año, con una mortalidad a 30 días del 47,7%, siendo la HTA un factor pronóstico que acarrea una mayor mortalidad en casos con cifras tensionales previas (15). Nos encontramos con pacientes que suelen estar en la sexta-séptima década de la vida y preferentemente varones, con una proporción 2:1, en constante aumento con el envejecimiento. La presentación atípica y el diagnóstico tardío, que caracterizan a esta enfermedad en mujeres, supone que se establezca un peor pronóstico. En cuanto al factor de riesgo que más frecuentemente se asocia a la disección aórtica, comentar que se trata de la hipertensión y se describe en el 65-70% de los casos, estando usualmente mal controlada (5). Por último, destacar el registro IRAD (registro internacional de disección aórtica) en el que se demuestra que el 67% de los pacientes han sufrido una disección tipo A y el 33% tipo B, afectando preferentemente a varones, en una proporción de dos tercios, siendo la media de edad de 62 ± 14,6 años (16).

b) Hematoma intramural:

Diferentes estudios postulan que esta entidad podría ser causa del 10-25% de los SAA. Centrándonos en las diferentes zonas de alteración, dentro de esta patología, la afectación de la aorta ascendente y arco aórtico (tipo A) representa el 30 % y 10 % respectivamente. Mientras que el HI de la aorta descendente es responsable del 60-70% de los casos (5). Un estudio alemán determinó que alrededor del 60% mantenían una progresión y que el 20% de los pacientes presentarían, tras 30 días después del ingreso hospitalario, una disección aórtica (13).
c) Úlcera aortica penetrante:

Se trata del proceso menos frecuente dentro de los SAA, correspondiendo al 2-7% de estos. Los datos muestran que solo el 6,8 % de la patología UAP se halla en el arco aórtico, teniendo mayor importancia clínica, ya que suelen presentarse de forma mucho menos florida que la afectación de otras zonas de la aorta (13).

2.4 ETIOLOGÍA. FACTORES DE RIESGO.

Las causas de la aortopatía se clasifican de manera general como: enfermedades degenerativas, trastornos genéticos o del desarrollo, infecciones, vasculitis, traumatismos o síndromes aórticos agudos (4).

Con relación a enfermedades degenerativas:

Pese a que los factores causales de la patología aórtica se asemejan entre si, estudios han demostrado cierta diferencia dependiendo de la zona. Esta diferencia radica sobre todo por el decrecimiento de contenido de elastina a medida que avanzamos por la aorta, teniendo la aorta ascendente el doble en contenido de túnica media que la aorta abdominal. Es decir, si nos referimos a aneurismas de aorta ascendente, el proceso principal sería una degeneración de la túnica media, término histológico propuesto ante la degradación de las fibras de colágeno y elásticas, las cuales acababan siendo sustituidas por un material mucoide, como los proteoglicanos. En contrapartida en caso de ser patología del arco aórtico aislado o asociado a la aorta descendente el proceso más frecuente reconocido es la degeneración por ateroesclerosis, con sus diferentes factores de riesgo y estresores de la pared arterial (2).

Los aneurismas de aorta son consecuencia de trastornos que alteran los componentes estructurales de la pared del vaso (elastina y colágeno) a través de una producción anormal o degradación de esta (4).

La ateroesclerosis es la etiología más frecuente dentro de este tipo de patología con sus diversos efectos en la pared arterial. Debemos resaltar, finalmente, tanto los factores de riesgo de ateroesclerosis (envejecimiento, tabaco, hipercolesterolemia, hipertensión y género masculino) como aquellos que generan un estrés en la pared del vaso, entre los que se encuentran tumores carcioides (feocromocitoma), el abuso de cocaína o el levantamiento de pesos. Mientras, el tabaco y la hipertensión adquieren un papel de factor adicional en la inducción inflamatoria, estimulación humoral y estrés del propio vaso (10).

La formación de aneurismas de aorta torácica son el resultado, no solo de mecanismos biológicos sino también mecánicos. Se explica como una ruptura de equilibrio homeostática en la pared de la aorta, en la que se incluyen elementos de elastina, colágeno, proteoglicanos, enzimas proteolíticas y sus inhibidores junto con mediadores inflamatorios, dando lugar a una aorta patológica que se manifiesta como un engrosamiento de su pared, acabando eventualmente en una disección aórtica. Este desequilibrio ocurre a causa de unos enzimas degradantes de matriz como las metaloproteínasas y catepsinas. Las metaloproteínasas son una familia de enzimas que tienen como función regular la integridad dinámica de la estructura de la matriz extracelular, a partir de la degradación de sus componentes de forma equilibrada.
homeostáticamente. Ante una disfunción de estos enzimas se llevaría a cabo un aumento en la fragmentación de capas de elastina y colágeno, una pérdida de función de las células musculares lisas y, como ya se ha comentado, se sustituirían todos estos elementos por material mucoide (2,4,10).

En cuanto a los trastornos genéticos que desarrollan artropatía, suelen subdividirse en dos categorías; síndromicas y no síndromicas. Durante la pasada década se han encontrado defectos genéticos subyacentes en ambas categorías, que condicionan que obtengamos grupos moleculares homogéneos de aneurismas de aorta torácica y diseciones (AATD).

- El síndrome de Turner suele estar provocado por una monosomía parcial del cromosoma X (45X0). Fisiopatológicamente, observamos una dilatación generalizada y elongación de los grandes vasos, preferentemente de la aorta y carótidas. La elongación del arco aórtico y la dilatación aórtica se observan en el 30% y 33% de los casos respectivamente. Por otra parte, hay que destacar una incidencia 100 veces mayor a la normal, de diseciones de aorta, en esta patología en concreto.

- El síndrome de Marfan: se trata de la conectivopatía hereditaria más frecuente. Se transmite como una enfermedad autosómica dominante en la que se generan alteraciones del gen FBN1, codificador de la fibrilina-1. Esta proteína es componente importante de la estructura microfibrilar extracelular, afectando a fibras de elastina y de colágeno. Este proceso se traduce en una hiperseñalización del factor transformador de crecimiento β (TGF-β). A raíz de ello se ha demostrado que la inhibición del TGF-β, a partir de un anticuerpo neutralizador o mismo con ARA II, revertía las complicaciones vasculares.

- El síndrome de Ehlers-Danlos tipo IV (SED-IV). Trastorno autosómico dominante, en el que la mutación de mayor predominio es aquella en la que se afecta el gen COL3A1, codificador del protocolágeno tipo III.

- El síndrome de Loeys Dietz (LSD): descrito por primera vez en 2005, se trata de un síndrome autosómico dominante, que conlleva alteraciones de tortuosidad arterial, aneurismas, hipertelorismo, úvula bifida y características similares al síndrome de Marfan.

- Síndrome de tortuosidad arterial: es una rara enfermedad autosómica recesiva, caracterizada por tortuosidad arterial, aneurismas de arterias de mediano y gran tamaño, elongación, estenosis focales de las arterias pulmonares y aorta, rostro alargado, blefarofimosis, fisuras palpebrales, paladar arqueado, micrognatia y trastornos del tejido conectivo (hiperextensible) y óseo (aracnodactilia, deformidad torácica, contracturas...). Este síndrome se asocia a mutaciones del gen SLC2A10, codificador del facilitador del transportador de glucosa GLUT10, mostrando una mortalidad de hasta el 40% en las formas más severas.

- Síndrome de aneurismas-osteoartritis: es un nuevo AATD (aneurisma de aorta torácica y disección) sindrómicó que causa el 2% de los AATD familiares. Estamos ante una enfermedad autosómica dominante, en la que se produce una mutación en el gen SMAD3 que codifica una señalización del factor de crecimiento TGF. Presenta
alteración de articulaciones (osteoartritis y osteocondritis disecante) a la vez que aneurismas y disecciones, estando estas últimas dispuestas por todo el árbol arterial. Puede cursar con características craneofaciales, esqueléticas y cutáneas similares al síndrome de marfan.

- Aneurismas de aorta torácica familiar no sindrómica y disección: pese a que la mayoría de los afectos de AATD no presentan un síndrome genético conocido, en estos pacientes existe una agregación familiar con un pariente de primer grado del 19%. Los AATD no sindrómicos tienen transmisión autosómica dominante, con una importante variabilidad clínica preferentemente en mujeres. Estas formas no sindrómicas de AATD se asocian a válvula aórtica bicúspide y ductus arterioso, presentando la típica necrosis medial quística en anatomopatología, aunque no serviría como forma de diagnóstico ya que las patologías sindrómicas pueden mostrar la misma afectación. Por último destacar que los genes propios de los AATD, como el síndrome de marfan o LSD (FBN1, TGFBR1, TGFBR2…) no se observan en las alteraciones no sindrómicas. (2,4,5)

Centrándonos en las infecciones y vasculitis como causas de aortopatía, debemos mencionar el término de aortitis definido como inflamación de la pared arterial. Distinguiamos dos procesos:

- Aortitis infecciosa: entres sus causas se encuentran la sífilis, tuberculosis y otras infecciones bacterianas menos frecuente como salmonella, micobacterias y estafilococo (5). Pese a que son situaciones con poca incidencia, es importante comentar que el 90% de aneurismas provocados por sífilis se desarrollan en el cayado aórtico o aorta ascendente. Mientras, los tuberculosos afectan de manera más generalizada y como consecuencia de una diseminación por proximidad desde los ganglios del hilio o abscesos vecinos. Se trata en la mayoría de los casos de aneurismas saculares, a diferencia de los aneurismas fusiformes, característicos de trastornos sindrómicos (4).

- Aortitis inflamatoria no infecciosa: en este apartado se encuentran las vasculitis, siendo las causas más comunes de aortitis. Destacamos la arteritis de Takayasu o la arteritis de células gigantes, quienes tienen cierta predilección por el cayado aórtico y la aorta ascendente. La aortitis no infecciosa también se ha descrito en otras enfermedades como la enfermedad de Bechet, de Buerger, la espondiloartritis anquilosante o la enfermedad de Reiter (4,5).

Con respecto a los traumatismos destacar, los seudoaneurismas y la localización más frecuente:

- Seudoaneurismas: suelen producirse secundariamente a traumatismos contuso de la aorta, como consecuencia de una deceleración sufrida en un accidente severo, o a etiologías iatrogénicas como cirugía de aorta o introducción de catéteres en esas zonas. Con menos frecuencias se han asociado a infecciones micóticas. La localización con mayor prevalencia se asienta tras la inserción del ligamento arterioso a la altura de la aorta torácica descendente (5).
Por último, vamos a hablar sobre síndromes aórticos:

- Disección aórtica: Los factores que influyen en esta patología son la degeneración medial, ateroesclerosis y aquellos que aumentan la tensión de la pared arterial. Alrededor del 70% de los pacientes cursan con hipertensión arterial (5). Con respecto a las alteraciones sindrómicas (síndrome de Marfan, Loeys-Dietz y Elhers-Danlos), la disección aórtica es la principal causa de mortalidad y morbilidad. A su vez la incidencia aumenta con aortitis inflamatorias (Takayasu o arteritis de Horton) traumatismos y anomalías congénitas de las válvulas (válvula bicúspide). También puede ocurrir a consecuencia de levantamiento de pesos, uso de cocaína o padecer feocromocitoma en su clínica aguda. Como observamos la etiología no difiere en gran medida de los aneurismas de aorta torácica, incluyendo hasta los mismos procesos sindrómicos.

Otros factores de riesgo incluyen enfermedades aórticas preexistentes o enfermedad de la válvula aórtica, antecedentes familiares de enfermedades aórticas, antecedentes de cirugía cardíaca, tabaquismo y traumatismo torácico directo. Un estudio de autopsias de víctimas de accidentes de tráfico confirmó que aproximadamente el 20% de las víctimas presentaban rotura de aorta. (12)

- Hematoma intramural y úlcera aórtica penetrante: ambas entidades asientan sobre una ateroesclerosis severa de la aorta como se ha comentado al principio de esta sección. Por lo tanto, los factores de riesgo serán: la edad, el género masculino, la hipertensión, enfermedad de las arterias coronarias, enfermedad pulmonar obstructiva crónica y aneurismas concomitantes (5).

2.5 CLÍNICA

A partir de este apartado nos centraremos en los aneurismas del cayado aórtico con objeto de encaminar el abordaje terapéutico de nuestros pacientes.

- **Síntomas:**
 La principal presentación es asintomática, por lo que su diagnóstico será principalmente incidental. Los síntomas característicos de esta patología no aparecen hasta fases tardías de la enfermedad, cuando esta abarca una dilatación considerable, y es esa dilatación la que dará lugar a una sintomatología (17):

 por EXTENSIÓN a otras localizaciones:

 - El crecimiento progresivo de la aorta no suele ser focal, puede extenderse hacia zonas proximales o distales. En caso de dilatación progresiva de la aorta ascendente, en fases avanzadas este crecimiento podría dilatar la raíz aórtica dando lugar a una insuficiencia aórtica. La dilatación anular y consecuente insuficiencia aórtica, llevan de la mano la progresiva dilatación ventricular izquierda, pudiendo esto preceder a una insuficiencia cardíaca, con síntomas como: disnea, disnea paroxística nocturna, ortopnea, edemas periféricos o hasta ingurgitación yugular (18,19).
por COMPRESIÓN de estructuras vecinas:

- Podría ocasionar dolor irradiado a cuello o mandíbula, con mayor frecuencia en patología aislada de arco aórtico (10).
- Compresión del nervio laríngeo recurrente dando lugar a una parálisis de las cuerdas vocales con afectación de la fonación, respiración en forma de ronquera y menos frecuente disfagia.
- Estridor por afectación de la tráquea
- Disfagia por compresión del esófago, el cual es posterior al arco aórtico.
- Disnea por vecindad con el parénquima pulmonar.
- Plétora, edemas, ingurgitación jugular por síndrome de la vena cava superior. (17)

Por ROTURA o EXPANSIÓN aguda del aneurisma:

- La incidencia de rotura del AAT varía según el diámetro y la sintomatología acompañante desde un 2-3% por año con diámetro de <4 cm a 7% por año con diámetro >6 cm (4). En el caso de que llegase un paciente con un dolor agudo retroesternal o interescapular deberíamos sospechar en primer lugar de un síndrome aórtico agudo, donde se engloban la disección aórtica, el hematoma intramural y la úlcera penetrante, aunque también incluiremos en el diagnóstico diferencial esa rotura o expansión aguda del aneurisma aórtico torácico (17).

Por EMBOLIA o TROMBOSIS:

- El infarto o la evidencia de isquemia se relaciona directamente con procesos embolígenos (por ateromas de la pared aórtica) o trombóticos (por la severa ateroescclerosis de la aorta).

- **Signos:**
 Signos directos que acerquen al diagnóstico de aneurisma torácico aórtico concretamente de arco aórtico son muy poco frecuentes. En el pasado, con mayor prevalencia de sífilis se podía objetivar una masa pulsátil en la zona anterior del pecho como primer signo. Hoy en día para atribuir signos a un aneurisma debemos irnos a excepciones. Una de ellas es la aneurisma con afectación de arco aórtico y aorta ascendente, en la que como ya comentamos se producía una alteración del anillo aórtico con posterior regurgitación sanguínea. Pues esta regurgitación se ausculta como un soplo diastólico en foco aórtico. Otra de las excepciones se relaciona con la sintomatología aguda de extremidades inferiores en casos de ateroescclerosis severa, donde se pueden observar signos cutáneos de trombosis o de embolia.

Queda claro por lo tanto la poca frecuencia de signos extrapolables de esta enfermedad, y que aquellos que si nos orientan lo hacen de una forma indirecta como es el caso de la auscultación de la regurgitación o de las lesiones cutáneas. (17)
2.6 **DIAGNÓSTICO POR IMÁGENES**

Como acabamos de citar, la anamnesis y exploración física nos pueden orientar, pero no confirmarán el diagnóstico. Para ello vamos a tener diferentes técnicas de imágenes con modalidades y aspectos característicos:

- **Radiografía de Tórax:**
 No se trata de una prueba de elección, pero el hecho de que la mayoría de los aneurismas se descubran de forma incidental ha promovido el hallazgo de ciertas características en ella, como el ensanchamiento de la silueta mediastínica, la desviación traqueal o anomalías en el contorno del arco aórtico (10). Estas anomalías son sombras antero-laterales desde la silueta cardíaca, desviadas a la izquierda en el caso de patología de arco aórtico (Figura 4). Aun así, solo el 17% de los pacientes con esta enfermedad presentan una radiografía con estos patrones descritos. La base de datos establece una sensibilidad del 71% pero una especificidad más baja debido a no ser posible la diferenciación de un aneurisma a una masa mediastínica, ya sea benigna o maligna (17).

![Figura 4: Radiografía de tórax de paciente con aneurisma de arco aórtico. (A) vista frontal en la que se observa una sombra lateralizada de la silueta cardíaca. (B) vista lateral en la que podemos localizar la lesión en el arco aórtico. Imagen y título extraídos de Cardiac Surgery de Kirklin (17).](image)

- **TAC:**
 Se trata de la técnica no invasiva con mayor uso en el diagnóstico. Su función radica en la facilidad de establecer la localización, el tamaño y la extensión de la patología en cuestión, permitiendo estratificar el crecimiento en sucesivos seguimientos, aportar información para la indicación quirúrgica y evaluar a los pacientes postoperatorios. Otra de sus características es la visualización de alteraciones anatómicas asociadas a este tipo de aneurismas, como puede ser la ateroesclerosis de aorta. Pese a estas ventajas, no está exenta de riesgos, dentro de los cuales predominan la alergia a contrastes yodados, la insuficiencia renal y las dosis de radiación. Con respecto a este último riesgo se han implementado mejoras a través de...
logaritmos y reducción de la radiación utilizada, con el objetivo de reducir la evolución a malignidad que acarrean este tipo de pruebas.

Cabe destacar que alrededor del 25% de pacientes con esta afectación sufren otros aneurismas en localizaciones diferentes, por ello se postula la necesidad de llevar a cabo un TAC en el que podamos observar otras zonas de la aorta, como la abdominal o toracoabdominal. (5,17)

- **Resonancia magnética:**
 La resonancia ha ido emergiendo como una técnica de elección en el diagnóstico de patología aneurismática de aorta torácica y toracoabdominal. Una única sesión con esta prueba nos da la opción de recaudar una cantidad de información similar a la combinación de angiografía, TAC y ecocardiografía (Figura 5). La asociación de angiografía con RM en 3D nos permite un estudio completo de la aorta torácica, de sus ramas, del pericardio, de las válvulas aórticas, de la contractilidad del ventrículo izquierdo y de la formación de trombos. En cuanto a sus desventajas, en comparación al TAC, incluyen: mayor coste, mayor duración, inaccesibilidad para pacientes conectados a ventilación mecánica o monitorizados, contraindicaciones en pacientes con prótesis o marcapasos y nefropatía por el uso de gadolinio (17).

 ![Figura 5: Resonancia magnética de aneurisma de aorta ascendente y arco aórtico. (A) gadolinio. Imagen y título extraídos de Cardiac Surgery de Kirklin (17).](image)

- **Ecocardiografía transesofágica:**
 Esta prueba es usada con bastante frecuencia en el diagnóstico de patología de aorta torácica y en el manejo de pacientes perioperatorios. Esta última indicación permite evaluar la presencia de ateroesclerosis, placas de ateroma, hemopericardio, malperfusion, viabilidad de las válvulas cardiacas de forma preoperatoria y función ventricular. En cuanto a estos últimos propósitos es una técnica superior a la ecocardiografía transtorácica, aunque presenta necesidad de sedación, de intubación y no siempre está disponible en centros de menor rango (17).
• **Aortografía:**
Su uso se reserva para el manejo de pacientes con cirugías específicas de patología aórtica. En lo que nos concierne, nos facilita el estudio de la localización del aneurisma y su relación con ramas del arco aórtico (figura 6). Delimita con bastante exactitud las áreas de normalidad cercanas al aneurisma y nos da la opción de observar regurgitación aórtica en aneurismas que engloben la aorta ascendente. La inyección selectiva de coronarias, tronco braquiocefálico o vísceras aportan información importante a la hora de establecer los criterios de riesgo quirúrgicos o hasta la indicación de técnicas quirúrgicas diferentes. Entre sus desventajas tenemos el riesgo de alergia a contrastes, fallo renal en paciente con insuficiencia renal o infraestimación del tamaño del aneurisma por la presencia de trombos en la pared arterial (17).

![Figura 6: Aortografía torácica en la que observamos un aneurisma fusiforme del arco aórtico. El tronco braquiocefálico (BR) se origina antes del aneurisma mientras que la carótida izquierda (LCC) y la subclavia izquierda (LSA) desde el propio aneurisma. (A) vista frontal. (B) vista lateral. Imagen y título extraídos de Cardiac Surgery de Kirklin (17).](image)

• **Ultrasonido epicárdico:**
Posee un uso bastante específico e intraoperatorio. Determina áreas de ateroesclerosis con mayor riesgo de embolización ateromatosa durante la cirugía, teniendo mayor especificidad que la ecocardiografía transesofágica o la palpación de la aorta. Estos hallazgos suponen un cambio en el abordaje quirúrgico, de ahí la importancia de esta técnica (17).

2.7 **DIAGNÓSTICO DIFERENCIAL**
Como hemos mencionado anteriormente, existen otras patologías con afectación del arco aórtico que condicionan una dilatación de ese segmento de aorta. Dentro de estas destacamos los pseudo-aneurismas, el hematoma intramural y la disección aórtica. Los pseudo-aneurismas suelen producirse secundariamente a un evento traumático como accidentes o caídas. Mientras la disección aórtica se presenta con un dolor retroesternal irradiado a la zona interscapular (10).
Tanto estas enfermedades como las masas mediastínicas, aortas tortuosas o ectasias seniles pueden conllevar similitudes en los hallazgos radiológicos, por ese motivo pasan a necesitar la confirmación diagnóstica con pruebas más específicas entre las que destacamos la angiografía. En cuanto al diagnóstico diferencial del aneurisma versus disección aórtica, encontramos que el paciente con disección presenta un cuadro clínico brusco y florido, muy distinto del cuasisilente aneurisma.

Entre las manifestaciones clínicas y físicas del paciente con disección aórtica podemos comentar lo siguiente:

La presentación sintomática y su variabilidad son consecuencia del desgarro de la capa íntima, del hematoma intramural, de la oclusión de ramas de la aorta y de la compresión de estructuras vecinas. Suelen presentar como un dolor de inicio súbito caracterizado por ser retroesternal e irradiado hacia la zona interescapular. También podemos encontrar disnea por hemotórax o por insuficiencia cardíaca, ya que es frecuente (>50% de los casos) que se produzca una insuficiencia de la válvula aórtica como consecuencia del ensanchamiento de la raíz o la destrucción del anillo por el hematoma diseccante. Otro síntoma es el síncope por rotura aórtica al pericardio con taponamiento cardíaco. Mientras que algunas manifestaciones físicas pueden ser hipotensión por el bajo gasto al fluir la sangre hacia la luz falsa, pérdida de pulsos o diferencia de pulsos entre los miembros superiores e inferiores, y signos neurológicos por disección de alguno de los troncos supraaórticos o de la médula espinal (paraplejía). Además, la compresión de estructuras vecinas por expansión de la disección, causando un aneurisma secundario, acarrea clínica sugestiva como el síndrome de horner, el síndrome de la vena cava superior, disfagia, disfonía y afectación de vías respiratorias.

En cuanto a las pruebas de imagen: tanto en el aneurisma como en la disección observamos un ensanchamiento mediastínico superior en radiografía de tórax, en tanto que si afecta a la porción descendente se visualizaría un ensanchamiento mediastínico medio y un mayor tamaño que la aorta ascendente o arco aórtico (5).

El diagnóstico definitivo se realizará mediante TAC y RM, que tienen una amplia exactitud a la hora de detectar el tamaño la localización y la extensión de la patología, al igual que objetivar la afectación del arco aórtico. Todo ello con una sensibilidad superior al 90% (4).

2.8 TRATAMIENTO DEL ANEURISMA DEL ARCO AÓRTICO

2.8.1 Tratamiento médico

El principal objetivo del tratamiento medico en patología de arco aórtico se basa en disminuir los diferentes factores de riesgo que favorecen la evolución de la enfermedad a través del estrés de la propia pared aórtica, para ello, intentamos reducir tanto la presión arterial como la contractilidad cardíaca. Muchos pacientes presentan comorbilidades tales como ateroesclerosis, enfermedad renal crónica, diabetes, dislipemia, hipertensión etc… Por lo tanto, las estrategias de prevención han de estar enfocadas a las indicadas en la patología concomitante.
Se ha descubierto recientemente que otro factor de riesgo independiente es el tabaco, en la patología de aneurisma de aorta abdominal, el cual induce una expansión más rápida de alrededor 0,4mm/año. Pese a ser estudios relacionados con la zona abdominal, sin que exista evidencia en otras partes de la arteria aorta, no podemos descartar una afectación similar causada por el tabaco en la patología del arco aórtico. A su vez, es probable que buenas medidas higiénico-dietéticas con un ejercicio moderado puedan prevenir el avance de ateroesclerosis de aorta, y por consiguiente de enfermedad crónica del arco aórtico. Hay que hacer hincapié en este ejercicio moderado y no aquel propio de deportes de intensidad elevada asociado a mayor incidencia de rotura de la pared aórtica por picos elevados de tensión arterial.

En cuanto a las enfermedades crónicas del arco aórtico, el objetivo se sitúa en una tensión <140/90 mmHg con cambios en el estilo de vida y antihipertensivos si se llegase a necesitar. Estas medidas son principalmente de prevención ante la aparición de la patología en cuestión. Lo ideal sería revertir la expansión del aneurisma o del acúmulo de ateroesclerosis.

Existe una enfermedad, el síndrome de Marfan, en la que el uso de betabloqueantes, inhibidores de la enzima de angiotensina y bloqueadores del receptor de la angiotensina II pueden reducir la expansión del aneurisma de aorta y la aparición de complicaciones. Estos datos carecen de evidencia para otras etiologías de enfermedad de aorta. Por último, destacar el uso de estatinas en la reducción de la expansión de aneurisma, corroborado por pequeños estudios observacionales, en los que se asociaran a mayor supervivencia y una disminución del riesgo de muerte cardiovascular (4,5).

Conociendo la gravedad que comporta una disección aórtica aguda, nos gustaría hacer un breve comentario al tratamiento médico de la misma:

Tras establecer el diagnóstico de disección aórtica debemos ingresar al paciente para monitorizar su estado hemodinámico. Siempre y cuando no esté en situación de bajo gasto utilizaremos como medidas farmacológicas los beta-bloqueantes adrenérgicos como el propanolol, metoprolol o esmolol de acción breve por vía IV, con el objetivo de disminuir la contractilidad, la presión arterial sistémica y alcanzar una frecuencia cardíaca de 60 Ipm. Se pueden añadir vasodilatadores, como calcio antagonistas, para conseguir una presión sitólica <120 mmHg (4).

Una vez tenemos a nuestro paciente estable hemodinámicamente, debemos plantear la posibilidad de abordaje quirúrgico. Lo primero es clasificar el tipo de disección. Ante una disección Stanford A el manejo quirúrgico consiste en la reparación urgente de la aorta ascendente, extirpando el colgajo de íntima afectado, obliterando el conducto falso y colocando un injerto de interposición.

Si nos encontramos una disección tipo B de Stanford debemos clasificarla como complicada o no, lo cual dependerá de la estabilidad del paciente y las áreas afectadas. Si se determina como complicada se prefiere realizar la técnica de FET (trompa de elefante congelada) o TEVAR (reparación endovascular aórtica torácica) de forma emergente. El uso de una u otra depende de hasta que zona se encuentre alterada la pared arterial y si esa zona es adecuada para la introducción de la trompa de elefante congelada. En cambio, si se postula como no complicada, llevaremos a cabo un abordaje farmacológico o quirúrgico dependiendo de estas cuatro características (20):
• Entrada a la luz falsa >10 mm: TEVAR en un segundo tiempo (15 días-90 días).
•Entrada primaria en la curvatura interna: TEVAR en un segundo tiempo.
• Diámetro de la aorta >40 mm: TEVAR en un segundo tiempo.
• Luz falsa >25 mm: TEVAR en un segundo tiempo.

Si la disección no cumple estas características, se plantea el tratamiento farmacológico explicado al inicio de este apartado.

2.8.2 Tratamiento quirúrgico

La última década ha propiciado un aumento en las opciones quirúrgicas de patología aórtica torácica asociada al arco aórtico. Tradicionalmente, el tratamiento de estas patologías era dominio de la cirugía abierta, pero hoy en día, el auge del abordaje vascular y endovascular ha propiciado un nuevo campo de tratamiento, especialmente en pacientes operados previamente y aquellos con mayor número de cormobilidades. Cabe destacar que la cirugía abierta de aorta ha conseguido muy buenos resultados, con la ayuda de la canulación de la arteria subclavia, la perfusión anterógrada selectiva cerebral asociada a hipotermia y una mejor monitorización de los órganos vitales. Aun así, las complicaciones neurológicas están siendo una de las mayores preocupaciones en el abordaje del arco aórtico, tanto en cirugía abierta como endovascular.

Para conseguir reducir al mínimo las complicaciones quirúrgicas y aumentar los resultados óptimos, se ha llegado a un consenso entre la asociación europea de cirugía torácica (EACTS) y la sociedad europea de cirugía vascular (ESVS), a través de un documento que engloba todas las patologías del arco aórtico y proporciona a la sociedad una guía pragmática para entender la historia natural de los diferentes procesos patológicos, las indicaciones terapéuticas y la elección del abordaje quirúrgico adecuado en el momento idóneo de cada paciente, consiguiendo así una individualización terapéutica. (1,13)

2.8.2.1 Indicaciones quirúrgicas

Las indicaciones quirúrgicas se centran especialmente en el diámetro aórtico. La forma en la que se ha llegado a esta conclusión ha sido tras la extracción de hallazgos durante décadas entre un método conservador o quirúrgico con el objetivo de minimizar las complicaciones. Como ya se ha comentado anteriormente, en el tratamiento de aneurismas de arco aórtico cobra especial importancia el riesgo que conlleva la protección cerebral, siendo un aspecto imprescindible a la hora de establecer las diferentes indicaciones. Cabe mencionar que no existe una recopilación extensa de datos sobre esta patología del arco aórtico aislada, debido a su frecuente asociación con la aorta ascendente y descendente.

Según las guías clínicas la cirugía de aneurisma de arco aórtico es una opción ante un diámetro superior a los 55 mm o si el paciente presenta síntomas o signos de compresión local. En la toma de decisiones tendremos en cuenta los riesgos perioperatorios, ya que el tratamiento quirúrgico del arco aórtico conlleva una mayor mortalidad y morbilidad que la sustitución de la aorta ascendente o descendente. Si bien las indicaciones de sustitución de arco aórtico se dan mayoritariamente ante pacientes con patología propia del arco con indicación de cirugía o aquellos con aneurismas adyacentes de la aorta torácica, tenemos dos alternativas como la
transposición del arco (debranching) o la técnica de TEVAR para no llevar a cabo una cirugía estándar, principalmente por riesgo elevado perioperatorio (5).

Recuerdo de las indicaciones quirúrgicas recomendadas de aneurisma de aorta ascendente: (5)

- Con independencia de la etiología pacientes con diámetros aórticos máximos >55mm
- Paciente con síndrome de Marfan, o clínica marfanoide pero sin tener criterios diagnósticos de Marfan y diámetro aórtico máximo >50mm.
- Pacientes con antecedentes familiares de disección aórtica, crecimiento >3mm/año (usando las mismas técnicas de imagen), intención de gestar o regurgitación aórtica grave se postula un diámetro máximo >45mm.
- Síndrome Loez Dietz y diámetro >42mm. Con respecto al síndrome de Elhers-Danlos no existe un umbral específico.
- Paciente con válvula aórtica bicúspide y diámetro aórtico >55mm.
- Se acepta un umbral más bajo, de 50 mm, en pacinets con estos factores de riesgo: antecedente familiar, hipertensión, aumento del diámetro >3mm/año, edad, peso corporal, cormobilidades y tipo de cirugía.

<table>
<thead>
<tr>
<th>Recomendación</th>
<th>Clase</th>
<th>Nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>La cirugía está indicada para pacientes con aneurisma de la aorta descendente, con diámetro aórtico máximo > 50 mm para pacientes con síndrome de Marfan</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Se debe considerar la cirugía para pacientes con aneurisma de la aorta descendente con diámetros aórticos descendentes menores:</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>* > 45 mm para pacientes con síndrome de Marfan y factores de riesgo**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* > 50 mm para pacientes con válvula bicúspide y factores de riesgo**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* > 55 mm para otros pacientes sin elastopenia**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los umbrales más bajos para las intervenciones pueden tenerse en cuenta según el área de superficie corporal en pacientes de pequeña estatura o en caso de rápida progresión, regurgitación de la válvula aórtica, embarazo programado o preferencia del propio paciente.</td>
<td>IIIb</td>
<td>C</td>
</tr>
</tbody>
</table>

Intervenciones sobre aneurismas del arco aórtico:

- Se debe considerar la cirugía para pacientes con aneurisma del arco aórtico aislado y un diámetro máximo > 55 mm; Ila C
- Se puede considerar la reparación del arco aórtico para pacientes con aneurisma del arco aórtico que ya tienen una indicación para cirugía de un aneurisma adyacente localizado en la aorta ascendente o descendente; Ila C

Intervenciones sobre aneurismas del arco descendente:

- Se debe considerar la TEVAR en lugar de la cirugía, cuando la anatomía sea adecuada; Ila C
- Se debe considerar la TEVAR para pacientes con aneurisma de aorta descendente y un diámetro máximo > 55 mm; Ila C
- Cuando no sea posible técnicamente la TEVAR, hay que considerar la cirugía para pacientes con aneurisma de aorta ascendente y un diámetro máximo > 60 mm; Ila C
- Cuando la intervención está indicada, en casos de síndrome de Marfan u otras elastopenias, la cirugía está más indicada que la TEVAR; Ila C

**Figura 7: recomendaciones sobre intervenciones para el manejo del aneurisma aórtico. Imagen y título extraídos de Guía ESC 2014 de Raimund Erbel (5).
2.8.2.2 Cirugía abierta

2.8.2.2.1 Técnicas de la cirugía

a) Incisión:
En la mayoría de los casos de aneurisma de aorta, la esternotomía media extendida es el abordaje de elección. En este exponemos la aorta ascendente, el arco y la zona proximal de la aorta descendente, hasta llegar a 5 cm debajo de la arteria subclavia izquierda, intentando movilizar y mantener la vena innominada.

Pese a que se prefiere llevar a cabo la reconstrucción de un aneurisma en dos tiempos con la técnica de la trompa de elefante congelada, algunos cirujanos, ante patología extensa de la aorta descendente usan un abordaje más invasivo que consiste en realizar una toracoesternotomía bilateral, la cual, aunque permita mayor exposición del campo quirúrgico, acarrea complicaciones postquirúrgicas en la función pulmonar. (1,21)

b) Parada circulatoria
La cirugía de arco implica seccionar la aorta transversalmente, esto conlleva la necesidad ineludible de una parada circulatoria, que no es más que parar la bomba de circulación extracorpórea implicando la no circulación de sangre a través de los vasos sanguíneos.

c) Enfriamiento y recalentamiento
Se reduce la temperatura de perfusión hasta los 28 °C, y se monitoriza la temperatura vesical y esofágica. Para proteger de daños irreparables, tanto enfriar como calentar la sangre requiere de tiempo, no pudiéndose sobrepasar la diferencia en 28 °C entre la temperatura del paciente y la de la máquina de agua.

d) Material del injerto y técnica de anastomosis:
En términos generales la cirugía de aneurisma de aorta consiste en la excisión del segmento afecto y su sustitución por un injerto de dacron. Los troncos supraaórticos se reimplantan individualmente o en isla. (1)

e) Protección miocárdica:
La cardioplejia es la solución empleada para proteger el corazón. En caso de cirugía de aorta empleamos la vía retrógrada a través del seno coronario o anterógrada a través de los ostiums coronarios. Existen muchos tipos de cardioplejia, pero todas tienen un objetivo en común que es el de conseguir una asistolia a partir de la infusión de dosis de potasio entre 15mEq – 40mEq. (1,22)

f) Prevención de paraplejía:
Aunque este tipo de alteración no es común en aneurisma de aorta torácica, debemos tomar medidas de precaución especialmente ante abordaje de aorta torácica descendente. Las medidas preventivas incluyen las citadas anteriormente como la hipotermia corporal que otorga protección cerebroespinal, a la vez que drenaje del líquido cefalorraquídeo y la perfusión distal, manteniendo una presión entre 80-100 mmHg. En estos procedimientos monitorizamos los potenciales evocados somatosensoriales (SSEP) y motores (MEP), sobre todo para confirmar la estabilidad de las señales al sacrificar gradualmente los vasos
intercostales (1). Ante cualquier deterioro visible por parte de MEP o SSEP debemos aumentar la perfusión medular, drenando el LCR si la presión supera los 10 mmHg o incrementar la presión arterial media por encima de los 80 mmHg (13).

g) Control de la hemorragia
El control en estas cirugías es llevado a cabo con antifibrinolíticos como el ácido tranexámico. Aún así, en cirugías con parada circulatoria hipotérmica mayor a 30 minutos o bypass cardiopulmonar mayor a 3 horas es muy probable que necesitemos transfusiones de factores de coagulación (1).

2.8.2.2 Técnicas de protección cerebral

a) Parada circulatoria hipotérmica
Amplia cantidad de estudios han demostrado la eficacia de este procedimiento a la hora de conseguir una buena protección cerebral. Aun así, a lo largo de los años han surgido controversias con respecto al daño que podría ocasionar al flujo cerebral, en el que daría lugar a una reducción mantenida de flujo cerebral local o globalmente, llevando a la aparición de una clínica característica denominada síndrome disfuncional neurológico temporal. Se observó que este tipo de alteración estaba en íntima relación con la duración de la parada circulatoria hipotérmica, por este motivo los investigadores se centraron en la asociación óptima entre la duración del proceso y la temperatura a la que se ejecuta. Para ello han desarrollado el coeficiente de temperatura Q, el cual refleja el índice de reducción del consumo de oxígeno del metabolismo cerebral (cerebral metabolic rates of oxygen consumption-CMRO2) por cada intervalo de 10 ºC.

Pese a no haber sido demostrado en su totalidad, la mayoría de los centros plantean el uso de corticoesteroïdes de 2 a 8 horas previas al bypass cardiopulmonar (BCP) y parada circulatoria hipotérmica (PCH), con el posible objetivo de reducir las resistencias cerebrovasculares y mejorar el flujo cerebral, el metabolismo de oxígeno post PCH, la complianza pulmonar y el gradiente alveoloarterial. Estos beneficios se podrían explicar por la alteración de síntesis de novo de proteínas a nivel de ARNm y la inhibición de la adhesión molecular en las células endoteliales, teniendo un impacto al paso de leucocitos a las zonas de lesión.

En la práctica, la parada circulatoria se inicia con el proceso de enfriamiento. Por último, se lleva a cabo el recalentamiento, que como ya se ha citado, se prefiere realizarlo gradualmente por el periodo vulnerable de recuperación cerebral en la que nos encontramos, para así reducir la probabilidad de que la demanda de oxígeno supere al suministro en el intervalo crítico de vasoconstricción cerebral post PCH. (1,17)

b) Perfusión cerebral selectiva:
En un estudio multicéntrico, Di Eusanio demostró definitivamente el beneficio que aportaba la perfusión cerebral selectiva (PCS) en la reducción de disfunción neurológica temporal y permanente. Esta disfunción permanente consiste en eventos embólicos por desprendimiento de placas de ateroma de las ramas del cayado, o por hipoperfusión y déficit
de oxígeno, así como por embolia aérea entre otros. Este riesgo de embolización puede ser minimizado usando un periodo breve de parada circulatoria hipotérmica para disecar individualmente las ramas braquiocefálicas, y posteriormente anastomosarlas a un injerto vascular trifurcado preformado, iniciando con la arteria subclavia izquierda o la innominada.

La perfusión cerebral selectiva hipotérmica es administrada con un flujo de 600-1000 cc/min para mantener presiones entre 40-60 mmHg. (1)

c) **Perfusión retrógrada cerebral:**
Diferentes estudios defienden que esta técnica facilita la eliminación de restos embólicos al ir en sentido contrario a la circulación, otorga flujo para mantener el metabolismo cerebral e induce hipotermia cerebral. Pese a ello no se ha podido demostrar drásticamente estas tres funciones por controversias en otras investigaciones.

Hoy en día no se observa un uso rutinario de este procedimiento, aunque algunos cirujanos lo emplean a la hora de realizar la parada circulatoria con el objetivo de eliminar restos embólicos que puedan localizarse en los vasos cerebrales.

A través de la vena cava superior se perfunde sangre oxigenada a una velocidad de 800-1000cc/min para después pasar a un ritmo de 100-500cc/min, intentando mantener presiones entre 15-20 mmHg de la cava superior. (1)

2.8.2.2.3 Intervención: breve descripción

A través de esternotomía media tenemos abordaje al mediastino. Primeramente, disecamos los troncos supraaórticos. Realizamos las bolsas para posteriormente canular y conectar al paciente a la máquina de circulación extracorpórea. Se canula la aorta ascendente y se realiza drenaje venoso a través de una canulación atricava.

A continuación, procedemos a enfriar al paciente hasta la temperatura óptima. Una vez alcanzada dicha temperatura y administrados los corticoides, ponemos al paciente en posición de Tren de Lembourg, clampamos los troncos supraaórticos y administramos cardioplejia hemática retrógrada.

Seccionamos la aorta transversalmente y canulamos selectivamente el tronco braquiocefálico y la arteria carótida izquierda para administrar perfusión cerebral anterógrada. A continuación, realizamos la anastomosis distal del tubo de dacron con la aorta torácica descendente.

La técnica híbrida corresponde a la combinación de la cirugía abierta convencional y el uso de injertos endovasculares. En caso de realizar una técnica híbrida y de emplear una prótesis híbrida como por ejemplo la E-vita Open o la Thoraflex, el stent protésico lo dejaremos alojado en la aorta torácica descendente y suturaremos el collar de esta a la aorta torácica descendente. Con el fin de minimizar la parada circulatoria sistémica podemos restablecer la perfusión visceral canulando nuestro tubo de dacron y clampándolo, así reasumimos el flujo distal mientras realizamos las anastomosis de los troncos supraaórticos. Estos se reanastomosan individualmente o en isla.
Una vez anastomosados los troncos clampamos nuestro injerto proximalmente para realizar una protección sistémica y cerebral de manera conjunta. Y procedemos a terminar la cirugía con la anastomosis proximal de nuestro injerto con la aorta ascendente. (1,13)

2.8.2.2.4 Nuevos horizontes: tratamiento endovascular

Como comentamos anteriormente, el abordaje habitual y el tratamiento quirúrgico indicado para esta patología es el abierto, sin embargo, existe un porcentaje de pacientes no susceptible de reparación quirúrgica abierta por riesgo quirúrgico, por sus múltiples comorbilidades. En estos pacientes encontramos una alternativa reparadora mediante cirugía endovascular. Esta consistirá en sellar la aorta enferma con una prótesis endovascular. En función de la prótesis realizaremos las derivaciones de los troncos supraaórticos oportunas, esto es, en caso de una prótesis con una rama para el tronco braquiocefálico, antes de implantar la endoprótesis derivaremos las arterias carótida izquierda al tronco braquiocefálico y la subclavia izquierda a la carótida izquierda. En caso de una prótesis con doble rama solo necesitaremos derivar la sangre de la subclavia izquierda a la carótida izquierda.

Con esta técnica la mortalidad quirúrgica es alrededor del 1%. La tasa de ACV varía según los estudios entre un 1.8 y el 11%. Como vemos cada técnica tiene sus ventajas e inconvenientes, por lo que el uso de una u otra debe ser individualizada a cada paciente. (13)

2.8.3 Seguimiento tras intervención aórtica torácica

En pacientes sometidos a TEVAR (tratamiento endovascular de la aorta torácica) o reparación quirúrgica, el seguimiento debe iniciarse un mes después de la intervención, para posteriormente monitorizarlo a los 6 meses y 12 meses y a partir de ahí anualmente. En pacientes con pruebas de imágenes rigurosamente normales se podría ampliar el plazo a cada dos años. Mientras que aquellos bajo indicación inicial de tratamiento médico se les debe citar en unos 6 meses para reevaluar las indicaciones quirúrgicas.

- Seguimiento clínico:
 Es necesario un seguimiento clínico meticuloso y regular, en el que controlemos la hipertensión, ya que se encuentra elevada en más del 50% de los pacientes. Con respecto a síntomas clínicos de patología de aorta torácica, ya hemos comentado que son bastante inespecíficos y asintomáticos durante una larga estancia de la enfermedad, aun así, podemos deducir una progresión de esta ante una ronquera o disfagia de nueva aparición por la compresión que realiza el propio aneurisma o hasta disfonía si se ve afectado el nervio laríngeo recurrente. En cuanto a la complicación de disección aórtica en el momento agudo, los síntomas nos esclarecen bastante la etiología ya que se trata de un dolor brusco retroesternal irradiado a zona interescapular, pero en momentos iniciales solo podríamos crear hipótesis ante síndromes de baja perfusión como la claudicación o un dolor abdominal umbilical.
- **Imagen tras reparación endovascular de la aorta torácica:**

Para el seguimiento post TEVAR la técnica de elección es el TAC. Se podría utilizar la RMN en un futuro, pero tiene ciertas contraindicaciones dependiendo de uso de acero en prótesis o marcapasos. Si después del procedimiento se confirma radiológicamente una estabilidad sin fugas durante 24 meses, se podría ampliar el seguimiento a cada dos años. No obstante, el seguimiento clínico de los síntomas y de la medicación deben mantenerse en una forma anual. En cuanto al TEVAR en patología de disección aórtica deben someterse a controles anuales por la posibilidad de progresión de la enfermedad desde la luz falsa de la aorta abdominal (5).
3 JUSTIFICACIÓN DEL TEMA: INTRODUCCIÓN

La patología compleja de arco aórtico (aneurismas, disecciones…) suele asociarse a alteraciones de las porciones de la aorta descendente (10). Como la aorta descendente es posterior al origen de la arteria subclavia izquierda, un abordaje a través de una esternotomía media usualmente no conseguía exponer el campo quirúrgico necesario, y es por eso que durante estos últimos 30 años, el método de elección terapéutico consistía en una aproximación en dos tiempos: el primero para tratar la porción de la aorta anterior a la ASI y el segundo para tratar la porción distal (23,24), la cual conllevaba un alto riesgo de morbilidad y mortalidad (25).

A raíz de ello se ha desarrollado una técnica, denominada, trompa de elefante congelada que posibilita tratar la patología de aorta torácica con una sola aproximación vía esternotomía media (25). La trompa de elefante congelada combina la cirugía abierta de reconstrucción del arco aórtico y la exclusión endovascular con injerto de la aorta descendente (24). Es a su vez un concepto diseñado para posibilitar una reintervención o segunda operación endovascular de la aorta descendente, ya que la prótesis facilita zonas de anclajes con mayor seguridad y menor número de complicaciones que una aorta patológica (13,24). Pese a estos beneficios comentados, debemos tener en cuenta que se trata de una cirugía mayor en una zona compleja de la aorta que requiere bypass cardiopulmonar prolongado, parada circulatoria hipotérmica con perfusión cerebral selectiva y en muchos casos reducción de la perfusión distal (23).

Con respecto a las últimas evidencias se han establecido diversos avances en la selección idónea de pacientes, el tamaño del injerto a utilizar, las zonas de anclaje, el material usado y las técnicas de protección cerebromedular. Todo ello ha sido posible gracias a la base de datos internacional de registro E-vita Open (IEOR) que entre 2005 y 2018 ha recogido y analizado resultados de múltiples países con esta técnica quirúrgica.

Este estudio describe una serie de casos tratados por patología aneurismática del arco aórtico con la prótesis híbrida E-vita Open en el hospital Álvaro Cunqueiro.

4 OBJETIVOS

El objetivo es describir una serie de pacientes intervenidos por patología aneurismática del arco aórtico con extensión a la aorta descendente, a través de una técnica quirúrgica híbrida con la prótesis E-vita Open en el HAC.

Como objetivos secundarios estudiaremos los resultados postoperatorios y las complicaciones asociadas a esta técnica (FET) con la prótesis híbrida E-vita Open, tanto a corto plazo como a largo plazo.
5 MATERIAL Y MÉTODOS

5.1 TIPO DE ESTUDIO

Se trata de un estudio observacional descriptivo retrospectivo a partir de pacientes que han sido sometidos a la técnica quirúrgica, trompa de elefante congelada, con E-vita Open en el C.H.U. Álvaro Cunqueiro de Vigo.

5.2 SUJETOS A ESTUDIO

Serie de 5 pacientes del C.H.U Álvaro Cunqueiro de Vigo, con patología aneurismática del arco aórtico sometidos a la terapia quirúrgica, trompa de elefante congelada, con prótesis híbrida E-vita Open entre los años 2007-2018. En este estudio observacional retrospectivo se recogen datos relevantes de las historias clínicas de los pacientes, para realizar un análisis descriptivo de los resultados que hemos obtenido en cada uno de ellos.

5.3 RECOGIDA DE VARIABLES

Los datos empleados han sido recogidos a partir de la revisión de las historias clínicas de los respectivos pacientes de nuestro centro. Para ello se ha utilizado el programa IANUS.

5.4 VARIABLES A ESTUDIO

A partir de una búsqueda retrospectiva se identificaron todos los pacientes con aneurisma de aorta torácica con afectación del arco aórtico y aorta descendente sometidos a la cirugía híbrida con la prótesis E-vita Open entre los años 2007 y 2018. Estudiamos los resultados quirúrgicos y postoperatorios, así como el seguimiento de los pacientes a corto y largo plazo.

5.5 COMITÉ DE ÉTICA

Cumplimiento de Normas de Buena Práctica Clínica, Declaración de Helsinki, Convenio de Oviedo, así como normativa de protección de datos, manejo de historia clínica y otra normativa de aplicación según el tipo de estudio. El estudio ha sido realizado conforme a las normas del CEIM local.
6 RESULTADOS

6.1 CARACTERÍSTICAS DE LOS PACIENTES

La mediana de edad de los pacientes fue de 71 años, siendo el 100% varones (tabla 1). Todos presentaban una etiología aneurismática, a la vez que todos estaban diagnosticados previamente de HTA. El 60% de los pacientes padecían patologías como dislipemia o EPOC mientras que el tabaquismo se encontraba en un porcentaje alto (60%). Con respecto a la patología vascular, el 40% sufría de enfermedad de las arterias coronarias, el 60% de alguna patología arterial, en cambio ninguno de nuestros pacientes estaba diagnosticado de enfermedad vascular periférica. Hemos de destacar también, que nuestros pacientes no habían sido intervenidos quirúrgicamente por patología cardíaca. Y, por último, citar que todos ellos han sido intervenidos de manera electiva.

Tabla 1: aspectos demográficos

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mediana o porcentaje</th>
<th>Total de casos (n=5) o rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>71</td>
<td>66-79</td>
</tr>
<tr>
<td>Varón</td>
<td>100%</td>
<td>N=5</td>
</tr>
<tr>
<td>Etiología aneurisma</td>
<td>100%</td>
<td>N=5</td>
</tr>
<tr>
<td>Prioridad electiva</td>
<td>100%</td>
<td>N=5</td>
</tr>
<tr>
<td>HTA</td>
<td>100%</td>
<td>N=5</td>
</tr>
<tr>
<td>DM</td>
<td>0%</td>
<td>N=0</td>
</tr>
<tr>
<td>DLP</td>
<td>60%</td>
<td>N=3</td>
</tr>
<tr>
<td>Tabaquismo</td>
<td>60%</td>
<td>N=3</td>
</tr>
<tr>
<td>EPOC</td>
<td>60%</td>
<td>N=3</td>
</tr>
<tr>
<td>IR crea>1,5</td>
<td>20%</td>
<td>N=1</td>
</tr>
<tr>
<td>Diálisis preoperatoria</td>
<td>20%</td>
<td>N=1</td>
</tr>
<tr>
<td>ACV previo</td>
<td>0%</td>
<td>N=0</td>
</tr>
<tr>
<td>CAD</td>
<td>40%</td>
<td>N=2</td>
</tr>
<tr>
<td>Patología arterial</td>
<td>60%</td>
<td>N=3</td>
</tr>
<tr>
<td>Patología vascular periférica</td>
<td>0%</td>
<td>N=0</td>
</tr>
<tr>
<td>CCA previa</td>
<td>0%</td>
<td>N=0</td>
</tr>
</tbody>
</table>
6.2 INTERVENCIÓN

6.2.1 Técnica quirúrgica

A continuación, describimos la técnica estándar para realizar la sustitución de aorta ascendente y arco aórtico con prótesis híbrida E-vita Open en nuestro centro. Realizamos una esternotomía completa y disecamos los troncos supraaórticos. Realizamos las bolsas para posteriormente canular y conectar al paciente a la bomba de circulación extracorpórea. Posteriormente, procedemos a enfriar al paciente hasta alcanzar una hipotermia profunda con una temperatura de 28 ºC. Una vez alcanzada dicha temperatura seccionamos la aorta transversalmente y canulamos selectivamente el tronco braquiocefálico y la arteria carotida izquierda para administrar perfusión cerebral anterógrada bilateral. A continuación, alojamos la prótesis E-vita Open en la aorta torácica descendente y suturaremos el collar de esta a la aorta torácica descendente. Con el fin de minimizar la parada circulatoria sistémica podemos restablecer la perfusión visceral canulando nuestro tubo de dacron y clampándolo, así reasumimos el flujo distal mientras realizamos las anastomosis de los troncos supraaórticos, de forma individual o en isla. Una vez anastomosados los troncos clampamos nuestro injerto proximalmente para realizar una protección sistémica y cerebral de manera conjunta. Y procedemos a terminar la cirugía con la anastomosis proximal de nuestro injerto con la aorta ascendente. Tras ello, se procede a la desconexión de la CEC y la neutralización de la heparina con protamina.

6.2.2 Resultados intraoperatorios

Nuestros cinco pacientes han sido sometidos a una protección cerebral anterógrada tras la parada circulatoria hipotérmica (Tabla 2). El tiempo de circulación extracorpórea (CEC) ha tenido una mediana de 228 minutos, con una diferencia máxima entre pacientes de 40 minutos. En cuanto al tiempo de clampaje, hemos obtenido una mediana de 112 minutos. Con respecto al tiempo de isquemia visceral la mediana fue de 56 minutos. Por último, destacar que no ha habido mortalidad intraoperatoria en ninguno de nuestros pacientes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mediana</th>
<th>Total de casos (n=5) o rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo CEC</td>
<td>228 min</td>
<td>222 min-262 min</td>
</tr>
<tr>
<td>Tiempo de clampaje</td>
<td>112 min</td>
<td>72 min-238 min</td>
</tr>
<tr>
<td>Tiempo de isquemia visceral</td>
<td>56 min</td>
<td>43 min-93 min</td>
</tr>
<tr>
<td>Perfusión cerebral</td>
<td>anterógrada</td>
<td>N=5</td>
</tr>
<tr>
<td>Mortalidad intraoperatoria</td>
<td>No</td>
<td>N=5</td>
</tr>
</tbody>
</table>
6.2.3 Estancia hospitalaria

La mediana de la estancia hospitalaria de los cinco pacientes es de 25 días. La diferencia entre ellos radica por las complicaciones que han surgido tras la cirugía como comentaremos en la tabla 3.

6.3 Seguimiento de los pacientes

Nuestros datos (tabla 3) mostraron que la mortalidad hospitalaria y la mortalidad a 30 días coincidían en los mismos pacientes, por complicaciones durante la estancia hospitalaria. Presentamos en ambas variables anteriores tres casos de mortalidad. Mientras que los dos pacientes restantes han sido dados de alta, llegando igualmente ambos a su posterior defunción. Uno de ellos por causa respiratoria, 6 años más tarde, en cambio con respecto al segundo el motivo de muerte ha sido por patología oncológica un año después.

En cuanto a las complicaciones hospitalarias, los 5 pacientes han tenido patologías con distintos grados de severidad, reflejados en la tabla 3.

Cuatro pacientes han sido reintervenidos con intención de revisar el sangrado postoperatorio. En cuanto a las complicaciones cardíacas, dos pacientes precisaron soporte hemodinámico en los primeros días postoperatorios.

Con respecto a la patología pulmonar, dos pacientes recibieron antibioterapia intravenosa por infección postoperatoria y tres pacientes tuvieron que ser sometidos a reintubación orotraqueal.

En relación a la patología cerebrovascular un paciente ha sufrido una lesión medular permanente, mientras que otro una lesión transitoria.

Uno de los pacientes presentó una isquemia visceral, mientras que en el ámbito de la patología renal hemos tenido un caso con necesidad de terapia sustitutiva renal en los primeros días postoperatorios. Por último, como complicación a destacar, la disfonía en un paciente debido a la lesión del nervio laríngeo recurrente a la hora de exponer el campo quirúrgico.

Las causas de muerte de los pacientes hospitalizados han sido: infección respiratoria grave, insuficiencia respiratoria grave y muerte encefálica por lesión cerebro-medular permanente. En cambio, los dos pacientes que teníamos en seguimiento han fallecido por causa respiratoria y oncológica respectivamente. Finalmente, destacar que la mediana de supervivencia al alta de nuestros 2 pacientes ha sido de 45,5 meses.
Tabla 3: datos postquirúrgicos

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mediana o porcentaje</th>
<th>Total de casos (N=5) o rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortalidad hospitalaria</td>
<td>60%</td>
<td>N=3</td>
</tr>
<tr>
<td>Mortalidad 30 días</td>
<td>60%</td>
<td>N=3</td>
</tr>
<tr>
<td>Complicación hospitalaria</td>
<td>100%</td>
<td>N=5</td>
</tr>
<tr>
<td>Reintervención (sangrado)</td>
<td>80%</td>
<td>N=4</td>
</tr>
<tr>
<td>Cardíaca:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necesidad de apoyo farmacológico</td>
<td>40%</td>
<td>N=2</td>
</tr>
<tr>
<td>Pulmonar:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infección respiratoria</td>
<td>40%</td>
<td>N=2</td>
</tr>
<tr>
<td>Reintubación</td>
<td>60%</td>
<td>N=3</td>
</tr>
<tr>
<td>Cerebrovascular:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déficit temporal</td>
<td>20%</td>
<td>N=1</td>
</tr>
<tr>
<td>Déficit permanente</td>
<td>20%</td>
<td>N=1</td>
</tr>
<tr>
<td>Médula (permanente)</td>
<td>20%</td>
<td>N=1</td>
</tr>
<tr>
<td>Diálisis</td>
<td>40%</td>
<td>N=2</td>
</tr>
<tr>
<td>Isquemia visceral</td>
<td>20%</td>
<td>N=1</td>
</tr>
<tr>
<td>Coagulopatía</td>
<td>20%</td>
<td>N=1</td>
</tr>
<tr>
<td>Disfonía</td>
<td>20%</td>
<td>N=1</td>
</tr>
<tr>
<td>Defunción</td>
<td>100%</td>
<td>N=5</td>
</tr>
<tr>
<td>Supervivencia al alta</td>
<td>45,5 meses</td>
<td>19 meses-78 meses</td>
</tr>
</tbody>
</table>

DISCUSIÓN

Según las guías clínicas de 2014 (5), el abordaje híbrido es el tratamiento de elección en patología del arco aórtico. Combina una sustitución abierta del arco aórtico con una reparación endovascular de la aorta descendente con un potencial descenso en cuanto a mortalidad y morbilidad postquirúrgica (25). Dependiendo de la extensión de la alteración de la aorta tenemos distintos métodos de abordaje híbrido, como la transposición de los vasos supraaórticos seguido de la terapia endovascular (TEVAR) o la sustitución total del arco aórtico seguido de la técnica de trompa de elefante congelada (FET) (5). Con lo que a nuestro estudio respecta se ha llevado a cabo la técnica FET con prótesis E-vita Open y sustitución total del arco aórtico en la totalidad de nuestros pacientes.
Este diseño híbrido ha permitido realizar la cirugía en una sola aproximación y reducir el tiempo de circulación extracorpórea y de parada circulatoria hipotérmica, permitiendo una mejor protección cerebral con la ayuda de la perfusión cerebral selectiva anterógrada. Otro aspecto a su favor es la facilidad que otorga para las zonas de anclaje ante una reintervención por extensión de la patología, distalmente a la prótesis endovascular. Existen dos tipos de prótesis híbrida; la E-vita Open y la Thoraflex. Teniendo ambas, ventajas e inconvenientes una con respecto a la otra, por lo que no hay una indicación clara de cual escoger, sino que se realiza de forma individual en cada paciente. (13)

En cuanto al análisis demográfico, hemos incluido en nuestro estudio 5 pacientes varones con una mediana de edad de 71 años desde nuestro centro, C.H.U Álvaro Cunqueiro de Vigo. Mientras, en el estudio multicéntrico de Tsagakis et al (24) se incluyeron un 68% de pacientes varones con una edad media de 61,6 ± 12 y en el estudio español de Maroto et al (25), un 66% de pacientes varones con una edad de 63 ±12.1. Como observamos la mayor incidencia de patología en varones de edad avanzada se ve reflejada en diversos estudios.

La etiología concreta, como indicación quirúrgica entre nuestros pacientes, ha sido la patología aneurismática, en cambio también puede emplearse esta prótesis para tratar las disecciones aórticas agudas o crónicas al igual que otra patología compleja de aorta (24).

Los antecedentes se han establecido en relación a la mayor cormobilidad que suponen tanto quirúrgica como post-cirugía. Si nos centramos en la DM, la dislipemia o el tabaco, sabemos que suponen un riesgo elevado de ateroesclerosis en la aorta, y esto a su vez aumenta el riesgo de procesos embólicos durante la cirugía por el propio manejo de la zona afectada (5). La HTA de los 5 pacientes se reafirmó como una de las principales causas degenerativas en la patología del arco aórtico (1). Por otra parte, se incluyeron estas alteraciones: pulmonares como el EPOC con afectación del 80% de los pacientes, un paciente en diálisis, enfermedad coronaria (2 de 5 pacientes) y enfermedad vascular periférica de 3 pacientes (60%). En cambio en el estudio de Tsagakis et al (24), podemos destacar un 18% en enfermedad coronaria, un 8% en insuficiencia renal y un 21% en EPOC. Por último, hemos de mencionar que en esta serie de casos los pacientes no habían recibido una cirugía cardíaca previa, mientras que en ambos estudios existía un porcentaje nada desdeñable del 24% (24) y 19,6% (25) respectivamente.

Con respecto a los resultados intraoperatorios, no se reportaron casos de mortalidad durante la cirugía, no pudiendo compararlo con ambos estudios por carecer estos de esta información. Uno de los aspectos más importantes de la cirugía es la protección cerebral, la cual se lleva a cabo a partir de la perfusión cerebral selectiva. Con respecto a ello, hemos escogido la perfusión selectiva cerebral anterógrada bilateral, en los 5 pacientes, siendo muy similar a lo realizado por el estudio de Tsagakis (24), con el 94% de casos bajo esta técnica. En nuestro centro la mediana de tiempo de CEC fue de 228 minutos, la de clampaje de 112 minutos y la de isquemia visceral de 56 minutos. Pese a vernos limitados en el número de pacientes se han conseguido unos tiempos más reducidos que la media establecida por el registro IEOR (24), en el que se obtuvo; 234 ± 72 minutos para CEC, 138 ±55 para el clampaje y 58±27 minutos en la isquemia visceral.

En este apartado vamos a comentar los resultados postquirúrgicos, destacando una mortalidad hospitalaria y a 30 días de 3 pacientes sobre 5 (60%) en nuestro centro, un porcentaje más elevado que el estudio multicéntrico (24) con un 15% y 12% respectivamente o el español (25)
con un 7,1%. Esta diferencia podría ser explicada por una mayor morbilidad previa de nuestros pacientes, siempre teniendo en cuenta la limitación de tener una N<30. En cuanto a la reintervención por sangrado hemos tenido que someter a cirugía a 4 pacientes (80%), mientras que ambos estudios se encuentran en porcentajes de 10-13%. Por último, citar la afectación cerebromedular de nuestro centro, en el que hemos reportado un caso de cinco con déficit permanente y otro con déficit temporal con progresión adecuada. En cuanto a los dos estudios que estamos citando (24,25), han expresado unos porcentajes entre el 3-5% de déficits tanto temporales como permanentes.

En conjunto y pese a tener una limitación en el número de casos clínicos, hemos demostrado que la cirugía de trompa de elefante con la prótesis E-vita Open resulta beneficiosa ante patologías aneurismática de la aorta torácica descendente con extensión al arco aórtico, para el tratamiento de patología de arco aórtico. A su vez, destacar que la mortalidad elevada de nuestro estudio se ha visto sesgada por una mayor comorbilidad y el escaso número de pacientes.

El propio estudio multicéntrico determina esta cirugía como Gold Standard en el tratamiento de patología multisegmentaria de la aorta torácica, siendo la referencia de comparación ante cualquier técnica menos invasiva que pueda aparecer en los siguientes años (24).

8 CONCLUSIÓN

La patología compleja del arco aórtico comprende una serie de enfermedades como disecciones de aorta, hematoma intramural, pseudoaneurismas o aneurismas, que cursan en la mayoría de los casos de forma asintomática, dificultando su diagnóstico clínico. En el caso de establecer el diagnóstico antes del evento agudo de emergencia, las pruebas de imágenes se utilizan principalmente para observar la evolución del paciente y determinar en que momento estaría indicado pasar de tratamiento médico conservador a quirúrgico, según las guías clínicas de ESC. Tenemos múltiples técnicas quirúrgicas en la reconstrucción del arco aórtico, pero la alta frecuencia con la que se asocia a la aorta torácica descendente hace imprescindible el uso de diseños híbridos con los que reducir las complicaciones embólicas y mejorar la protección cerebral.

La técnica quirúrgica trompa de elefante con la prótesis E-vita Open, supone un diseño híbrido de elección para patologías complejas, como el aneurisma, del arco aórtico con extensión a la aorta descendente. Se trata de una combinación de cirugía abierta del cayado aórtico y endovascular de la porción distal de la aorta torácica.

Nuestros resultados obtenidos a partir de 5 pacientes del C.H.U Álvaro Cunqueiro de Vigo, sometidos a este tratamiento híbrido en los últimos 15 años por patología aneurismática del arco aórtico y aorta descendente, son esperanzadores. Por último, la posibilidad de reintervención, al ofrecer zonas de anclaje en la prótesis con mucho menor riesgo que la propia pared arterial, permiten explicar la razón de que esta técnica quirúrgica sea el tratamiento de elección en patologías multisegmentarias de la aorta torácica que englobe al arco aórtico.
9 BIBLIOGRAFÍA

