Caracterización de las proteínas de semilla de *Pinus pinea* L.

J. G. ÁLVAREZ GONZÁLEZ

Departamento de Ingeniería Agroforestal y Producción Vegetal
Escuela Politécnica Superior de Lugo. Universidad de Santiago de Compostela
Campus Universitario. 27002 Lugo

(Recibido, febrero de 1997. Aceptado, marzo de 1997)

Resumen

La fracción proteica mayoritaria de la semilla de *Pinus pinea* L. es la de las glutelinas (62%). Su comportamiento electrolítico y sus características químicas indican que se trata de proteínas del tipo 11S similares a las descritas en otras coníferas con la salvedad de la no aparición en condiciones no reductoras de la unidad básica constituida por el dímero 21-35 kD. La fracción de globulinas también representa un alto porcentaje (29%) y está constituida por dos tipos de proteínas similares a las encontradas en *Pinus pinaster* Ait.: los componentes de 23, 26 y 47 kD se corresponden con las globulinas 7S y el grupo de 16-19 kD con las globulinas 2S de dicha especie. Desde el punto de vista alimentario el piñón es un alimento rico en proteínas pero con deficiencias en los aminoácidos esenciales lisina y metionina; en este sentido es equivalente a la mayoría de las semillas de especies agrícolas usadas en alimentación humana.

Palabras clave: *Pinus pinea* L., semillas, proteínas de reserva.

Abstract

Pinus pinea L. store glutelins as major seed proteins (62%). Their electrophoretic behaviour and chemical properties indicate that they are homologous with the 11S proteins of other conifers, except that don’t show in no reduced conditions the dimer of 21-35 kD. The globulin fraction also represents a high percentage (29%) and two classes of protein similar to *Pinus pinaster* Ait. have been separated from this fraction: the monomers of 23, 26 and 47 kD agree with the 7S globulins and the group of 16-19 kD with the 2S globulins of *Pinus pinaster*. The seed is a rich protein food but has relatively low levels of Lys and Met; in this respect is similar to the majority of agricultural seeds used in human feeding.

Key words: *Pinus pinea* L., seeds, storage proteins.

INTRODUCCIÓN

Tradicionalmente las proteínas de semilla se han clasificado según su solubilidad (OSBORNE, 1924; SHEWRY & MIFLIN, 1985). Las globulinas son las proteínas de reserva de la mayoría de las plantas angiospermas, siendo mayoritarios dos tipos, las globulinas 11S o leguminas y las
globulinas 7S o vicilinas (DERBYSHIRE et al., 1976; CASEY et al., 1986). Análisis de las secuencias de esas proteínas o de los genes que las codifican sugieren que las globulinas provienen de 2 genes ancestrales presentes al principio de la evolución de las angiospermas y que dieron lugar a las formas modernas que codifican esas proteínas (BORROTO & DURE, 1987; CASEY et al., 1986).

Los estudios sobre proteínas de reserva de semilla en las gimnospermas son aún escasos. En algunas especies de Pináceas, el análisis electroforético ha sugerido la presencia de proteínas similares a las globulinas 11S de las angiospermas (MISRA, 1994), lo que ha sido confirmado en los casos de Pseudotsuga menziesii Mir. y Pinus pinaster Ait. a partir de las secuencias de cDNA y proteína respectivamente (ALLONA et al., 1992; LEAL & MISRA, 1993). Sin embargo, la determinación de la estructura oligomérica de estas proteínas no ha sido posible ya que su extracción requiere el tratamiento con agentes disociantes, lo que no sucede con las globulinas 11S de angiospermas si exceptuamos las del arroz (ZHAO et al., 1983).

Existen evidencias de que las Pináceas tienen proteínas similares a las globulinas 7S. En el caso de P. pinaster se han obtenido datos de secuencia y se ha descrito su estructura oligomérica (ALLONA et al., 1994a); además, se ha caracterizado un cDNA correspondiente a una proteína de reserva de Picea glauca Voss que tiene una gran similitud con las globulinas 7S de angiospermas (NEWTON et al., 1992). Estudios inmunológicos indican la presencia de proteínas 11S y 7S en especies de otras familias de coníferas (ALLONA et al., 1994b; MISRA & GREEN, 1994).

En angiospermas se ha descrito un tercera clase de proteínas de semilla, a veces consideradas como proteínas de reserva, que se denomina genéricamente como proteína 2S. Aunque, en general, menos abundantes que las globulinas 11S y 7S, en algunas especies llegan a constituir entre el 10 y el 30% de la proteína total de la semilla. Proteínas con características estructura-

les similares, aunque no existen datos sobre similitud de secuencia, han sido descritas en P. pinaster (ALLONA et al., 1994c).

En el presente trabajo se muestra el fraccionamiento y la caracterización preliminar de las proteínas de reserva de la semilla de Pinus pinea L. Este estudio, además de ampliar el conocimiento sobre el género Pinus, incide en la calidad de la proteína de piñón desde un punto de vista alimentario.

MATERIAL Y MÉTODOS

Material biológico

Se emplearon piñones de Pinus pinea de las siguientes procedencias: Valladolid, Alcalá de Guadaira (Sevilla), Algeciras (Cádiz) y Madrid.

Extracción de proteínas

Se utilizaron en todos los casos semillas maduras. Las cubiertas y el embrión fueron eliminados antes de la extracción. Los megagametofitos fueron triturados en mortero con éter dietílico (20:1, v/w; 1h; 4°C), después se extrajeron con acetona (20:1, v/w; 1h; 4°C) para eliminar los lípidos restantes. Las trazas de acetona se eliminan por vacío y la harina seca se almacenó a 20°C.

Para la extracción de las fracciones proteicas se empleó el método de KOIE & NIELSEN (1977) con algunas modificaciones (COLLADA et al., 1986). Alternativamente las glutelinas se extrajeron en las mismas condiciones pero en ausencia de agente reductor (2-mercaptopetanol).

Métodos electroforéticos

La electroforesis en geles de poliacrilamida en presencia de dodecilsulfato sódico (SDS-PAGE) se realizó siguiendo el método de LAEMMLI (1970) y los geles se tiñeron por inmersión en azul de Coomassie G-250. El porcentaje de acrilamida empleado fue el 15% y se cargaron 25 µgr de glutelinas y 50 µgr de albúminas, globulinas y prolaminas.
Para el fraccionamiento bidimensional de las proteínas se empleó el método de O’FARRELL (1975). La primera dimensión es un electroenfoque con un 2% de anfolinas de intervalo de pH 3,5-10, un 5% de poliacrilamida y urea 6,25M en tubos (2,0 mm. x 13,0 mm.), a 800 V durante 3 horas y media. Las muestras fueron insertadas en el extremo ácido y las cargas empleadas fueron 200 µgr de albúminas y 100 µgr de globulinas y glutelinas. En el caso de las glutelinas la mezcla de polimerización contenía un 2% de Nonidet P-40 y el tiempo de enfoque fue de 21 horas. El gradiente de pH en la primera dimensión fue determinado según el método de DRYSDALE et al. (1971). La segunda dimensión consistió en una electroforesis con SDS (SDS-PAGE) con un 15% de acrilamida.

Métodos analíticos

El contenido total de nitrógeno de las harinas se determinó mediante un Kjeldahl semimicro siguiendo el método de CHASE & WILLIAMS (1968).

El análisis de los aminoácidos de las distintas fracciones se obtuvo por derivatización con fenilsotiocianato y separación en fase inversa por cromatografía líquida de alta presión (HPLC) siguiendo el método de BIDLINGMEYER et al. (1984). La columna empleada fue una Ultrasphere ODS de 4,6 x 250 mm. a 40°C. La oxidación peróximica se realizó de acuerdo con el método descrito por HIRS (1967). Las muestras se hidrolizaron durante 24 y 48 horas a 110±1°C, usando HCl 5,7N, 0,1% de fenol.

RESULTADOS

Extracción de proteínas

El contenido en proteínas del megagametofito de *P. pinea* calculado a partir del contenido total en nitrógeno usando un factor de conversión de 6,25 es aproximadamente del 40%. Los resultados de la extracción secuencial de proteínas demuestran que las glutelinas son la fracción mayoritaria con un 62% del total de proteína extraída. Las albúminas suponen un 9% del total, y las globulinas un 29%. Las semillas carecen de prolaminas.

SDS-PAGE de las fracciones proteicas

El análisis de las diferentes fracciones proteicas obtenidas en la extracción secuencial mediante SDS-PAGE se muestra en la Fig. 1. Las albúminas presentan un modelo heterogéneo con una banda de gran intensidad en la zona de bajos pesos moleculares (<12,4 kD). El tratamiento reductor no modifica el esquema electroforético, aunque se observa una mayor movilidad en la zona de bajo peso molecular citada. Las globulinas muestran un pequeño número de componentes principales de 23, 26 y 47 kD cuya movilidad no varía al realizar la electroforesis en condiciones reductoras. Dentro de la misma fracción se observa una banda de aproximadamente 16-19 kD que se desdobla en polipéptidos de 7-12 kD en presencia de 2-ME, esto podría sugerir una posible estructura (α-β) formada por dos subunidades de diferente tamaño unidas por puentes disulfuro. Estas características, de confirmarse, serían similares a las de las globulinas 2S descritas en un gran número de angiospermas.

El modelo de las glutelinas bajo condiciones reductoras presenta tres bandas intensas de 46, 35, y 21 kD de peso molecular. Estos componentes se corresponden esencialmente con los descritos para otras especies de coníferas (MISRA, 1994). Sin embargo, si la extracción de las glutelinas y su electroforesis se realiza en condiciones no reductoras, el modelo se modifica drásticamente. Se detectan los componentes de 21 y 35 kD en baja proporción y aparece un elevado número de componentes de alto peso molecular (Fig. 1b). Estos cambios son similares a los descritos en las especies de coníferas previamente estudiadas, excepto que en éstas aparece en condiciones no reductoras una intensa banda de aproximadamente 55 kD correspondiente al dímero formado por los componentes de 21 y 35 kD ligados por puentes disulfuro; dímero que es la unidad básica de las proteínas 11S.
Fig. 1. (a) SDS-PAGE de las fracciones proteicas obtenidas en la extracción secuencial. (1), (3) Albúminas sin reducir y reducidas. (2), (4) Globulinas sin reducir y reducidas. (5) Prolaminas reducidas. (6) Glutelinas reducidas. (P) Patrones de peso molecular conocido. (b) SDS-PAGE de Glutelinas extraídas en condiciones no reductoras. (7) Glutelinas reducidas. (8) Glutelinas sin reducir. El porcentaje de acrilamida en todos los geles es del 15% y la carga de proteína es de 50 μgr para las albúminas, globulinas y prolaminas y de 25 μgr para las glutelinas. A la derecha de la figura se indican los pesos moleculares de los patrones en kD.

Electroforesis bidimensional de las fracciones proteicas

La separación bajo condiciones reductoras por electroenfoque seguido de electroforesis en geles de poliacrilamida de las albúminas, globulinas y glutelinas se muestra en la Fig. 2.

El mapa correspondiente a las albúminas es muy heterogéneo, apreciándose por encima de 20 polipéptidos con un amplio intervalo de tamaños y de puntos isoeléctricos. En contraste, el mapa proteico de las globulinas es mucho más simple. Los componentes de 23, 26 y 47 kD se muestran como manchas únicas, no presentando, por tanto, heterogeneidad de pI. Las bandas de 7-12 kD presentes en la SDS-PAGE, sí se han desdobladado en el fraccionamiento por electroenfoque. Los componentes de las glutelinas también son heterogéneos (Fig. 2c). Hay al menos 6 proteínas de 21 kD, otras 6 de 35 kD y 3 de 46 kD. Como ocurre en P. pinaster, estas proteínas presentan un amplio intervalo de puntos isoeléctricos (ALLONA et al., 1992).
Fig. 2. Fraccionamiento bidimensional obtenido por electroenfoque (pH 3.5-10) seguido de SDS-PAGE de (a) Albúminas reducidas. (b) Globulinas reducidas. (c) Glutelinas reducidas. Las cargas de proteína empleadas son de 200 µgr de albúminas y 100 µgr de globulinas y glutelinas y el porcentaje de acrilamida empleado en la segunda dimensión es del 15%.
Tabla I. Contenido en aminoácidos (mol / 100 moles de aminoácidos analizados) de las diferentes fracciones proteicas de la semilla de *P. pinea* (Trp no fue analizado)

<table>
<thead>
<tr>
<th>Aminoácido</th>
<th>Albúminas</th>
<th>Globulinas</th>
<th>Glutelinas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asx</td>
<td>8.1</td>
<td>7.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Thr</td>
<td>4.1</td>
<td>2.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Ser</td>
<td>6.8</td>
<td>6.9</td>
<td>7.1</td>
</tr>
<tr>
<td>Glx</td>
<td>20.3</td>
<td>22.5</td>
<td>17.7</td>
</tr>
<tr>
<td>Pro</td>
<td>5.4</td>
<td>5.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Gly</td>
<td>8.3</td>
<td>6.0</td>
<td>8.7</td>
</tr>
<tr>
<td>Ala</td>
<td>7.5</td>
<td>5.9</td>
<td>6.8</td>
</tr>
<tr>
<td>1/2Cys</td>
<td>3.6</td>
<td>4.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Val</td>
<td>4.7</td>
<td>3.8</td>
<td>5.9</td>
</tr>
<tr>
<td>Met</td>
<td>1.8</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Ile</td>
<td>3.2</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Leu</td>
<td>5.5</td>
<td>5.9</td>
<td>6.7</td>
</tr>
<tr>
<td>Tyr</td>
<td>2.4</td>
<td>2.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Phe</td>
<td>1.5</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>His</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Lys</td>
<td>4.9</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Arg</td>
<td>10.0</td>
<td>17.3</td>
<td>14.9</td>
</tr>
</tbody>
</table>

Análisis de aminoácidos

La composición de aminoácidos de las diferentes fracciones proteicas de *P. pinea* se muestran en la Tabla I. Las tres fracciones contienen altos niveles de glutámico + glutamina (Glx) y de aspártico + asparagina (Asx) característicos de las proteínas de reserva y de un aminoácido básico, la arginina. También es destacable el bajo contenido en lisina y metionina.

DISCUSIÓN

El contenido en proteína total de la semilla de *P. pinea* estimado en este trabajo es muy parecido al descrito por Vaughan (1970) para la misma especie y similar a los descritos para otras especies del mismo género (Salmita, 1981; Allona et al., 1992).

Los resultados de la extracción secuencial muestran que la fracción mayoritaria es la de glutelinas (62%) aunque las globulinas representan un porcentaje considerable (29%). Estos datos son semejantes a los descritos para *P. pinaster* (Allona et al., 1992).

Los resultados obtenidos para la fracción de glutelinas (comportamiento electroforético y características químicas) sugieren que, al igual que en otras coníferas, se trata de proteínas del tipo 11S (Misra, 1994). Es sorprendente la no detección del dímero 21 kD - 35 kD en condiciones no reductoras. La explicación más simple sería la no existencia de puentes disulfuro por mutación de cisteínas, máxima cuando en algunos casos, como en arroz, se ha demostrado que la unión es debida a un solo puente (Wen & Luthe, 1985); sin embargo, los oligómeros no específicos de mayor peso molecular que aparecen en estas condiciones podrían estar enmascarando la existencia de los dímeros. Esta alternativa implicaría una facilidad grande de los dímeros para formar entre sí puentes disulfuro no específicos. El análisis electroforético bidimensional...
indica una considerable heterogeneidad en los componentes de 21 y 35 kD, aunque menor que la encontrada para los componentes homólogos de *P. pinaster* (ALLONA et al., 1992).

La fracción de globulinas comprende dos tipos de proteínas similares a los encontrados en *P. pinaster* (ALLONA et al., 1994a,c). Los componentes de 23, 26 y 47 kD se corresponden con los monómeros de las globulinas 7S de *P. pinaster*; además, se ha comprobado que anticuerpos monospecíficos contra el polipéptido de 22 kD de esta última especie reconocen al de 23 kD de *P. pinea* (Allona, comunicación personal). El grupo de globulinas de 16-19 kD que se desdoba en componentes de menor peso molecular en presencia de 2-mercaptoetanol tiene características similares a las globulinas 2S de *P. pinaster*. Proteínas con un comportamiento electroforético similar han sido también descritas en otras especies de coníferas (MISRA, 1994).

La composición en aminoácidos de las fracciones protéicas que corresponden a proteínas de reserva (glutelinas y globulinas) de *P. pinea* se caracterizan, como es habitual en esta clase de proteínas, por un alto contenido en Glx y una baja proporción de His y Met; sin embargo, es destacable su alto contenido en Arg, propiedad típica de las proteínas de reserva de las gimnospermas (ALLONA et al., 1992, 1994c; NEWTON et al., 1992; LEAL & MISRA, 1993). Este resultado puede estar de acuerdo con la observación de RAMAIH et al. (1971), que sugiere que, en coníferas, la arginina es la principal reserva de nitrógeno en las semillas en germinación puesto que existe también una alta actividad arginasa (GUITTON, 1957).

Los resultados presentados en este trabajo, considerados desde un punto de vista alimentario, indican que el piñón comestible es un alimento rico en proteína pero que la calidad de ésta no es alta por su pobre contenido en los aminoácidos esenciales lisina y metionina. En este sentido sería equivalente a la mayoría de las semillas de especies agrícolas usadas en alimentación humana (GUPTA, 1983).

REFERENCIAS BIBLIOGRÁFICAS

