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Chapter 1

Summary

1.1 English version

My doctorate study spreads over different theoretical and phenomenologi-
cal aspects of Quantum Chromo-Dynamics (QCD) at high energies and high
parton densities as well as their connections to the phenomenology of rela-
tivistic nucleus-nucleus (AA) and proton-nucleus (pA) collisions and Deep
Inelastic Scattering experiments with nucleons and nuclear targets. Gener-
ally speaking, these studies are relevant for the phenomenology of the exper-
iments carried on at Relativistic Heavy-ion Collider (RHIC) in Brookhaven
National Laboratory and the Large Hadron Collider (LHC) in CERN.

The introduction is presented in Chapter 2, where some aspects to heavy-
ion physics are introduced with the time evolution of the relativistic heavy-
ion collisions. Radiation of photons in a hot and dense QCD medium is
discussed in Chapter 3. Photon interacts with the particles in a hot and
dense QCD medium through electromagnetic interaction, which is negli-
gible as compared with the strong interaction. Following the BDMPS-Z-
W approach, we calculate the medium-induced two-photon ladder emission
spectrum [1], and find that in the Moliére limit the Landau-Pomeranchuk-
Migdal effect still holds and the spectrum can not be factorized as a prod-
uct of two medium-induced single-photon radiation spectra because of the
structure of the Moliére factor. Radiation of gluons in a hot and dense
QCD medium is discussed in Chapter 4. Due to the non-Abelian nature,
gluon interacts with the particles in a hot and dense QCD medium through
strong interaction. The medium-induced gluon radiation off a single emit-
ter is discussed. Then we study the in-medium color coherence effect by
introducing a double-emitter set-up, i.e. a quark-antiquark antenna. As an
extension, the medium-induced one-gluon radiation spectrum off a massive
quark-antiquark antenna in the color singlet state traversing a color decon-
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fined medium is calculated [2]. The interference between the quark and the
antiquark dominates the spectrum when the antenna opening angle is small
and the emitted gluon is soft, whereas the antenna behaves like a superpo-
sition of two independent emitters when the opening angle is large and the
radiated gluon is hard. We investigate the average radiative energy loss of
the antenna. More collimated antenna loses less energy. The broadening of
the gluon radiation off the antenna is also studied. In the soft gluon emis-
sion limit, the broadening of the emitted gluon is due to the interference
between the quark and the antiquark, rather than the gluon rescattering
in the medium. This opens more phase space for the soft gluon emission.
The in-medium ¢-channel antenna radiation is also presented in Chapter 5
[3]. The interference between initial and final state radiation is investigated.
The medium-induced gluon radiation spectrum is discussed in three limits:
the coherent, the incoherent and the soft limits. The soft on-shell gluon
radiation off the initial state incoming quark is further broadened by the
medium, and more phase space is opened for the soft gluon radiation off
the final state outgoing quark. Then we extend the results obtained at first
order in the opacity expansion by providing general results for multiple soft
scatterings and their specific formulation within the harmonic oscillator ap-
proximation [4]. We discuss some phenomenological consequences of this
setup in high-energy AA collisions. The conclusions are given in Chapter 6.
The metric tensor is defined as g"* = diag (1, —1,—1, —1). The natural units
¢ = h = 1 are chosen in this thesis, and we set the Boltzmann constant as
kp = 1.

1.2 Version en espanol

Mis estudios de doctorado se extiende sobre diferentes aspectos tedéricos y
fenomenoldgicos de la Cromodindmica Cudntica (QCD) a altas energias y
densidades parténicas asi como sus conexiones con la fenomenologia de las
colisiones relativistas nicleo-nicleo (AA) y protén-niicleo (pA) y los exper-
imentos de dispersién ineldstica profunda con nucleones y ntcleos. En gen-
eral, estos estudios son relevantes para la fenomenologia de las experiencias
realizadas en el Relativistic Heavy Ion Collider (RHIC) en el Brookhaven
National Laboratory y el Large Hadron Collider (LHC) en el CERN.

La introduccién se presenta en el capitulo 2, donde algunos aspectos de
la fisica de iones pesados se introducen siguiendo la evolucién temporal
de las colisiones de iones pesados relativistas. La radiacién de fotones en
un medio QCD caliente y denso se discute en el capitulo 3. Los fotones
interactda con las particulas en un medio QCD a través de la interaccién
electromagnética, que es insignificante en comparacién con la interaccién
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fuerte. Siguiendo el enfoque BDMPS-Z-W, se calcula el espectro de emisién
ladder de dos fotones inducida por el medio [1], y se encuentra, en el limite
de Moliére que el efecto Landau-Pomeranchuk-Migdal se mantiene y que el
espectro de dos fotones no puede ser factorizado como un producto de dos
espectros de un fotén inducidos por el medio. La radiacién de gluones en
un medio de QCD caliente y denso se discute en el capitulo 4. Debido a la
naturaleza no-abeliana, los gluones interactiia con las particulas en el medio
de QCD a través de la interaccién fuerte. Se discute la radiacién de gluones
inducida por el medio de un tnico emisor. A continuacién, se estudia el
efecto de la coherencia de color en medio mediante la introduccién de un
doble emisor en un caso sencillo, una antena quark-antiquark. Como una
extension, el espectro de la radiacién de un gluon inducida por el medio de
una antena de quark-antiquark masivos en estado singlete es calculada [2].
La interferencia entre el quark y el antiquark domina el espectro cuando
el dngulo de apertura de la antena es pequefia y el gluon emitido es soft,
mientras que la antena se comporta como una superposicién de dos emisores
independientes cuando el dngulo de apertura es grande y el gluon radiado
es hard. Investigamos la pérdida promedio de energia por radiacién de la
antena. La antena mds colimada pierde menos energia. El aumento de la
radiacién de gluones de la antena también se estudia. En el limite de emisién
de gluones soft, el aumento de la radiacién de gluones emitida es debido a
la interferencia entre el quark y el antiquark, y no a la redifusién de gluones
en el medio. Esto abre mds espacio de fase para la emisién de gluones. La
radiacién por una antena en canal-¢ también se presenta en el capitulo 5 [3].
La interferencia entre la radiacién inicial y final del estado es investigado. El
espectro de la radiacién de gluones inducida por el medio se analiza en tres
limites: coherente, incoherente y el limite soft. Los gluones reales emitidos
por el quark incidente sufren un proceso de broadening por interaccién con
el medio, al mismo tiempo que se aumenta el espacio de fase para radiacién
del quark saliente. Por dltimo, extendemos los resultados obtenidos en el
primer orden en la expansién de la opacidad presentando resultados para el
caso de scattering miltiple, asi como su formulacién especifica dentro de la
aproximacién del oscilador arménico [4]. Se discuten algunas consecuencias
fenomenoldgicas de esta configuracién en colisiones AA de alta energia. Las
conclusiones se presentan en el capitulo 6.

El tensor métrico se define como ¢g"” = diag(1,—1,—1,—1). Las unidades
naturales ¢ = h = 1 se eligen en esta tesis, y se toma la constante de
Boltzmann como kg = 1.






Chapter 2

Some aspects to heavy-ion
physics

2.1 Within the Standard Model

The Standard Model is a unified gauge theory with U(1) x SU(2) x SU(3)
gauge symmetry. U(1) gauge theory is called Quantum Electro-Dynamics
(QED). It is an Abelian gauge theory describing the electromagnetic interac-
tions between fermions and photon. Photons do not interact with each other
because of the Abelian nature of QED. SU(2) gauge theory describes the
weak interactions between fermions and W¥, Z° bosons. The weak inter-
action supports transformations among quarks and among leptons, respec-
tively. SU(3) gauge theory is called Quantum Chromo-Dynamics (QCD).

2.1.1 Quarks and gluons

QCD is a non-Abelian gauge theory of the strong interactions among par-
tons, i.e. quarks and gluons, in the Standard Model. Quarks are spin-1/2
fermions, which means that they are matter and they obey the Fermi-Dirac
statistics and follow the Pauli exclusion principle. Gluons are spin-1 gauge
bosons, which means that they are strong interaction carriers and they obey
the Bose-Einstein statistics. In QCD, quarks interact with each other by ex-
changing gluons. Moreover, the interactions among quarks and gluons and
among gluons themselves can also happen because of the non-Abelian na-
ture of QCD. Quarks are described by the Dirac fields with color degrees of
freedom. Note that the color of quarks and gluons has nothing to do with
visual perception of color, but rather color charge has properties analogous
to electric charge. Quark has six flavors: up, down, charm, strange, top,
and bottom. Gluons are described in terms of the gauge fields with eight
color degrees of freedom. The gauge fields belong to the SU(3) color group.
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Here it is the elegant and beautiful QCD Lagrangian density:

1 . .
‘CQCD = _Z Fé“/ ng + T;Z); (Z E - mf)z’j ¢§f + Lgauge—ﬁxing + Eghost- (21)

wand v in Eq.(2.1) are Lorentz indices. A repeated index implies a summa-
tion with respect to that index in this thesis. The non-Abelian field strength
tensor for the gluon gauge field in Eq.(2.1) reads

Fi = 0 AL — " Ali 4 g fo*° Al AY. (2.2)

g in Eq.(2.2) is the strong coupling constant and £ is the structure con-
stant of SU(3). The covariant derivative in Eq.(2.1) reads

(D), = 96,5 — ig AL tS (2.3)

a “ij*

ty; = Aj;/2 and A{; are the eight generators of SU(3). Note that the color
matrices in the fundamental representation are different from the ones in
the adjoint representation. There are still free parameters entering the QCD

Lagrangian density: quark rest masses m; and the QCD energy scale Aqcp.

2.1.2 Choice of gauge

Gluon propagator is impossible to be defined without a choice of gauge. The
light-cone gauge, for example, is described by

n-A*=0, n*=0 (2.4)

corresponding to a gauge-fixing term

‘Cgauge—ﬁxing - _2_15 (’I’L ’ Aa)z . &—0. (2'5)
n in Eq.(2.4) is a fixed 4-vector, which defines a preferred axis in space. For
the gauge parameter approaches zero in Eq.(2.5), a nonzero value of n - A*
leads to an infinite action, and therefore in the homogeneous axial gauge
one has n - A = 0. The light-cone gauge is the most convenient choice of
gauge in high-energy processes and is therefore chosen for this thesis. The
gluon propagator in the light-cone gauge reads
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—1 kP nY + kY nH
DWW = w1 2.6
k2 +ie <g k-n ) (26)

For the physical polarization states of on-shell gluon, one has k- ¢ = 0 and
n-€e¢ = 0. The sum over two physical polarization states normalized by
lex]? = —1 reads

kFnY 4+ kY n#
b
k-n

The sum of photon polarization is analogous but simpler than the one of

eh ex" — —gM

(2.7)

gluon. The gluon propagator in the light-cone gauge can thus be replaced
by the polarization sum over two physical states:

L e, (2.8)

DM = ———
K2 +ie M

The ghost degrees of freedom in Eq.(2.1) depends on the choice of the gauge-
fixing degrees of freedom. The wonderful thing is that the ghost degrees of
freedom is eliminated in the light-cone gauge since the gauge parameter is
taken to be zero. Another good news is that the number of contributing
Feynman diagrams can be reduced if the calculation is performed in the
light-cone gauge. These simplifications are the reason why we choose the
light-cone gauge here.

2.1.3 Asymptotic freedom

The strong coupling constant satisfies the renormalization group equation

dag
QdZQ=ﬁ=—(boa§+b1a§+b20/§+'“)- (2-9)

bo = (11N, —2Ny) /(47w N.) in Eq.(2.9) is referred to as the 1-loop beta
function coefficient, and so on. N. = 3 is of course the number of quark
colors. Ny is the number of active light quark flavors. The solution of the
beta function for QCD at the second order of o in Eq.(2.9) reads

g (@)]° 1

2 = =
as (@) = 47 bo ln(QQ/AéCD)'

(2.10)
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Figure 2.1: The values of o, at various energy scales [5]

o, must be positive, so the 1-loop beta function coefficient has to be pos-
itive, i.e. gluonic vacuum fluctuations produce an anti-screening between
two quarks, which overwhelms the screening produced by fermionic vacuum
fluctuations. The strong coupling constant is actually not a constant. The
strong coupling constant approaches zero at a logarithmic rate as the energy
scale approaches the positive infinity (see figure 2.1). Such a feature of the
strong coupling constant of QCD is named asymptotic freedom [6, 7]. On
the other hand, a,(Q?) is very large in the infrared region Q* ~ Agp- The
value of o, can be measured in, e.g. e e~ annihilation into hadrons. The
energy associated with the bare quark is enough to produce a neutralizing
quark of the opposite color charge. The running property of the strong
coupling constant naturally separates the study of the system of quarks
and gluons into perturbative QCD and nonperturbative QCD. Perturbative
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QCD is the tool for the study in this thesis. One important application and
also justification of asymptotic freedom is the prediction of the existence of
jets in high-energy scattering processes.

2.1.4 Color confinement

3 F T T T T T ]
}3:60!—.—4 jﬁ’
2 r B=64'—‘ f/% |
Cornell ——
1t _
L
2 o 1
>
= r .
=,
-2—; .
3 |4 |
_4 | ] 1 ] ]

05 1 1.5 2 25 3
rrg

Figure 2.2: Quark potential as a function of length scale with three different
B values (6.0, 6.2 and 6.4) in units of 7y ~ 0.5 fm [8]

The radius of color confinement is around the inverse of the QCD energy
scale, which is the characteristic size of the hadron. The quark potential
increases linearly with an increasing separation between quarks (see figure
2.2). In cold nuclear matter, color confinement is controlled by the non-
perturbative scale. All physical observables are in the color singlet state,
i.e. their colors are confined. In order to study the dynamics of free quarks
and gluons, relativistic heavy-ion collisions are performed to create a quark-
gluon plasma phase, which is different from the hadronic phase with the
lack of the observation of isolated quarks and gluons (see 2.4.1).

11



2.2 Light-cone variables

Before getting to know more about such a brand new phase, let us first be
familiar with the light-cone variables that I use in my work. In the light-
cone coordinate system, one writes the 4-coordinate as z = (¢, 27, x), with
z* = (29 £ 2%) /V/2 and the transverse coordinates x = (z!,2?), and the
4-momentum is given by p = (p*,p~,p), with p* = (p° + p®) /v/2 and the
transverse coordinates p = (p',p?). Therefore the Lorentz invariant scalar
products are

> =22 2 —x%, p*=2pTp —p? (2.11)

and

p-x=ptz +p 2zt —p-x (2.12)

The 4-momentum of an on-shell particle of rest mass m and transverse
momentum p can also be expressed as

2 2 2 2
p S <\/p J;m ey,\/p J;m e_y,p>. (2.13)

The rapidity in Eq.(2.13) is defined as

In Ji. (2.14)
p

When the 3-momentum is large, one can substitute the energy of the particle
by its 3-momentum in Eq.(2.14) to define the pseudorapidity. Note that if a
(positive or negative) boost along the p3-direction is very large, only one of
the first two components in the parentheses of Eq.(2.13) is large and another
is exponentially suppressed. Consider two colliding particles p; and po. We
suppose that p; is highly boosted along the p3-direction relative to p, say
pf is large and p; is suppressed without loss of generality, and accordingly
p, 1is large and p;_ is suppressed. Then the scalar product of the sum of
these two particles simplifies

y:

DO | —

(p1 +p2)* ~ 2p7 ps. (2.15)
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It is clear that it is easier to analyze the size of the scalar product of highly
boosted particles by using the light-cone coordinates than by using the or-
dinary coordinates.

One useful variable that is going to appear frequently in the rest of my thesis
is the forward light-cone variable of the emitted daughter particle k relative
to the parent particle p, which is defined as

kT
=7 (2.16)
Since the daughter particle is always softer than the parent particle, one
always has 0 < x < 1. The forward light-cone variable is equal to the

longitudinal momentum fraction in the high-energy limit.

2.3 Initial state evolution

Now let us go back to the process of relativistic heavy-ion collisions and
see how such an exotic phase of quark-gluon plasma is created and how it
further evolves. If we want to study such a color deconfined medium, we
have to first create it by accelerating two heavy nuclei and then smash them.
A nucleon at rest contains quantum fluctuations at all space-time scales
smaller than its own size. Only quantum fluctuations that have longer life
time than the external probe can be resolved by such probe. The short lived
quantum fluctuations, on the other hand, are of the role to just renormalize
the couplings and the masses. Contrary to the nucleon at rest, time dilation
of all internal time-scales happens for a high-energy nucleon accelerated by
a machine, e.g. RHIC or the LHC. The constituents of the nucleon behave
as if they were free since the interactions among the constituents take place
over time-scales that are much longer than the characteristic time-scale of
the external probe. Therefore more quantum fluctuations can be resolved by
the probe for the nucleon at high energy than at rest. Pre-existing quantum
fluctuations are completely static as compared with the time-scale of the
external probe, and therefore act as static color sources of new partons. It
motivates the utility of the classical gauge field approximation (see 4.2.1).

2.3.1 Pure bremsstrahlung

What happens in the early stage of the acceleration? The nucleon can be
seen as a collection of partons described by non-perturbative parton distri-
butions, which depend on the longitudinal momentum fraction of the parton
and a transverse resolution scale. In a simplified picture, only valence quarks
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are present inside the hadron in the very beginning of the acceleration, but
more and more partons are emitted during the acceleration. The increase
of the number of partons inside the hadron is linear in energy as long as the
density of the partons is small during the acceleration. The way to probe
the inner structure of a nucleon is by using Deep Inelastic Scattering exper-
iments to kind of taking a snapshot of the inner structure of the accelerated
nucleon.

2.3.2 Gluon saturation

An estimate of the gluon density, i.e. the number of gluons per unit area, is

zG (:L‘, QZ)

Pz (2.17)
where R is the radius of the nucleon. When the density of the partons is
large enough, the evolution of the partons inside the hadron becomes non-
linear because they start to overlap, i.e. the process of gluon fusion starts
to compete against the one of gluon splitting. This effect is known as gluon
saturation. The cross section of the merge of two gluons reads

2
Gggng ~ %&Q) (2.18)

Gluon saturation happens when po,, ., 2 1, which is equivalent to Q*> <
Q2. The saturation scale Q) is defined here as

Q2 WasxG(x,Qg)

s — : (2.19)
At gluon saturation, the phase space density reads
dN, 1
g P (2.20)

d2x d?p ~ Q? ™.
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2.4 Color deconfinement

2.4.1 Deconfinement transition

Relativistic heavy-ion collisions are able to create a color deconfined medium,
i.e. the quark-gluon plasma, with initial energy densities above the critical
values indicated by lattice QCD. The size of such a hot and dense QCD
medium depends on the collision area of two heavy ions, which is defined as
centrality. At 7 ~ 0, hard particles, e.g. jets, heavy quarks, quarkonia and
direct photons are produced at this stage. And I would like to remind the
reader that perturbative QCD is a valid theoretical tool here. At 7 ~ 0.2 fm,
most of the multiplicity with relatively small transverse momentum around
1 —2 GeV is made up. Semi-hard particles, i.e. gluons and light quarks are
produced in this time interval. At 7 ~ 1 — 2 fm, a fast thermalization is
indicated by experiments. At 2 fm/c < 7 < 10 fm, new phase of matter, i.e.
the quark-gluon plasma is believed to be created with temperature higher
than the critical temperature. A basic difference between the quark-gluon
plasma and the gas of protons, neutrons and pions is that the quark-gluon
plasma has a much larger number of degrees of freedom than the hadron
gas (see Eq.(2.21) below).

In discussing the temperature dependence of the pressure of the system, the
QCD phase can be divided into three regions: the low-temperature region
with the temperature of the system of interest lower than the critical tem-
perature, the critical region with the temperature of the system of interest
around the critical temperature, and the high-temperature region with the
temperature of the system of interest higher than the critical temperature.
At high-temperature and zero chemical potential, the energy density asymp-
totically approaches the Stefan-Boltzmann limit for an ideal gas of gluons
and Ny massless quarks:

2
gTS—f - 3:1;?3 - (16+ %Nf> 73T_0’ (2.21)
where the number 16 comes from the product of helicity and color of gluon,
and the fraction 21/2 comes from the product of spin, quark/antiquark,
color and Fermi-Dirac statistics. The pressure divided by 7% in Eq.(2.21)
increases drastically above the critical temperature, and then starts to sat-
urate by around twice the critical temperature, which is still below the
Stefan-Boltzmann limit (see figure 2.3). Lattice QCD indicates a 1st order
phase transition for the pure gauge at around 270 MeV, and a cross-over for
the light quarks at around 150 — 170 MeV, depending on the number of the
flavors of light quarks.
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Figure 2.3: The QCD color deconfinement transition [9]

At low temperature, the typical correlation length among color charges in
a nucleon is of the order of the nucleon size. Nucleons merge with each
other as far as the temperature of the nucleons reaches a critical value, and
then the quarks and gluons gain extra degrees of freedom to move inside
the entire nuclear volume rather than only the nucleonic one. All kinds
of hadrons and nuclei behave in the same way at high temperature. Note
that the same explanation works with respect to the change of the density
of normal cold nucleons, but does not work with respect to the change of
the density of nuclear matter with very large net baryon density at low
temperature.

2.4.2 Heavy flavor and quarkonia

The completely different behaviors of the Debye screening mass divided by
temperature around the critical temperature predicted by both the pertur-
bative QCD and the lattice QCD calculations (see figure 2.4) show clearly
the large non-perturbative effects in the vicinity of the critical temperature.
Perturbative QCD is therefore proved to be not valid at low energy scales.
The effective potential between a heavy quark-antiquark pair is described
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Figure 2.4: Temperature dependence of the Debye screening mass divided
by temperature [10] (7, is the critical temperature and note that u (7)) =
mp as introduced in the text. The solid curve represents the result from
perturbative QCD calculations and the dots denote the lattice QCD result.)

by the screened Coulomb potential. From figure 2.4 one can see that the
Debye screening mass increases with increasing temperature, which means
a decreasing screening length, and therefore a shortening of the range of
the interaction between the quark and the antiquark. A suppression of the
quarkonium production in the quark-gluon plasma has been argued based
on this behavior.

2.5 Jet evolution

A jet is a spray of highly energetic particles produced in a collision and
appearing in the detector in a close by region, which is so hard that it can
be easily and clearly identified from the background of softer particles. The
generation of jets is due to the asymptotic freedom. On one hand, a hard
parton can be produced directly from the initial hard process. On the other
hand, it is much easier to decohere a parton from the parent hard parton
collinearly, i.e. with a negligible separation, than to emit a parton with a
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distinguishable separation from the parent hard parton. The structure of
the final state is determined by parton branching and hadronization, i.e.
a hard parton, produced in some initial hard process, traveling in vacuum
with some initial virtuality will radiate gluons to become on-shell.

2.5.1 Medium modification on the QCD branching

The color deconfined medium can not be studied directly from experiments
to date. Therefore one has to study some indirect probes in order to study
the properties of the hot and dense QCD medium, and the hard probes,
i.e. the jets, are the perfect choice for this aim. The reason that one can
study the hard probes in order to indirectly study the properties of the
created color deconfined medium is that the production of hard partons
occurs at 0 < 7 < 1 fm, i.e. before the formation of the quark-gluon
plasma. Photon and gluon radiation is modified when the hard parton,
again produced in some initial hard process, traverses a hot and dense QCD
medium. Still, we have to show some experimental evidences to justify our
argument. The nuclear modification factor (see figure 2.5), which is the
number of the charged particle yields observed in AA collisions divided by
the expected one in the binary scaled pp collisions, reads

ch‘?lA (dn dzp)
<Ncoll> de}f) (d77 d2p) .

Raa(p) = (2.22)

The nuclear modification factor in the high-p range is much smaller than
1, so it is obvious that the quenching of inclusive hadron spectra is a final
state effect due to parton energy loss in the medium.

High-p hadrons with the magnitude of the transverse momentum larger than
~ 5 GeV are interesting and important in studying the hot and dense QCD
medium formed in relativistic heavy-ion collisions due to several reasons.
First: The medium effect modifies the hadron spectrum, so the hadrons
can be used to study the color deconfined medium produced in relativistic
heavy-ion collisions. Second: The high-p hadrons occupy a small part of
the total hadron multiplicity (see figure 2.6), so the suppression of high-p
hadrons is easy to see in experiments. Third: High-p probes are produced
in relativistic heavy-ion collisions in extremely short time scales, and per-
turbative QCD is therefore a valid theoretical tool to study QCD matter.
The high-p partons emit particles when they traverse a hot and dense QCD
medium. This phenomenon is called medium-induced radiation. Due to the
medium-induced radiation, the jets stemming from parton fragmentation
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lose energy and therefore exhibit a significant broadening and softening.
The phenomenon of jet energy loss is called jet quenching.

Now it is the time to end this chapter with the motivation of my doctorate
work. How to improve our knowledge about the QCD branching in a color
deconfined medium? This question will be addressed in Chapters 3, 4 and
5.
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Figure 2.5: Ray in central (0—5%) Pb-Pb collisions at \/snn = 2.76 TeV at
ALICE, in central (0 —5%) Au-Au collisions at /sy = 200 GeV at STAR,
and in central (0 — 10%) Au-Au collisions at \/syny = 200 GeV at PHENIX

[11]
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Chapter 3

Medium-induced photon
radiation

3.1 Medium-induced one-photon radiation

Because of the Abelian nature, photon interacts with a hot and dense QCD
medium through electromagnetic interaction. The electromagnetic coupling
is negligible as compared with the strong coupling. Therefore photon is
an important probe for studying QCD matter formed after the relativis-
tic heavy-ion collisions, and is classified into electroweak collision products,
which can be used to characterize the bulk properties during the early col-
lision stages.

3.1.1 The Gyulassy-Wang model

The Gyulassy-Wang model [13] is employed in this thesis to describe the
scattering centers in a hot and dense QCD medium. The key feature of this
model is that the scattering centers are assumed to be static. Therefore
the collisional energy loss of a hard parton traversing the medium is zero
and the total energy loss will be only due to the radiation. This model
is applicable for hot nuclear matter with the temperature higher than the
critical temperature. In hot nuclear matter a quark or a gluon polarizes
the partons in its vicinity in order to screen its color charge. This is the
so-called Debye screening. According to the Gyulassy-Wang model and the
assumption that the static scattering centers are located at fixed longitudinal
positions, the created color screened Coulomb potential in configuration
space reduces to
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Vi = Tn K] (3.1)
The Debye mass is defined in Eq.(3.1), which is the typical transverse mo-
mentum transfer from a single static scattering center to the hard parton.
Debye mass is the minimum energy scale that the hard parton must have in
order to be able to exchange a gluon with the scattering center. The effective
range of the screened Coulomb potential is the inverse of the Debye mass.
It is considered that the effective range of the screened Coulomb potential
is much smaller than the mean free path of the hard parton, and therefore
the successive scattering centers are independent and the hard parton prop-
agation is path-ordered. In momentum space, the color screened Coulomb
potential of the static scattering center at fixed longitudinal position reduces
to

yo— IW _ iax (32)
2
la|” +m3

q in Eq.(3.2) is the transverse momentum transfer from the medium to the
hard parton, since in the high-energy limit the + and —-components are
negligible.

3.1.2 One-photon emission induced by a single scattering

i Py Di

Figure 3.1: One-photon emission induced by a single scattering

The one-photon emission induced by a single scattering is depicted in figure
3.1. In order to deal with the pure perturbative process, hadronization is
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considered to occur outside of the medium in this thesis. From now on, we
fix the coupling constant. The initial and the final quarks and the emitted
photon are all on-shell. Alternatively, one can consider the initial quark as a
nascent quark produced during a hard collision inside the medium produced
in relativistic heavy-ion collisions. The spin effect on the quark is neglected
in the eikonal limit, which is that the quark energy is too high to be changed
by the medium and the emitted particle is both soft and collinear. Therefore
one can get the well-known eikonal vertex by using the Gordon identity. In
the light-cone coordinate system, the light-cone gauge specifies n = (0, 1, 0),
n-A% =0, and ¢ = (0,k - €/k™,€). The amplitude of soft photon emission
in figure 3.1 reads

* *
z‘M(l)zzQeC;; —%) igpt A to. (3.3)
e in Eq.(3.3) is the electromagnetic coupling constant and the amount of
the electric charge depends on the specific flavor of the quark, and A is a
gauge field modeling the medium interaction. The longitudinal momentum
fraction of the emitted photon relative to the parent quark is defined as the
ratio of the +-component of the emitted photon to the one of the parent
quark. In the high-energy limit and to the leading order of the longitudinal
momentum fraction of the emitted photon, one has

pi-€ _pfre Nzk-e

pi-k  prk T K
In order to get a nonvanishing contribution from Eq.(3.3), one has to keep
all terms in the expansion of the scalar product of the 4-momenta and dis-
tinguish the transverse components of the final quark momentum from the
initial ones by the transverse momentum transfer from the single scattering.
In order to simplify the calculation without loss of generality, one can choose
that the transverse momentum of the initial quark is zero. The high-energy
limit of the Bethe-Heitler spectrum [14] can be readily obtained by squaring
the amplitude discussed above, which reads

(3.4)

dNBH ~ Qe CF 22 q?
d2q d?k d (Inz) ™ k2(k—zq)?

(3.5)

where q is the transverse momentum transfer from the medium. Only quark
interacts with the hot and dense QCD medium, but photon does not because
of its Abelian nature. The scattering is most effective for soft particles,
therefore the Bethe-Heitler spectrum peaks at = = 1.
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3.1.3 Photon emission induced by multiple soft scatterings

Yy
)
y
p
A

Figure 3.2: The trajectory of two scatterings centers

Next, we study the photon emission induced by multiple soft scatterings.
Let us start from the case of two scattering centers. The contribution to the
S-matrix of two scattering centers (see figure 3.2) is given by

4
Mo :/ d*pq d4.’L' d4m16i(p1—p)-xei(p’—pl)-x1

(2m)*
X S / 1 Aal tal

u® (p') igy" Af (a1) PR mItic

x gy A (z) v’ (p),

where A is the same as in Eq.(3.3). In the eikonal approximation, the hard
quark traverses the color deconfined medium with only its color rotated.
One can neglect the dependence of the target fields on the —component
of the position of the scattering center, because the hard quark propagates
in the 42 direction and thus only feels the target fields at the origin of the
—-component of the position of the scattering center. With this, the integra-
tion on the £~ component of the position of the scattering center is trivial
and gives the constraint on the +-component of the quark momentum. The
integration on —-component of the quark momentum gives

1 .
/dpf ————— exp [ip; (a7 —a7)]
T (3.7)
, .

. . m

=—27i0 (zf —2") exp Zﬁ (zt —a)].
The integration on the transverse momentum is trivial and gives the con-
straint on the transverse position. Hence the amplitude, i.e. Eq.(3.6), can

be simplified in the eikonal approximation as
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Figure 3.3: The trajectory of multiple soft scatterings

The generalization to the contribution of n-fold scattering centers (see figure
3.3) in the eikonal approximation reads

i m? (bt  ,
M, =275 (pF —pt) 2pTe 2T (e*—=) /d2xe"“"(p -p)
) ' (3.9)
xmp[ig/dgA;(f,x)ta} .

After performing the resummation of n-fold scattering centers in Eq.(3.9),
one gets

- m? zt—zT ) /
M=~276(p't —pt) 2p* 612P+( ’ f)/d2xelx'(p P (x). (3.10)

The Dirac delta function in Eq.(3.10) indicates that the quark energy is
too high to be changed by the medium. The Wilson line in Eq.(3.10) is
defined to describe the eikonal phase acquired by the hard quark when it
goes through the medium, which reads

zt

U([r(©)];a",z5) =P exp [ig/+

0

d€ A, (& [ ()]) t“] : (3.11)
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P in Eq.(3.11) denotes the path ordering of the color fields.

In some applications, as e.g. the photon emission the eikonal approximation
needs to be relaxed. If one keeps the terms in the norm to the leading order
of the inverse of the +-component of the quark momentum, and keeps the
terms in the phase to the next-to-leading order of the inverse of the +-
component of the quark momentum, the integration on —-component of the
quark momentum (see Eq.(3.7)) is slightly modified as

_ 1 .
[ 0t ——— e [ini (o = a1))
Py = pw tle (3.12)
97000 (2 — 2t pi+m?
= — 24T (l’l — X )exp 274_(@' —.7]1) .

In the massless case, the integration on the transverse momentum gives the
Feynman propagator

Go (x(at).af ix(at).¥lp") = [ Dr(e exp[ / ds#(g)], (3.19)

which describes the Brownian motion of the free particle in the transverse
plane. Then one can get the Green function with the higher order correction
to the phase of the eikonal Wilson line included:

G (r(z"),2"5r(2g), 2 Ip )

3.14
/Dr exp [ / der? (&) | U ([r(©)];zt,2f) . (3:14)
3.1.4 Medium average
Due to the locality, the two point function can be written as [15]
1
Fe <tr U (CUJr, y+§ r (5)) UT (5'3+’ y+; Z)>
ot (3.15)

[ 1/

=exp |—=

2 )+
y

where n (&) is the one-dimensional medium density. The dipole cross section
in Eq.(3.15) is defined as

dgn (€) U(r—Z)],
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oe-m=2 [ Sh o @ 1-et 9], e
(27)

where Cp = (N2 — 1) /(2.N,) is the Casimir operator in the fundamental

representation, and a (¢) is the Fourier transform of the gauge field A (z).

The elastic high-energy cross section for a single scattering in Eq.(3.16) is

usually taken as that of a color screened Coulomb potential

2
mp

a, P22t Cp — D
oz @ = s O — B

. (3.17)
where mp, the Debye mass, corresponds to the typical momentum ex-
changed in a scattering. Fixing |z| = 0 for simplicity, the leading quadratic

dependence of the dipole cross section (see Eq.(3.16)) for mp |r| < 1 is

o (r) = Cr? (3.18)
with
C =471 o, Cpm? 1 +lo 2 (3.19)

In Eq.(3.19) the logarithm can be treated as a constant for small value of
transverse size, and hence C' is a constant, which denotes the probability of
a scattering center in the medium interacting with the hard quark. In this
approximation the two point function for the leading quadratic dependence
reads

1
Fc <1:I'UJr (m+,y+;z) U(m+,y+;z')>
Lt ) (3.20)
= —= déq —7z)7|.
exp[ i), e () ]
The transport coefficient in Eq.(3.20) is defined as
L. 2
n(€) o ()~ 5 q(6) (3:21)



where r = z — 7z’ is defined as the transverse distance. The transport coeffi-
cient encodes all the information about the medium properties, and charac-
terizes the average transverse momentum transfer from the medium to the
hard quark per mean free path:

1@ =T —nie [ £Lq o @l (322)

where )\ is the mean free path. A initial condition for the transport coeffi-
cient can be related to the saturation scale, i.e.

Cj(f y 0) ~ eold ™~ QE/L—’— (3.23)

Therefore the two point function can be written as

[

Ni <tr Ut (L+,0;z) U (L+,0; z/)> = exp [—i Q? (z — ZI)2:| ) (3.24)

where the square of the saturation scale reads

Lt 2
Q= /0 aen (€) / dﬂ% o |az ()] (3.25)

Once the medium average of a dipole is known, the medium average of two
Green functions in the fundamental representation can be easily calculated
to be [16]

(3.26)
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Also needed in the applications of this thesis, the medium average of one
Wilson line and one Green function in the fundamental representation reads
[15]

Nic <trGT (r(zh), 2 v(xd), zf Ipt) U (x*,x&,r(§))>
= [prewd & [ acito -5 [ d&n(&)a[r(&)—r(&)}} (327)

3.1.5 The Landau-Pomeranchuk-Migdal effect

At this moment I would like to emphasize an important longitudinal inter-
ference effect. Let us first analyze two limits. In the Bethe-Heitler limit, the
separation between scattering centers is large enough such that the radiation
spectrum is the sum of NV Bethe-Heitler spectra, given by

NBH Qlem, CF ;L‘2 q2
! 3.28
Z d2q; 2k d (In ) X ZZ: 2 (k—vq) (3.28)

where ., = €%/ (47), the longitudinal momentum fraction z is given by
the ratio of the +-component of the emitted photon to the one of the parent
quark, k is the transverse momentum of the emitted photon, and q; is
the transverse momentum transfer from the ¢th scattering center. In the
factorization limit, the fixed N scattering centers are not resolvable by the
emitted photon. Therefore the spectrum is given by

dNfac aem O 22(3;q)°

E(Cia) Ckdr) 7 (k- oy, q)
The formation length (time) scale is in between the above two limits, which
characterizes the Landau-Pomeranchuk-Migdal (LPM) interference effect.
The virtual photon can not resolve the scattering centers within its forma-
tion length. Scattering amplitudes for the photon radiation off the scatter-
ing centers within the photon formation length interfere destructively. The
softer photons suffer more the LPM suppression. In QCD, gluon can scatter
directly off the scattering centers because of its non-Abelian nature. The
relative phases of different contributions to the scattering amplitude deter-
mine quantitatively the LPM interference effect. The softer gluons suffer
less the LPM suppression.

(3.29)
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3.2 Medium-induced two-photon ladder emission

Now we investigate the medium modifications on more exclusive observables,
i.e. medium-induced two-photon radiation. In QED, as is well-known, the
lack of ordering of the radiation can be traced back to the fact that the
photon does not carry color charge. But how is the LPM suppression ef-
fect for medium-induced multi-photon radiation? Does this effect still hold
for more exclusive observables? As one of the attempts to improve our
knowledge about the QCD branching in a color deconfined medium, in the
following we study the medium-induced two-photon radiation.

: vy b Z
X0 3 > > X
P P2 P2 P3 P3
: y a b z
X0 | - : . o X
P1 P1 P2

[
o
3
)

o y. a. !\‘! b

Figure 3.4: Medium-induced two-photon ladder emission (Here p{“ =pt,
py = (1—z)p, pé" =(1-y)(1—2)pt, kf =zp* and kf =y (1 —z)p*.
The boldface letters represent the positions of the projectile in the two
dimensional transverse plane. The overline is used here to denote the quan-
tities in the complex conjugate.)

The identical extension of the medium-induced one-photon radiation to the
medium-induced two-photon radiation in both the amplitude and the com-
plex conjugate amplitude is denoted as a ladder emission (see figure 3.4).
The medium-induced two-photon ladder emission spectrum is calculated in
[1]. More specifically, first a photon is radiated with transverse momentum
k; and carrying a momentum fraction = of the parent quark, and subse-
quently another photon with transverse momentum k, and carrying a mo-
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mentum fraction y of the quark. Of course, one can have other cases such
as exchanging the positions of k; and ks in the complex conjugate only, or
exchanging the positions of k; and ks in the amplitude only, etc. It might
be a solution that one studies the spectrum in a mixture of coordinate and
momentum spaces. Back to the two-photon ladder emission, in this case the
spectrum is relatively neat:

dN'ad a2 2

em

€
d?pyd?k; d’kpd (Inz) d(Iny)  (27)°  zy(1—z)pt

bt bt T T

X / dy* / da* / dbt / dzt / d%p, d’p, d*p,
ggg yt yt b+

B yt bt

X exp —/x+ dflz(flaﬂﬁpl)] exp [_/a+

dés % (§5,yp4)l exp [—ix <% + E) -pl]

dés X (fs,xpz)]

zt

X exp —/
ot

[ 1—x 1-—
X exp —zy(pf— y ki — yyk2> -p4]
[ ki - ko > ¥ +]
Xexpli| gt —————— ) (v —a
< y(1—z)p* ( )

X exp |7 <cj2 — ki k2> (bJr — z+)]

xpt
1T 1T
X <81 — ?k2> : <82 + ?k2> K (PQanr;Plyyﬂ,Ul)

L
x (0 —i(l—2)kp)- (fiﬁrwlﬁ)/C <p4,2+;§p2,b+

Y

)

(3.30)

pL=Y—y,py =a—a=Db—b, and p, = z—7 are the dipole sizes at different
longitudinal positions. The shorthand notations &y = 9/9p,, 02 = 0/0p,,
and 04 = 0/0p, are introduced. X (&1, zp,) = n (&) o(xp;) /2 is defined
as the product of the density of scattering centers in the medium n (§;) and
the elastic Mott cross section o (x p;), and analogously for ¥ (&3, py) =
n(&3) o(xpy) /2 and X (&5,y py) = n(&5) o (y py) /2. The shorthand nota-
tions ¢ = xm?/(2(1 —2)p*) and g = ym?/(2(1 —y) (1 — x) pT) are the
reciprocals of the photon formation lengths. m is the rest mass of the quark.
Also the shorthand notations i1 = (1 —x)xpTand u3 = (1 —y)y (1 — ) p*
are introduced. The path integral in Eq.(3.30) is given by
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where r (y*) = p; and r (a™) = p, are boundary conditions. The path inte-
gral (see Eq.(3.31)) can be written as a harmonic oscillator for the leading
quadratic dependence:

déan (&) o (x r)] : (331

R
27i sin (Qq (at —yt))

X exp {iﬂl Q1 [(p3+ p?) cos (1 (a™ —yh)) —2py - py] } o

Kose (P2, a5 pr,yT 1) =

2 sin (1 (¢t —yt))

where the harmonic oscillator frequency is defined as

1—4 [ngCx?

V2 . G

and ng is a constant for denoting the medium density.
The coherence nature of the photon spectrum becomes most pronounced in
the Moliére limit written in the light-cone coordinate system:

Q=

(3.33)

lal < k| < kT < pt,
k2
— Lt >1,
ogt
2 (3.34)

xm
— =t 1
2(1—x)pt >4

QLY <« 1.

lg| < |k| in the first condition in Eq.(3.34) indicates that the transverse
momentum transfer from the medium to the quark should be much smaller
than the transverse momentum freed from the quark. |k| < k™ < p' in
the first condition in Eq.(3.34) is the eikonal approximation. The second
and the third conditions in Eq.(3.34) require that the medium size must be
larger than at least one formation length of the photon. The last condition
in Eq.(3.34) requires a sufficiently low density medium. With the help of the
Moliére limit introduced in Eq.(3.34), one can perform all the integrations
in Eq.(3.30) analytically, and then the spectrum becomes
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dNMel ki +k 2
X exp Ut ke +py) , (3.35)
d?py d?k; d?ky d (Inz) d (Iny) 2ngC LT
where |k; + ko + py| = >, q; is the total transverse momentum transfer

from the medium. The appearance of the Moliére factor in Eq.(3.35) sig-
nals that the LPM effect still holds for the medium induced two-photon
ladder emission. In particular, Eq.(3.35) is not simply a superposition of
two one-photon radiation spectra as one naively would have expected from
independent radiation, e.g. in vacuum. Thus the medium induces some
coherence on the multi-photon radiation spectrum.
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Chapter 4

Medium-induced gluon
radiation

4.1 Single-emitter set-up

Although the electroweak collision products are important probes for study-
ing QCD matter, their production is scarce and one has to filter them out of
those produced in hadron decay and in the final state interactions. Gluon
is also an interesting and important probe for the investigation of the color
deconfined medium in both the initial and the final state interactions.

4.1.1 One-gluon emission induced by a single scattering

4 Di =pf
k_ql £ g
EL

Figure 4.1: One-gluon emission induced by a single scattering

Following the same approach as in the last chapter, here we first discuss the
one-gluon emission induced by a single scattering as shown in figure 4.1.
The longitudinal momentum transfer from the medium is negligible in the
high-energy limit. The initial and the final quarks and the emitted gluon
are all on-shell. The gluon propagator here has the support only from the
transverse components in the high-energy limit. Also in the high-energy
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limit, the spin effect on the quark is neglected. To the leading order of the
longitudinal momentum fraction, the amplitude for soft gluon emission in
figure 4.1 reads

k k—q _
i My ~ —4i 2[——7}-6*#,# +t A 4.1
R = ] R G (4.1)
Note that for the gluon emission, one only needs to keep the leading order
of the longitudinal momentum fraction term because of the non-Abelian
nature. One can get the high-energy limit of the Gunion-Bertsch spectrum
from the amplitude discussed above, which is

dNGB ~ as Cy q?
d2q d2k d (In z) ™ Kk2(k—q)°

(4.2)

Both quark and gluon interact with the hot and dense QCD medium, there-
fore the Gunion-Bertsch spectrum is flat in the gluon energy.

4.1.2 Parton radiative energy loss

The parton average radiative energy loss reads

E w d3N
AFE) = d d’k ) 4.3
(AE) /0 w /0 Y dw 2k (4.3)

One can easily get the numerical results of the radiative energy loss by
plugging Eq.(4.53) in the above one, and performing the numerical calcula-
tions by using either Fortran or C++. Analytically, on the other hand, the
Baier-Dokshitzer-Mueller-Peigné-Schiff (BDMPS) parton energy loss for an
infinite size medium reads [19]

dEN mQDE.

=~ 4.4
o S\ (4.4)
For a medium with a finite size L, Eq.(4.4) gives
AE
D
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where the non-intuitive prediction of the L? dependence of the radiative
energy loss is a consequence of the destructive interference effects, i.e. the
LPM effect. The transverse momentum broadening can be obtained from
Eq.(4.5):

o AFE)
<k2> ~GL x — (4.6)

4.2 Double-emitter set-up

One important ingredient is missing in the single-emitter set-up, i.e. the
interference effects between different emitters. Therefore, one has to intro-
duce at least two emitters in order to study the interference effect between
them. Feynman diagrams are powerful tools in performing the perturbative
QCD calculations. Alternatively, one can use the classical gauge field ap-
proximation to deal with soft particle production in relativistic heavy-ion
collisions.

4.2.1 Validity of the classical gauge field approximation

The Feynman diagram language is not the only option for studying the QCD
in the high parton density limit. The classical gauge field approximation
is valid in this limit because of the large gluon occupation number, i.e.
Ni ~ 1/ag > 1, and then the Heisenberg commutators between particle
creation and annihilation operators are negligible:

[ak,aT] =1k az ay = Ny, (4.7)
which signals the validity of the use of the classical gauge field approximation
for studying the QCD in the high parton density limit.

4.2.2 s-channel antenna radiation in vacuum

To fix the notation and as a warm-up, we study the well known case of the
antenna radiation in vacuum. In the classical gauge field approximation,
the single-gluon inclusive radiation spectrum with the gluon 4-momentum
k = (w, k) is given by

dN
27)° 2w P M2, (4.8)
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Figure 4.2: Soft gluon radiation off a quark-antiquark antenna in vacuum
[17]

where the gluon 3-momentum is k& = (k, k) and the transverse polarizations
of the emitted gluon are the only physical polarization states. The scattering
amplitude is related to the classical gauge field by the reduction formula:

M (k) = Jim —k? A% (k) - €. (4.9)

The gauge field is the solution of the classical Yang-Mills equations,

(D, F™] = J¥, (4.10)

where the covariant derivative is defined in Eq.(2.3), and the non-Abelian
field strength tensor is defined in Eq.(2.2).

A virtual time-like photon or gluon splits into a quark-antiquark antenna
with 4-momenta p = (E,p) and p = (E,p) for the quark and antiquark,
respectively (see figure 4.2). The current is covariantly conserved. The light-
cone gauge specifies n- A% = 0 with a specific axial vector n = (0,1,0). The
gauge condition n - ¢ = 0 and the transversality & - ¢ = 0 fix the light-cone
decomposition of the polarization vector ¢ = (0,k - €/k*,€). In vacuum,
the classical current that describes the quark-antiquark antenna created at
initial time ¢g = O reads

J) = Jo.0) + a0 + 5 (4.11)
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where the subscript (0) denotes vacuum quantities, and the third component
Js is required for 4-current conservation. The currents for the quark and
the antiquark, are given by

wa _ PPy (o
Jq,(o)—gEé <x

t> O (t) Qg

] kST

_, (4.12)
,a p 3 — p
Trty =970 <x—Et> O (t) Q2
where Qp and Q7 are the color charge of the quark and the antiquark,
respectively, and one has analogously )4 for the third component of the
current. In momentum space the total current reads

; pM a ]jﬂ a pg @
J(‘g),a:zg(pkaquﬁ‘qu—m_ng, . (4.13)

One can prove the color charge conservation Q7 + QF = (5 by using the
current conservation. Then for a color singlet antenna one has Q5 = 0,
and for a color octet antenna the third component of the current does not
contribute in the frame where p3 ~ (O,pg,O) because of the choice of the
gauge. Therefore, one has (Q% + Qg)2 =0 and (Q4 + Qg)2 = (4 for a color
singlet antenna and a color octet one, respectively. Since QgQ = QgQ =Cp,
one gets

—Cp color singlet

4.14
% — Cr color octet ( )

205~ {
One can simplify the classical Yang-Mills equations (4.10) by linearizing it
in the strong coupling constant:

5% AH

r (4.15)

)—6“8-A(0) = J(‘g),

where A () is the gauge field of the quark-antiquark antenna in vacuum.
With the help of the light-cone gauge, one may break down Eq.(4.15):

—-90to. = Jr
oto- A =I5, wis)
PAlgy — 00 Ay = Jiy).
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It is safe to ignore the equality for the negative light-cone component of
the gauge field, since only the transverse components of the gauge field are
dynamical in the light-cone gauge. Plugging the first equality in the second
one, one obtains

A o _
2 41 + )
A0y = =57 Yo T oy (4.17)
which in momentum space reads
1,a . Ki a Ri a
where
K=k —zp,
-, (4.19)
=k — 7pt

denote the gluon transverse momenta relative to the ones of the quark and
the antiquark, respectively, and the square of each of them reads

K =2z(p-k),
R2=2z(p k). (4.20)

One can now combine the gauge field with the gluon emission amplitude in
the soft limit by using the reduction formula (4.9), i.e.

Mg (k) = lim —k? A’("O“) (k) € (k). (4.21)

Then one can get the square of the gluon emission amplitude, which reads

1 1 K- R
(Mg al* = 467 (E Q§2+?Q22+2WQ§-QZ>, (4.22)

where the sum of the transverse polarizations of the emitted gluon is per-
formed, since it is the only physical contribution to the spectrum. Taking
into account the phase space factor, the vacuum spectrum of a soft gluon
radiation off a color octet antenna reads
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deac o
— = > CrR+CaJ), 4.23
d3k (277)2 w? (Cr 4J) ( )

where the shorthand symbol R = R, + R; — 27 is used, and

4w?
Ry = poR
) (4.24)
4w
Re=%r

are the independent radiation spectra off the quark and the antiquark, re-
spectively, and

J=4dw (4.25)

K2 R?
denotes the interference between the quark and the antiquark. For the
case of a color singlet antenna, the spectrum corresponds to taking C'y =
0 in Eq.(4.23). A convenient decomposition of the spectrum consists on
separating the collinear divergences belonging to either the quark or the
antiquark by defining the coherent spectra P, = R, — J and P; = R; —
J, respectively. For instance, P, is divergent along the direction of the
quark and vanishes when the gluon is emitted collinearly with respect to the
antiquark. After setting the quark momentum on the z-axis and averaging
the azimuthal angle of the emitted gluon, one has

2m ng 2
_ 2  cos B 4.2
/o 27 Pa 1 —cosf O (cos ! — cos fq) , (4.26)

where ¢ is the gluon emission angle and 60,; is the antenna opening angle.
The Heaviside step function in Eq.(4.26) indicates that gluon emissions off
the quark are confined within the antenna opening angle and is collinearly
divergent along the direction of the quark. The corresponding gluon radia-
tion spectrum reads

a, Cp d_w sin # df

T w 1 —-cosb

(ANJ), =

© (cosf — cosbyg) . (4.27)

For the color octet antenna, the second term in the parentheses of Eq.(4.23)
should be kept, which is responsible for large angle radiation, i.e.
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2w d 9
/0 % J = T cosd © (cos by — cos ). (4.28)

The large angle radiation appears along with the total color charge of the
antenna, so it can be reinterpreted as the radiation off the parent gluon
imagined to be on shell [18].

4.2.3 s-channel antenna radiation in a dilute medium

0 L 0 L

Figure 4.3: Soft gluon radiation off a quark-antiquark antenna in a dilute
medium [17]

After reviewing the s-channel antenna radiation in vacuum, now one can
consider the same set-up in the environment of a color deconfined medium.
The calculation is performed in the infinite momentum frame, i.e. the quark-
antiquark antenna is assumed to move nearly at the speed of light in the
+z direction while the color deconfined medium moves in the —z direction
nearly at the speed of light, but the process is boosted back to the target
rest frame at the end of the calculation. Note that this approximation is
valid only if the antenna opening angle is very small and the process is in the
high-energy limit. The gauge field of a quark-antiquark antenna, originated
from a virtual time-like photon, is treated as a perturbation around the
strong medium field (the shaded rectangle in figure 4.3), where the strong
medium field is described by

d? A
Aleq (27,%) = / ﬁ 270 (q") Apeq (47,a) €777, (4.29)
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which is the solution of the 2-dimensional Poisson equation in the asymptotic
limit:

-8 A4 (er,x) = Pmed (er,x) , A A;;ed =0. (4.30)

Pmed (z7,x) in Eq.(4.30) is the medium color charge density. Therefore the
total field is written as

A=Apeq + A(O) + A(l), (431)

where A(y) is the first order contribution from the medium to the quark.
Linearizing the classical Yang-Mills equations in «g, one gets

— 070 Agy = I3,

2 At . = 0 _ O {0

med’

(4.32)

As in vacuum, one can omit the equality for the negative light-cone compo-
nent of the field. Applying the first equality in the second one, one obtains

i - = i o' i
0% Al = 2ig [Anp, 0t Alg)| = o7 I + Ty (4.33)
The current obeys the continuity equation:
0 Iy =ig | Anea Ty (4.34)
The solution of Eq.(4.34) is given by
JE = ﬂ[/r Jt ]+i ﬂ[fr Jt ] (4.35)
(1) = "9, 75 [Fmed> Yq,0) 959 [Fmed g0 :

For the quark, the current in momentum space reads

+

“ d*q p
T (k) = (ig)* —2 / !
o)) (k) =(ig) Zip k) @n)fp (g tic (4.36)

X T+ A (Q)]ab Qz’
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where [T A_ (q)]ab Qb = —i f® A (q) Q). The Dirac delta function
in Eq.(4.29) makes it trivial to do the integration of the +-component of the
momentum transfer from the medium. Integrating out the —component of

the momentum transfer from the medium by picking up the pole yields

Iz d? +oo i t e 4p kT —p (k- ) .
J“’a)(k):—ngP— q2/ d$+ep pp+ p(k—q) +
B pkJ (2m)° Jo (4.37)
— ab
X [T ’ Amed (CEJF’ Q)] qu)
Inserting the expression Eq.(4.37) into Eq.(4.33), one obtains
2 At d4q — + 43
—k" Ag 0y (k) =29 27) [Amed (@), (k=q)" Ay o) (k— Q)]
. (4.38)
Koy i
~ 37 o (B) + g0 (R),
where
: i
(k= q)® A (k—q) = —2ig —— Q" (4.39)
(I7(O) (KJ _ q)2 q

It is again trivial to do the integration of the +-component of the momentum
transfer from the medium in Eq.(4.38) due to the Dirac delta function. In-
tegrating out the —-component of the momentum transfer from the medium
by picking up the poles yields

—k2 A (k) =2ig” d*q " et [T A, (z",q)]™
a,(1) 9 (27‘(‘)2 0 med ’
il Ge=? | 4
x Qe o

One can now connect the gauge field with the gluon emission amplitude in
the soft limit by using the reduction formula, and the amplitude of medium-
induced gluon radiation off the quark reads
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(4.41)
y {LQ_L o [Zﬂﬁ] } .

where

K — K
L= ~"9 = (4.42)
are the transverse components of the Lipatov vertex in the light-cone gauge
[19, 20, 21], and it represents the genuine medium-induced gluon radia-
tion off an on-shell quark. The other term in Eq.(4.41) corresponds to
the bremsstrahlung off the accelerated quark with a subsequent rescatter-
ing of the emitted on-shell gluon. The amplitude of medium-induced gluon
radiation off the antiquark can be obtained directly from Eq.(4.41) by sub-
stituting the quark momentum and the quark color charge.

The correlation of the color charges in the medium is assumed to be local
along the x*-direction. The medium charge density can therefore be treated
as a Gaussian white noise defined by the two-point correlation function

(Plea (7, a) g (2"F,d))

4.43
=6"m%n (m+) 0 (:r:Jr - x”r) (2 7T)2 5 (q - q/) , (4.43)
which gives the medium average of the interaction potential:
A—,a l_«‘r, A—,b* l‘l+, /
< med( q) med ( q)> (444)

=6 mpn (z7) 6 (aF —2'7) (2m)? 6@ (a - d') V* (@)

The interaction potential in Eq.(4.44) is defined to be of the Yukawa-type,
ie.

V()= 7

(4.45)
lql* +m3,
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mp in Eq.(4.45) is the Debye screening mass, which serves as an infrared
cut-off in the medium. In the following we will assume that the medium is
uniform in the longitudinal direction such that the one-dimensional medium
density is constant, i.e. n (z%) =ngO (LT —z¥). L = LT //2 is the size of
the medium in the longitudinal direction. The medium transport parameter
is defined here as

4= asCangmbp, (4.46)

which is different from the one in [22] and the one in Eq.(3.21). This is
because the standard definition of the medium transport coefficient is done
in the multiple soft scattering approximation, while the one here is defined
in the single hard scattering approximation. When the smoke clears, one
finds the medium-induced radiation spectrum off a quark-antiquark antenna
in a singlet configuration

qNmed s ~ 42 Lt
d3k T 27 0

Ck-q)-L

(4.47)

where in order to account for unitarity the virtual corrections, also known
as the contact terms [19, 23, 24], have already been added. The explicit
form of the contact terms here reads

dNmed 2a,Cp p-p R Jr/ d?q
= - - q
d3k virtual ™ (p : k) (p : k)

(2m)
In other words, adding the contact terms simply corresponds to redefining
the square of the interaction potential:

Vi(q). (4.48)

d2 q/

— — 7'1'2 () )
V@) =V (@ - r o ) [

V2 (d). (4.49)
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The spectrum in Eq.(4.47) depends not only on the transverse components
of the Lipatov vertex, c.f. Eq.(4.42), but also on the transverse emission
current from the hard emission vertex associated with gluon rescattering in
the medium, i.e.

Ck-q=-—"9 _ f%__q. (4.50)

4.2.4 The dead-cone effect

For the up and down quarks, one can safely neglect their masses in the
hight-energy limit. But this is not completely correct for the heavy quarks,
such as the charm and bottom quarks. In vacuum, the distribution of soft
gluon radiation off a massless quark is given by

e 0sCp dw dk?
d m=0 — T w k27 (451)

while that off a massive quark reads

qNvee _ O Cp dw k? dk? By = m
B W (k2 +w298)2’ ~ FE’

(4.52)

where 0y is the dead-cone angle. The soft gluon emission is suppressed
inside the cone set by the dead-cone angle around the parent massive quark
as compared with the massless quark (see Eq.(4.51)).

For a dense medium, due to the non-Abelian nature, Wilson line can be used
to describe the quark trajectory in the eikonal limit, and the emitted gluon
trajectory is described by Green function. The medium-induced single-
gluon radiation spectrum off a massive quark reads [28]

L+
dz™

deed
m;éO_ (471') CACFTLQ

3
(27)° 2w YRR

mp  (k-a’k-q-
2
(q%+m32) {(k Q) + 22 mz] (K2 + 22 m?2)

k — z2m?
X {1—608 [( q2/<:1_ ]}
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This spectrum is for both the massless quark (m = 0) and the massive one,
and one can study the parton energy loss from it by integrating out the
entire phase space of the gluon.

4.2.5 Massive s-channel antenna

As an extension to the study of the massless s-channel antenna radiation, the
spectrum off an antenna made out of a massive quark-antiquark pair travers-
ing a color deconfined medium assumed to be made out of static scattering
centers spaced on average at a typical mean free path ) is studied in [2]. As
before, the medium interaction is modeled by a gauge field Aﬁled (¢), and
q denotes the momentum exchange with the medium. The single elastic
differential scattering cross section o |A (¢)|? is then usually chosen to be a
color screened Coulomb potential with the Debye mass mp. For the sake of
transparency, we study the case when the antenna arises from the decay of a
highly virtual time-like photon. Note that the calculation of the decay of a
virtual gluon proceeds in the soft limit analogously to the one performed in
this thesis, differing only in the color algebra. The 3-momenta are given by
7= (p,p.) and p = (P, p.) as usual, and p? = p?> = m? defines the rest mass
of the on-shell quark (antiquark). The quark-antiquark antenna is charac-
terized by the antenna opening angle. We compute the amplitude at first
order in the opacity expansion, i.e. considering the contribution with one
scattering center in the amplitude, but due to the unitarity one has to take
into account virtual corrections to the interaction, i.e. the so-called contact
terms, with two scattering centers in the amplitude in the contact limit (see
e.g. [24, 25]). All in all, 64 diagrams coming from the amplitudes with
one scattering plus 32 contact terms contribute to the s-channel antenna
spectrum.

independent interference | interference Il

Figure 4.4: Typical contributions to the quark-antiquark antenna spectrum

[2]
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Since the Born cross section is not altered by the presence of a color decon-
fined medium, it can be factored out of the expression. Then the medium-
induced single-inclusive gluon radiation spectrum off the quark-antiquark
antenna, cf. Eq.(4.47), can be decomposed in terms of three characteristic
contributions, which are denoted by

dN i i i
o z—lndep + z—:]%terfl + I:]%terf g (454)

3
(27T) 2wdwd2k — qq

The three contributions in Eq.(4.54) are illustrated in figure 4.4. They rep-
resent the independent emission off the quark and the antiquark contained
in I;gdep, and the interferences given by Zintr'l and Tinterfll 'j e  contribu-
tions where the gluon is emitted by one of the antenna constituents to the
left of the cut and absorbed by the other to the right.

Let us turn to the sum of the independent emission spectra off the quark and
the antiquark, denoted as I;%dep above. Note that this part of the spectrum
was denoted as GLV in [26]. This contribution reads

z—indep —9(4 2 2 L + d2 sz
a = (4m)° oz CaCrng dz - .
0 2m)° (q? + m3)

K

x { [ <D L2 ] [1—cos (Q,27)]  (455)

(zp-v)®> 2% (p-v)(p-k)

2 U-R

- —cos (Q-zt
+[(xp-v)2 xQ(p-U)(p.k)] 1 (4 )}},

where all momenta and positions are written in the light-cone coordinate
system. Indeed, I;gdep is a superposition of the individual spectra off the
quark and the antiquark, which are to be found in the second and the
third lines of Eq.(4.55), respectively, and therefore does not contain any
information about the opening angle of the pair. Above, we have assumed a
medium of constant density ny which extends over a distance LT = /2 L in
the longitudinal direction, such that ng L™ = L/ gives the average number
of scattering centers.

In Eq.(4.55), as Cr denotes the emission strength in terms of the strong cou-
pling constant, and analogously a C'4 for the interaction with the medium.
The 4-momentum of the emitted on-shell gluon is defined in the light-cone
coordinate system as v = |kt,(k—q)*/(2kt),k—q|. kK = k —zp and

v = (k — q) —z p are the transverse displacement vectors, where z = k* /p*
is the longitudinal momentum fraction. , = p-v/p™ denotes the inverse of
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the formation time. Analogous expressions hold for the antiquark contribu-
tion simply by substituting p — p. Kinematically, the terms proportional
tov?/(zp- v)2 account for the contribution purely from gluon rescattering,
while those proportional to v-x/ (22 (p- v) (p - k)) account for the contribu-
tion from the destructive interference between gluon and quark (antiquark)
rescatterings. The contributions from purely quark rescattering cancel due
to the contact terms (see [24, 25]).

The independent spectrum off the quark simplifies in the |p| = 0 frame,
where it reads

d?q
(27)?

m}  (k—q’k-q-a2’m’(k-q)-q
(a%+ m%)z {(k —q)? + a2 m2]2 (k2 + 22 m?)

k — 2 2.2
x{l—cos[( q;ki—xm x+]}

This expression coincides with the one obtained in [27, 28] and the one
discussed in Eq.(4.53). We recover the independent spectrum off a massless
quark, which was first calculated in [25, 32], by setting m = 0 in Eq.(4.56).
Qualitatively, the interaction with the medium leads to a characteristic
broadening of the mean transverse momentum, ie. (k?) ~ m?, which
further implies a characteristic energy scale. In the first order opacity ex-
pansion, this characteristic gluon energy is denoted by w. = m?, L/2 (see
[22, 28]). The presence of these intrinsic scales in the medium-induced spec-
trum renders it both the infrared and the collinear convergences in contrast
to the vacuum spectrum.

As expected, the non-zero quark mass appears in the effective formation
time, i.e. in the argument of the cosine function, and as a dead-cone factor
analogously to the vacuum case in Eq.(4.56). For soft gluons, these two
modifications work in opposite directions and compensate each other. On
the other hand, the dead-cone suppression at small angles is particularly
important for hard gluons, which mainly occupy this part of the phase
space. Since the energy loss distribution is biased toward the hard sector, it
follows that the typical energy loss is smaller in the massive case than in the
massless one [28]. The non-zero quark mass does not change the infrared
and the collinear convergence of the independent spectrum.

The individual spectra off the two antenna constituents lack the informa-
tion about the presence of the other emitter. Assuming a strong medium

Lt
I;ndep:8(47r)2a§ Ca Cpno/ dx*/
0

(4.56)
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screening, leaving the quark and the antiquark completely unaware of one
another, it can serve as a building block for a cascade of multiple indepen-
dent medium-induced gluon emissions [33, 34]. Yet, such a heuristic gen-
eralization fails to include subtle interference effects which are crucial for
soft gluons, most prominently in vacuum [18], and which were calculated
recently [2, 26, 29, 35, 36| for the color deconfined medium.

Tr

0.8F

06F — interf Il

0.4F
0.2 F

wdN / dwd6
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o011 o001
0 [rad] 0 [rad]
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Figure 4.5: Cancellation between the sum of the independent spectra for a
quark-antiquark antenna and the interference spectrum I, for massless (plot
on the left) and bottom (m = 5 GeV, plot on the right) quarks in the
soft limit [2] (Quark and antiquark energies are £ = E = 100 GeV, gluon
energy w = 2 GeV, Debye mass mp = 0.5 GeV, medium length L = 4 fm
and antenna opening angle ¢,; = 0.1. The dotted curve corresponds to the
independent spectra for the antenna, the dashed curve corresponds to the
interference spectrum I and the solid curve corresponds to the interference
spectrum II.)

The main difference between I;%dep in Eq.(4.55) and the complete antenna
spectrum is the existence of the extra novel contributions stemming from
the gluon exchange between the emitters of the antenna, i.e. the quark and
the antiquark. These contributions can be further separated according to

their infrared behaviors, what will be called in the following type I and type

53



II. The former is infrared safe while the latter is infrared divergent. It has a
simple diagrammatic interpretation, visualized in figure 4.4. This diagram-
matic interpretation is in the spirit of classical currents, which is valid for
soft emissions, and strictly speaking not in terms of Feynman diagrams due
to the existence of the contact terms. Namely, all interferences of the type
I include at least one gluon exchange with the medium, while the type II
includes only the case that gluon does not interact with the medium. The
interaction of the off-shell gluon with the medium screens both the soft and
the collinear divergences in Z:2*''! as is the case for the independent spec-
trum. It is therefore the interference spectrum II that gives the dominant
contribution in the soft limit.

The interference spectrum I reads

Lt 2
Tintefl — 9 (47)2a? C4 O no/o dw*/ (;ﬂq ;%)2
) L{m cos (@2;57) ~ 1]
N m [1 4 cos (Quga™) — cos (U a*) — cos (g at)]
+ (za-z)ﬁ [cos (Qg27) — cos (Qgga™)]
o oy L0 () = cos (g2 }

(4.57)

with Qug = p-v/pt —p-v/p* and Q). = p-k/p* —p-k/pt. The interference
spectrum II reads

LT
:Z—(i]%terf II _ (4 7-‘-) CA Crng / dz™ /

o K K

xZ (p-k)(p-Fk)
The divergent structure of Eq.(4.58) is apparent from the fraction in the
second line. Furthermore, arranged in this way the novel contributions
exhibit a cancellation between I;gdep and Z@2rfl in the soft limit. This
cancellation as first observed in [26] still holds numerically in the massive
case (see figure 4.5).
In the following, we will be concerned with comparing the coherent spectrum
off one of the constituents, say the quark, defined as

2+ mD)2 (4.58)
[cos (Qqqx ) — cos (ngx )] .
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Z:]:oh _ I(i]ndep + <I(i]%terfl + Z{i]r(%terf H> /27 (459)

with the purely independent component Z,"'*P. In vacuum, it is well knowm
[18] that the coherent spectrum off the quark (antiquark) differs from the
independent spectrum only by the angular ordering condition.

For the medium-induced spectrum, on the other hand, since only the ZiterII
component contains an infrared divergence, the main contribution to Eq.(4.54)
is readily found for soft gluon emissions. In the ultrarelativistic limit, after
averaging over the azimuthal angle with respect to the quark direction, one
obtains

dN, asCp sind 1+ n? I

Ydwdd T x 1—ncos 1+ cosd

(0(1(77 0’ 90) Amed (aq(j, 905 L+) )
(4.60)

where n = /1 — 62. Note that the collinear divergence in the second fraction
on the right-hand-side of Eq.(4.60) is explicitly regulated by the quark mass
due to the dead-cone effect. In Eq.(4.60), the expression for H (6,4, 6;60)
reads

7 €0s 64 — cos 0

\/(1 — 1) cos 0yg cos0)? — 1?2 sin? 4 sin’ 0

)

1

(4.61)

which reduces to the Heaviside step function in the case of massless antenna,
ie. H(04q,0;00 =0) = O (cosfyq — cos). This generalized Heaviside step
function comes with the reverse ordering condition compared to the vacuum
radiation, thus mainly allowing radiation to be induced at angles larger than
the opening angle of the pair. This spectrum is therefore a generalization
of the property of the anti-angular ordering, found for the first time in [26],
for a massive quark-antiquark antenna here.

The medium decoherence parameter appearing in Eq.(4.60) reads

a7 lmpat ([r[mpat
Amed (qu, L ) = —5 dx 1-— LJF Kl LJF
0

"D (4.62)

1 1
~ —GL"|r]* | log ——— + const. | ,
6 || mp
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where K is the modified Bessel function of the second kind and |r| = |[dn| LT
is the transverse separation between the emitters of the antenna when they
leave the medium. The transverse angular separation of the quark-antiquark
pair is given by

sn 3_3 _ \/§sin9qq— N

Cpt Pt 1+4/1-63 cosﬂqqn’
where n denotes the direction of dn. dn contains only a weak dependence on
the quark mass. The medium transport parameter is defined in Eq.(4.46).
Note that the approximation performed in the second line of Eq.(4.62) is
strictly valid as long as |r|mp < 1. Under the same condition, one can
further simplify Eq.(4.62) by observing that the medium decoherence pa-
rameter exhibits only a mild logarithmic dependence on |r|mp. Then one
simply has

(4.63)

Amed (0gg, LT) 0c g LT |r|* o< G L3 62, (4.64)

Keeping in mind the angular ordered vacuum contribution, it becomes ev-
ident that the medium decoherence parameter controls the onset of deco-
herence or, in other words, the breakdown of the angular ordering for soft
gluons. For a dense medium, one has to go beyond the single scattering ap-
proach and resum multiple interactions [29, 35, 36]. It is easy to check that
the medium decoherence parameter in Eq.(4.62) is in fact the leading order
contribution to the full result. In the opaque medium limit, i.e. Apeq — 1,
all sensitivity on the medium characteristics are thus lost.

Above, we have relied on the fact that ng — 0 in the soft limit. This
approximation breaks down for the emitted gluon energy w >> 0, when one
also has to keep the factor cos (Q,72") in Eq.(4.58). Moreover, for hard
gluons one has to take into account all the components of the spectrum on
equal footing. This gives rise to a characteristic cut-off scale that governs
the transition between the independent and interference-dominated parts of
the spectrum. This cut-off scale is independent of the quark mass.

In order to analyze the new interference contributions, to compare them
with the already known independent ones and to explore phenomenological
consequences, we turn to the numerical evaluation of the results.

Due to symmetry reason, one only needs to consider the emissions off one
of the antenna constituents, e.g. the quark. Its propagation establishes a
preferred direction such that all azimuthal averages are performed with re-
spect to it, and additionally the vector of the momentum exchange with
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the medium is perpendicular to it. These approximations are valid in the
high-energy limit, where all angles are assumed to be small enough. Fur-
thermore, the medium density is normalized by ng L™ = 1 and a, = 1/3. If
not specified explicitly, all calculations are made for the quark and the anti-
quark energies of £ = £ = 100 GeV. The heavy quark masses are chosen to
be m = 1.5 GeV for the charm quark and m = 5 GeV for the bottom one.
The choice of the remaining medium parameters reflects two extreme sce-
narios: the moderate medium interaction with mp = 0.5 GeV and L = 4 fm
and the dense medium interaction with mp =2 GeV and L = 10 fm. In a
realistic situation both of these quantities depend strongly on local medium
properties and its global evolution.

We first study the antenna angular spectrum and decoherence features, then
we analyze the transition between the antenna spectrum and independent
spectrum, to finally examine the average radiative energy loss and the trans-
verse momentum broadening. In all cases, both the difference between the
antenna and the independent radiation and the mass effect on them are
discussed.

The angular distribution of the medium-induced gluon radiation spectrum
off a quark-antiquark antenna at first order in the opacity expansion is shown
in figures 4.5 and 4.6, where the massless antenna (solid curve) exhibits the
anti-angular ordering for the emitted gluon energy w = 2 GeV. As already
mentioned, this emerging feature is the result of cancellations between vari-
ous components of the spectrum, which also holds for the massive spectrum
(see figure 4.5 and the discussion above).

For the charm and the bottom antennas, on the other hand, such strict
anti-angular ordering is modified by the non-zero quark (antiquark) mass for
small opening angles of the pair (see the right panel of figure 4.5 and the left
one of figure 4.6). This is due to the screening of the collinear singularity and
the appearance of the generalized Heaviside step function in Eq.(4.61). The
heavier the quark is, the stronger the suppression of the radiation spectrum
is. Since the dead-cone suppression mostly affects small angle emissions, this
effect becomes weaker and weaker with an increasing opening angle of the
pair (see the right panel of figure 4.6). In this situation, medium-induced
large angle emission does not display a strong mass ordering as expected
from the dead-cone suppression.

Both the massless antenna [29] and the massive one exhibit complete deco-
herence in the opaque medium limit [29, 35, 36], i.e. Ayeq — 1in Eq.(4.60)
(see figure 4.7, where we have also included the corresponding coherent vac-
uum spectra for the charm and the bottom quarks, respectively). This illus-
trates that the quark-antiquark system decoheres and behaves like two inde-
pendent emitters which radiate as if propagating in vacuum. The mass effect
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Figure 4.6: The angular distribution of the medium-induced gluon radiation
spectrum off a quark-antiquark antenna at first order in the opacity expan-
sion in the soft limit [2] (The parameters are chosen to be the same as in
figure 4.5. The solid curve corresponds to the massless antenna, the dashed
curve corresponds to the charm antenna and the dotted curve corresponds
to the bottom antenna.)

smears out the angular separation between vacuum and medium-induced ra-
diation, which holds strictly in the massless case. Due to the small angle
nature of the dead-cone suppression, the intensity of the vacuum radiation
is suppressed almost by a factor of 3 between the charm and the bottom
quark spectra while the medium-induced spectrum is almost unaffected (see
also figure 4.6).

Let us now consider the medium-induced gluon energy spectrum calculated
via

dN /2 dN
_ B 4.
Y0 ; dewdwd&’ (4.65)

where the upper limit for the integration over the gluon emission angle
is chosen so that |k|nax = w. In figure 4.8 we plot the antenna and the
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Figure 4.7: The decoherence limit of the angular distribution of the gluon
radiation spectrum off charm (plot on the left) and bottom (plot on the
right) antennas in the presence of a medium [2] (The parameters are chosen
to be the same as in figure 4.5. The solid curve corresponds to the spectrum
computed up to first order in the opacity expansion, and the dashed curve
corresponds to the antenna spectrum in the presence of a completely opaque
medium, i.e. Ayeq — 1.)

independent spectra off a massless quark and a quark with mass m = 10 GeV
(for the purpose of illustration), respectively. In the left column of figure
4.8 we show calculations for a moderate medium, while the right column
contains the same curves in the case of a dense medium. First: We notice the
different behaviors in the soft sector of the two types of spectra reflecting the
infrared properties of the independent spectrum and the coherent spectrum
off the quark. Second: We notice that the coherent spectrum matches the
independent one for the emitted gluon energy w > weon as expected. In
between these extremes, the cancellations that dominate for the moderate
medium, cf. upper left panel of figure 4.8, turn to be an enhancement of the
coherent spectrum, cf. lower left panel of figure 4.8. These general features
of the medium-induced coherent spectrum hold for both the massless and
the massive cases.
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The effects of the quark mass are found both in the soft and the hard
sectors and are highlighted by the shaded area in figure 4.8. Starting with
the former, for the antenna spectrum this is a manifestation of the dead-
cone effect which is sizeable at small opening angles (see the upper row of
figure 4.8), and vanishes with an increasing opening angle (see the lower row
of figure 4.8). Clearly the dead-cone effect is more pronounced in the soft
gluon regime for the antenna spectrum. The independent spectrum, on the
other hand, is not noticeably modified due to the compensation between the
dead-cone suppression and the formation time effect. The typical medium-
induced soft gluon radiation takes place at large angles. In the hard sector,
one is only left with the independent components as mentioned before, and
the medium-induced hard gluon radiation happens at small angles. We
therefore observe that the spectra off the massive quarks are more steeply
falling than the ones off the massless quarks. This is a well-known effect
from the constraint on the phase space of the perpendicular momentum,
which ultimately gives a manifestation of the dead-cone effect. As seen in
the right column of figure 4.8, this effect is independent of the opening
angle of the pair. Finally we notice that the independent spectrum off a
massive quark is in fact enhanced for the small medium parameters, i.e. in
the moderate medium scenario in the left column of figure 4.8, as compared
with the massless one. This reflects the situation when the formation time
effect prevails over the dead-cone suppression, leading to a net enhancement
of medium-induced radiation as already noticed in [28].

The amount of energy taken away by the radiated gluon can be interpreted
as an energy loss of the emitter. Thus one defines the radiative energy loss
for the emission of gluons with energies in a certain energy interval, i.e.
Wmin < W < Wmax, as

Wmax w/2
AFE :/ dw/ dfw d—N (4.66)
0

Wmin
The ratio AE/E as a function of the antenna opening angle is shown in
figure 4.9 for three distinct gluon energy ranges. In the soft and semi-soft
gluon energy regions, i.e. 0 < w < 2 GeV and 2 GeV < w < 6 GeV,
both the massless and the massive antenna fractional energy losses grow
monotonously with an increasing opening angle and the former energy loss
is larger than the latter. In the hard gluon radiation sector, i.e. 6 GeV <
w < F =100 GeV, the situation is similar for the large medium parameters,
i.e. for the dense medium scenario, while for the small medium parameters,
i.e. for the moderate medium scenario, there is a reversal of the behaviors
between the massless and the bottom antennas due to the formation time
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effect, which results in a larger energy loss for larger masses as discussed
above. For the large medium parameters the dead-cone suppression is the
main mass effect in all gluon energy sectors.

Both the results of the massless and the massive antennas approach the ones
of independent emitters when the antenna opening angle is large enough,
displaying that the interference between the quark and the antiquark re-
duces with an increasing opening angle as expected. Besides, in the soft
gluon emission region and for the large medium parameters there is appar-
ently more energy loss for the antenna than for the independent emitters in
both the massless and the massive cases. This reflects the fact that the an-
tenna spectrum exhibits a soft divergence while the independent spectrum
is infrared finite (see figure 4.8 and the discussion below). In the semi-soft
and the hard gluon emission sectors, the antenna average radiative energy
loss increases and gradually approaches the independent average radiative
energy loss with an increasing antenna opening angle, which indicates that
in general more collimated projectiles lose less energy. Naturally there is
no medium-induced antenna radiation for a vanishing opening angle due to
the conservation of the color charge. Overall, the phase space restriction
for gluon radiation implied by the dead-cone effect is similar for both the
antenna of large opening angles and the independent emitters.

In order to further investigate the relation between the radiative energy loss
and its angular structure, we compute the medium-induced radiative energy
loss outside of a specific gluon emission angle:

Wmax w/2 , dN
AFE(0) = /wmin dw/g do’w TR (4.67)
The ratio AE (0) /E as a function of the gluon emission angle is shown
in figures 4.10 and 4.11 for the moderate and the dense medium scenar-
ios, respectively. Note that the behavior of AFE (f) with the gluon emission
angle traces the angular behavior of the differential energy spectrum. A
decrease slower than linear of AE (0) comes from an increasing energy spec-
trum. A decreasing linear behavior of AE () results from a flat energy
spectrum. A decrease stronger than linear of AE (6) traces a falling energy
spectrum. A flat behavior of AF (6) indicates the null contribution, which
is due to the anti-angular ordering for the antenna. An increasing behavior
of AFE () indicates the existence of negative contributions at small angles
due to the destructive interferences, which is a well-known phenomenon
in the BDMPS-Z/ASW/GLV framework [22, 28] for the small medium pa-
rameters. The first behavior points to k-broadening of the radiation which
reaches the upper bound at a finite gluon emission angle. Recall that the
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medium-induced gluon radiation spectrum off a single emitter is known to
exhibit k-broadening, and a proportionality relation between (k?) and AE
holds there (see Eq.(4.6)).

Examining figures 4.10 and 4.11, one can see that the independent emitter
exhibits k-broadening in the regions of soft and semi-soft gluon emission,
ie. 0 <w<2GeVand 2 GeV < w < 6 GeV. k-broadening emerges due to
the rescattering of the emitted off-shell gluon with the medium. Since the
interference spectrum II dominates in the soft limit w — 0, and it only con-
tains the on-shell gluon bremsstrahlung and the rescatterings of the quark
and the antiquark with the medium, there is no k-broadening for the an-
tenna. For the antenna opening angle 6,; = 0.1 in the regions of soft and
semi-soft gluon emission, AFE (#) of the massless antenna is almost a con-
stant for the gluon emission angle 6 < 6,5 due to the anti-angular ordering.
For the gluon emission angle 6 > 0,4, the curve of the massless antenna
drops monotonously and faster than linear with an increasing gluon emis-
sion angle. The suppression of the gluon radiation off the bottom antenna
(dotted curve) as compared with the one off the massless antenna (solid
curve) can be clearly seen at the gluon emission angle § < 6,5, because
most of the gluons are emitted around the antenna opening angle. For the
antenna opening angle 0,; = 0.4, the antenna still keeps the interference
feature, i.e. the flat behavior for the gluon emission angle 6 < 0,; in the
soft gluon emission sector, but it shows some k-broadening in the semi-soft
gluon emission sector (more evident for the large medium parameters).
Note that in figure 4.10 the interference between the emitters included in
the antenna generates more gluon radiation at the antenna opening angle
04 = 0.4 than at 6,; = 0.1 for the specific choice of the parameters, i.e.
mp = 0.5 GeV, L =4 fm and 0 < w < 2 GeV. It agrees with the medium-
induced gluon energy spectrum (see the left column in figure 4.8). In the
region of large gluon emission energy, i.e. 6 GeV < w < F = 100 GeV, for
both the antenna opening angles ¢,; = 0.1 and 0.4, the antenna and the
independent spectra exhibit similar features with respect to the transverse
momentum broadening in both the massless and the massive cases. One
can see that the interference spectrum dominates gluon radiation when the
antenna opening angle is small and the emitted gluon is soft. In this case, the
antenna exhibits a new type of broadening, i.e. anti-angular ordering; while
the antenna behaves like a superposition of independent emitters when the
opening angle is large and the radiated gluon is hard, and then the antenna
shows the typical k-broadening.

As a short summary, we notice that more collimated antennas lose less
energy and the size of the mass effect on the energy loss for a quark-antiquark
antenna with increasing opening angles becomes more and more similar to
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the one resulting from independent emitters (see figure 4.12). Therefore
only a superposition of two independent radiation exists in a back-to-back
quark-antiquark system.
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Figure 4.8: The medium-induced gluon energy spectrum [2] (We present
calculations for the moderate medium scenario in the left column and the
dense medium scenario in the right, where the opening angle is 6,; = 0.1 in
the upper row and 6,; = 0.4 in the lower row. The solid curve corresponds to
the massless antenna, the dotted curve corresponds to the massive antenna,
the dashed curve corresponds to the massless independent spectrum and the
dash-dotted curve corresponds to the massive independent one. The use of
rest mass m = 10 GeV is for the purpose of illustration.)
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Figure 4.9: Dependence of the relative medium-induced radiative energy
loss on the antenna opening angle [2] (The parameters are: Debye mass
mp = 0.5 (2) GeV and medium length L = 4 (10) fm for the plots on
the left (right). The solid curves correspond to the massless antenna, the
dotted curves to the bottom antenna, the dashed curves to the massless
independent spectra and the dash-dotted curves to the bottom independent
spectra. From top to bottom, the values used for w,, are 0, 2 GeV and 6
GeV, while those for wy.x are 2 GeV, 6 GeV and E, = E = 100 GeV.)
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Figure 4.10: Dependence of the relative medium-induced radiative energy
loss outside of a cone on the angle defining the cone [2] (The parameters
are: Debye mass mp = 0.5 GeV, medium length L. = 4 fm, and antenna
opening angle 6,; = 0.1 (0.4) for the plots on the left (right). The solid
curves correspond to the massless antenna, the dotted curves to the bottom
antenna, the dashed curves to the massless independent spectra and the
dash-dotted curves to the bottom independent spectra. From top to bottom,
the values used for wp,, are 0, 2 GeV and 6 GeV, while those for wy,.x are
2 GeV, 6 GeV and £, = F =100 GeV.)
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Figure 4.11: Dependence of the relative medium-induced radiative energy
loss outside of a cone on the angle defining the cone [2] (The parameters
are: Debye mass mp = 2 GeV, medium length L. = 10 fm, and antenna
opening angle 6,; = 0.1 (0.4) for the plots on the left (right). The solid
curves correspond to the massless antenna, the dotted curves to the bottom
antenna, the dashed curves to the massless independent spectra and the
dash-dotted curves to the bottom independent spectra. From top to bottom,
the values used for wp,, are 0, 2 GeV and 6 GeV, while those for wy,.x are
2 GeV, 6 GeV and £, = £ =100 GeV.)
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Chapter 5

Antenna in t-channel

5.1 t-channel antenna radiation in vacuum

Studies of medium-induced QCD radiation usually rely on the calculation
of single-gluon radiation spectrum off an energetic parton traversing an ex-
tended colored medium. In 4.2.5, the importance of interference effects
between two emitters in the medium has been explored. As an extension to
the study of the s-channel antenna radiation, the ¢-channel antenna radia-
tion is studied in [3], i.e. the color coherence pattern between initial and
final state radiation.

Figure 5.1: Soft gluon radiation in the quark scattering process without color
transfer in ¢-channel in vacuum [30] (Note that 6,; = 6,, as introduced in
the text.)

A Deep Inelastic Scattering process with an exchange of a virtual space-like
photon is considered (see figure 5.1). The virtual photon exchange is denoted
as hard scattering in the following. The calculation is again performed in
the light cone gauge A" = 0 with n = (0,1,0). The classical current that
describes the incoming and the outgoing quarks with the hard scattering
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taking place at a certain time t = ¢( reads

J(O) = Jin,(O) + Jout,(O)a (5.1)

where the subscript (0) denotes vacuum quantities, and the currents for the
incoming and the outgoing quarks are given by

81
|

g g P (

in,(0) E t) o (tO - t) Q?n,

(5.2)

=y Tl

it

Tt oy =98 (f— t) O (t —to) Qb
In Eq.(5.2), Q¢, and Q%, are the color charges of the incoming and the
outgoing quarks, respectively, and the overline is used here to denote the
momentum and other related quantities of the outgoing quark. By current
conservation, one has Q% = Q%, and Q%2 = Q%2, = Cp. Here we will
follow the approach of the last chapter and we start again by the vacuum.
By linearizing the classical Yang-Mills equations, cf. Eq.(4.10), the solution
of the classical gauge field at leading order of the strong coupling constant

in momentum space reads

i k! R

Ay =210 (5 Q55 Q) (5.3)
where the forms of the transverse vectors ~’ and &' are the same as in
Eq.(4.19), but here the transverse vectors describe the transverse momenta
of the gluon relative to the ones of the incoming and the outgoing quarks,
respectively. Taking the solution of the classical gauge field, i.e. Eq.(5.3),
into the reduction formula and summing over the physical polarizations, the
vacuum spectrum of a soft gluon radiation in the quark scattering process
without color transfer in ¢-channel reads

dNVvac as Cp
W Rin + Rout — 27). 5.4
d3k (27?)2w2 ( ! ) (54)

where
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_ 4w?

Rin = 2
5.5
e (5.5)
Rout = —
K

are the independent radiation spectra off the incoming and the outgoing
quarks, respectively, and

J=4w PP

(5.6)

denotes the interference between the incoming and the outgoing quarks.
The same as the case of the s-channel antenna radiation in vacuum, one can
separate the collinear divergences belonging to either the incoming quark or
the outgoing one by defining the coherent spectra P3¢ = R;,—J and P =
Rout — J, respectively. The vacuum spectrum in Eq.(5.4) presents both the
soft and the collinear divergences. In addition, the inclusive spectrum is
suppressed at large gluon emission angles due to the destructive interference
between the emitters, i.e. taking the azimuthal angle average along the

longitudinal axis of, e.g. the incoming quark:

a, Cp d_w sin 6 d6
T  w 1—-cosf

(AN o = © (cos @ — cosbyg) , (5.7)
where the gluon emission angle is defined as before, and 0, is the scattering
angle between the incoming and the outgoing quarks which is related to
the virtuality of the off-shell particle in the hard scattering, e.g. the vir-
tual photon in Deep Inelastic Scattering. Eq.(5.7) indicates that the gluon
emissions are confined in the cone set by the scattering angle along either
the incoming or the outgoing quark. The procedure described here can be
extended to higher orders and constitutes the basic building block for the
construction of a coherent parton branching formalism [31].

5.2 i{-channel antenna radiation in a medium

5.2.1 Dilute medium set-up

One way to include medium modifications to the ¢-channel antenna radia-
tion spectrum is to consider an asymptotic highly energetic quark produced
in the remote past that suffers a hard scattering at 2+ = xf{ and afterwards
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Figure 5.2: Medium-induced soft gluon radiation in the quark scattering
process without color transfer in ¢-channel [3]

traverses a static color deconfined medium of finite size L™ = /2 L. Here
the color deconfined medium is assumed to appear at exactly the same mo-
ment as the hard scattering, i.e. at 2+ = xar . Gluon is radiated either before
or after the hard scattering (see figure 5.2 for an illustration of the physical
configuration under consideration). In the classical gauge field approxima-
tion, the quark fields act as a perturbation around the strong medium field
(the shaded rectangle in figure 5.2). The total field is written as

A=Apea+ A + A, (5.8)

where A ) is the gauge field of the quarks in vacuum, and A ;) is the induced
gauge field, i.e. the response of the medium field at first order. The medium
field in Eq.(5.8) is the solution of the 2-dimensional Poisson equation, cf.
Eq.(4.30). In Fourier transform the medium field reads

_ dq o iq
a0 %) = [ SL275 (%) A (a700) 7770 (59)
(2m)
At first order in the medium field, the continuity equation for the induced
eikonalized current is the same as in Eq.(4.34). Its solution can be written
as the sum of the currents of the incoming and the outgoing quarks:

H HH
B p — + . p _ +
J(l) =19 P a |:Amed7 Jin7(0)] + 19 p ) a |:Am€d7 JOUL(O)] s (510)
where J;;L 0) and J;;t (0) are given by the expressions in Eq.(5.2). The

current of the incoming quark at first order in the medium field is
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Jr

a d*q p
e (k) = (i g)* —2 / —i
m7(1)( ) =(ig) —ip-k (277)4 p-(k—q)—ic (5.11)

x [T Asoq (@)]” QL.

where [T- A, (q)]ab Qb = —if®cAc (g) Q%,. An analogous expression
is readily obtained for the current of the outgoing quark. After linearizing
the classical Yang-Mills equations in «y, the equation of motion for the

transverse components of the induced gauge field reads

1A

DALy =209 [ A, 07 Al | = —g—+ T+ Jh)- (5.12)
While the calculation of the amplitude associated to the outgoing quark is
identical to the one associated to the quark in the case of the s-channel
antenna, the treatment to the incoming quark is slightly different due to
the difference of the Heaviside step functions in Eq.(5.2). The solution of
Eq.(5.12) in momentum space for the induced gauge field of the incoming
quark can be written as

Ao X A Al (ke —
in,(1) — <9 4 ( q) med (Q), in,(O)( q)
A (5.13)
k! + 7
= 57 Jin) T Jin 1)

where A} ) (k — g) can be identified with the vacuum field induced by the

incoming quark, cf. Eq.(5.3). Integrating out ¢~ in Eq.(5.13) and assuming

that the medium starts to appear at 2+ = x:{ , one obtains

2m)?* Joy (5.14)
—a)2 -
X Ql.’ ei [k_i(lz k(jr) et (K — Q)Z
" (k—q)’

On the other hand, the solution of the induced gauge field due to the out-
going quark reads [17, 26]
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—k Aout,(l) =219 2 dz [T ’ Amed (.%' ’ Q)]
2m)° Jz

el

Y _ 2 (5.15)
A ()

k—q

R’ (R—a)®
+?6Xp<lwl' s

which is identical to Eq.(4.40) as expected. By using the reduction formula
together with the induced gauge fields for both the incoming and the outgo-
ing quarks, one gets the total scattering amplitude for soft gluon radiation
off the incoming and the outgoing quarks:

a __ a a
M)\ - Ajin + M)\,out

o e

= — 21 x . 46" 5 in o o

g (2 7_(_)2 933' med q (K/ _ q)2
—q

R _ ,(Fz—q)2
Zut [W —L exXp (ZWxJF)] }

Here we use the definition of the transverse components of the Lipatov vertex
in the light cone gauge:

N

(5.16)

-4 _= (5.17)
(k—q)” K

From Eq.(5.16), one observes that the contribution to the total scattering
amplitude from the incoming and the outgoing quarks is not symmetric.
Such difference arises due not only to kinematic constraints but also be-
cause gluons off the outgoing quark may be radiated and rescatter with the
color deconfined medium, while gluons off the incoming quark are created
prior to their passage through the medium, and their momenta are going to
be simply reshuffled once they interact with the medium during the interval
xar < at < LT. To evaluate the cross section one must average the medium
field and include the virtual corrections. The medium average is performed
in the same fashion as in Eq.(4.44). The contact terms required by unitarity
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are the interferences between the gluon emission amplitude in vacuum and
the one accompanied by two scatterings with the medium with no net mo-
mentum transfer. These can be added to the radiative cross section through
a redefinition of the potential, cf. Eq.(4.49).

YO00000000

-——-----

Figure 5.3: All types of Feynman diagrams contributing to the radiative
cross section in the light-cone gauge [3]

When calculating the radiative cross section in the light-cone gauge, the
contributions to the gluon spectrum can be separated according to the po-
sition of the emission vertex in the amplitude and its complex conjugate.
In our setup, we have three possible cases. First: Gluons radiated inde-
pendently off the incoming quark, which corresponds to the square of the
amplitude where the emission vertex is before the hard scattering, so that
the gluon entering the medium is fully formed. Second: Gluons radiated
independently off the outgoing quark, which corresponds to the square of
the amplitudes with both emission vertices after the hard scattering. Third:
Gluons radiated in a fashion of inference between the cases where one gluon
emission vertex is before the hard scattering in amplitude and another is
after the hard scattering in the complex conjugate of the amplitude. Fig-
ure 5.3 illustrates this classification in terms of Feynman diagrams. Note
that the same result as presented here can be obtained by using the Feyn-
man diagram language instead of the classical gauge field approximation.
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In this case, there are 2 vacuum amplitudes, 5 amplitudes with one scat-
tering and 7 amplitudes with two scatterings that contribute to the contact
terms. The medium-induced gluon radiation spectrum is proportional to
the sum of the medium averages, which consists of 39 diagrams in total.
After squaring the amplitude, averaging the colors, summing over the phys-
ical polarizations and considering the interferences, the spectrum of the
medium-induced gluon radiation reads

dNmed 4o, Cpg [ d2 L¥ 1 1
w — = @ Fq/ q2V2(q)/ dzt Ry
d3k ™ (27) 0 (k—q)" &
K-q (k — Q)2 b
+2 l—cos| ——=x
R2 (R —q) < 2kt

where the medium transport parameter is defined in Eq.(4.46) and one sets
z¢ = 0. The first line in Eq.(5.18) is the contribution to the gluon radiation
spectrum off the incoming quark. It corresponds to the bremsstrahlung
of the accelerated color charge, which subsequently undergoes rescattering.
The second line in Eq.(5.18) corresponds to emissions off the outgoing quark.
It is identified with the so-called GLV spectrum [25] or equivalently the first
order in the opacity expansion of the BDMPS-Z-W spectrum [24]. The
novel contributions associated to the interferences between both emitters
are contained in the rest. Note that the interference contributions show
both the soft and the collinear divergencies. We observe that in the limit
when the scattering angle between both emitters vanishes, i.e. 0,, — 0, the
medium-induced gluon radiation spectrum (see Eq.(5.18)) reduces to the
well known Gunion-Bertsch spectrum [37] (see Eq.(4.2)). This is expected
since the Gunion-Bertsch spectrum is the genuine induced emission due to
a scattering of an asymptotic charge with the medium.

In our notation, the hard emission is the one in which the emitted gluon
undergoes no scattering with the color deconfined medium. The pattern
of interferences between the hard and the medium-induced emissions is in-
volved. In order to better elucidate its physics, we consider here three in-
teresting asymptotic regimes, namely the incoherent, the coherent and the
soft limits. The GLV spectrum shows an interplay between the hard and
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the medium-induced gluon emissions. The phase achieved by color rotation
relates the effective formation time of the emitted gluon 74 ~ w/ (K — q)’
to the position of the interaction with the medium which is the main cause
of the interference between both mechanisms of emission. The spectrum
reaches its maximum in the incoherent limit 7 < L™, where these mech-
anisms can be clearly separated since the phases cancel. In addition, this
limit permits a clear probabilistic interpretation [24]. When one takes the
incoherent limit, the contribution with the cosines in Eq.(5.18) can be ne-
glected and the spectrum can be written as

dNmed dasCpg [ d2q L*
W= = r / > V2 (q) / dat
Bk <t m (2m) 0

x [L? + C* (k —q) — C* (k)]

(5.19)

where we use the definition of the transverse emission current (an identical
definition follows for C (k — q) by changing k — k — q, cf. Eq.(4.50))

(5.20)

Note that the gluon spectrum in vacuum, i.e. Eq.(5.4), can be rewritten
in terms of C? (k), so this term takes into account the independent hard
gluon emissions as well as their interferences. A similar interpretation ap-
plies for C? (k — q) but by the transverse momentum broadening of the
emitted on-shell gluon due to its rescattering with the medium. The in-
coherent limit of the gluon spectrum given by Eq.(5.19) allows a similar
probabilistic interpretation as in the case of the GLV spectrum but further
including the interferences. In the incoherent limit, one observes two mech-
anisms of gluon radiation. The first term of Eq.(5.19) corresponds to the
genuine medium-induced gluon radiation off an asymptotic quark that suf-
fers a scattering with the medium, i.e. the Gunion-Bertsch spectrum. The
last two terms in Eq.(5.19) correspond to the radiation pattern in Eq.(5.4),
i.e. the bremsstrahlung associated to the hard scattering, followed by the
radiated on-shell gluon suffering a classical sequential process of rescattering
with the medium. In addition, these last two terms include the interferences
between the incoming and the outgoing quarks.

For the large formation time 7; > LT, the medium-induced gluon radiation
spectrum off a quark created at finite time is completely suppressed due to
the LPM effect. When the coherent limit is taken for the gluon spectrum
(see Eq.(5.18)), the cosine does not oscillate, i.e. cos(L*/7s) — 1, and
therefore the gluon spectrum is further simplified to be
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dNmed dasCrpg [ d2q L*
T = / (27)? v (q)/ dot
L T 0 (5.21)
1 1 K-k K (k—q)
(k—aq)? & KK R2(k—q)

The first two terms in Eq.(5.21) correspond simply to the transverse mo-
mentum broadening of the on-shell gluon emission off the incoming quark
and the conservation of the gluon radiation probability. The last two terms
are the interferences between the initial and the final states. The fact that
there is no contribution exclusively associated to the outgoing quark, i.e. the
GLV spectrum, is caused mainly by the destructive interferences between
the hard and the medium-induced emissions taking place completely inside
the medium. So, in this case the LPM effect becomes subleading and some
of the interferences between the initial and the final quarks remain. Note
that if one integrates out k in Eq.(5.21) and neglects the finite kinematics of
the gluon, one can recover the result shown in Eq.(3.4) of [38], where a sim-
ilar setup as the one presented here has been advocated to be of relevance
for the energy loss of quarkonia in nuclear matter. In the coherent limit the
position of the scattering center becomes close to the hard scattering point
where the medium starts, and thus it looks as if the hard gluon radiated off
the outgoing quark does not rescatter and is produced completely outside
the medium. This hard gluon produced outside the medium is precisely
the one that interferes with any of the hard and the medium-induced gluon
emissions associated to the incoming quark.

The medium-induced gluon spectrum (5.18) can be further simplified in the
soft limit w — 0. In this limit, the dominating contribution to the cross
section is

4 i k1
lim | M2 = 20 CF 4 (2 AREAA > (5.22)
w—0 ™

kZk2 K2
From this result, one can conclude that in the soft limit the medium-
induced gluon emissions contain the same structures as the vacuum ones

(see Eq.(5.4)). Thus, in the soft limit the medium-induced gluon radiation
spectrum can be written as

- = ART —Rin), (5.23)



where A = ch+/m2D ~ L/\ is the opacity expansion parameter, i.e. the
effective number of scattering centers. In the soft limit, the full gluon spec-
trum in the presence of a medium is

(5.24)

w—0"

dNtOt‘w_)O — (deaC 4 deed) ‘

Following the similar procedure as the vacuum case, one separates the in-
dependent and interference contributions to the incoming and the outgoing
quarks in such a way that the total spectrum reads

dNtot s C
W= — ZoTF (plot 4 proty | (5.25)
d°k w—0 (2 77) w—0

where

P =1=A)(Rin—J),

5.26
POt — Rewt — (1 —A) J. (5:26)

In the absence of a medium, i.e. A — 0, one naturally recovers the radiation
pattern observed in vacuum, i.e. Eq.(5.4). In the opposite case of an opaque
medium, i.e. A — 1, there is a significant reduction of soft gluon coherent
radiation from the incoming quark, which is in qualitative agreement with
the expectations from the saturation of parton densities [39]. Note that the
boundary condition A < 1, although not evident in the first order in the
opacity expansion, is given by unitarity. When multiple soft scatterings, i.e.
dense medium, are considered, we expect that the soft gluon emission from
the incoming quark to be exponentially suppressed. In the soft limit, the
total spectrum (5.25) presents both the soft and the collinear divergences.
The separation of the gluon radiation, i.e. Eq.(5.26), allows not only a
separation of the collinear divergences but also a simple and intuitive prob-
abilistic interpretation. P!° is the gluon emission off the incoming quark
reduced by the probability A that an interaction of the emitted on-shell
gluon occurs inside the medium. After performing an azimuthal angle av-
erage, Pi°" has the same angular ordering constraint as the vacuum case,
i.e. the emitted gluons will be confined inside a cone set by the scattering
angle around the incoming quark, but the soft gluon radiation decreases by
a quantity proportional to A. P! accounts for the partial decoherence of
the emitted gluon due to the scatterings with the color deconfined medium.
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Such decoherence is measured by the probability of an interaction with
the medium A. P! shows resemblance to the radiation pattern already
observed for the s-channel antenna radiation in a dilute color deconfined
medium [17, 26], which tells us that the interaction with the medium opens
more phase space for large angle emissions and there is a strict geometrical
separation between the vacuum and the medium-induced radiation, a prop-
erty called anti-angular ordering. The soft limit remains valid for a range
of finite gluon energies as far as wf,, < mp and |k| < mp. Hence, the
analysis for finite values of gluon energy involves two regimes related to the
relevant scales of the problem, the scattering angle 6,, between the incom-
ing and the outgoing quarks and the typical transverse momentum transfer
|g| ~ mp from the medium. So one has either 6,, < mp/w or 6, 2 mp/w.

5.2.2 Dense medium set-up

In this section we outline the calculation of the emission amplitude by using
the semiclassical methods of perturbative QCD. We introduce the notations
followed through this work. This theoretical framework has shown to be
a powerful tool in calculating observables involving soft gluon emissions at
high energies [39, 41, 42]. Within this approach, soft gluon emissions can be
seen as solutions of the linearized classical Yang Mills (CYM) equations in
the presence of a background field (the target) and a color source which is a
parton with large momentum fraction (the projectile). Through this work
we limit ourselves to the eikonal approximation, which is valid as far as the
gluon is soft relative to the parent partons. In addition we will also consider
the region of small angles defined by p™, p* > |p|, |p| > kT > |k|, which
is the interesting region in intrajet physics.

We first recall the standard reduction formula which relates the amplitude
of gluon emission with 4-momentum & = (w, E) with the classical gauge field
Af, (see for instance [14], pp. 217-224)

M (k) = Jim diz ™ O, A%(x)éh (k) (5.27)

where 6’;(12) is the gluon polarization vector. The classical gauge field A7, is
the solution of the classical Yang Mills (CYM) equations

[Dy, F*] = J", (5.28)

with D, = 0, —igA, and F,, = 0,A, — 0, A, —ig[A,, A)). In addition
to Eq.(5.28), one must consider the continuity equation for the classical
color current [D,,, J#| = 0, which describes the space-time evolution of the
projectiles. We concentrate on asymptotic states far from the region where
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the physical process happens, i.e. at 7 — oco. Therefore, Eq.(5.27) can be
rewritten as [35, 42]

M (k) = lim [ do”d*z ™" 207 A(x) - ex(E). (5.29)
T —00
We perform our calculations in the light-cone gauge (LCG) AT = 0. Only
the transverse polarization contributes to the radiative cross-section since
Sy €i(€))" = 6, where i(j) = 1,2. Finally, the gluon spectrum reads as

(2mPat I S AP, (5.30)

where the phase space volume in momentum space is d°k = d’kdk™. We
first review within this approach the coherence pattern in DIS for the singlet
case. Then we describe the set-up implemented in this work to study the
medium modifications to the interference pattern between the initial and
the final state radiation.

Let us first discuss a DIS process when there is no color transfer in the ¢-
channel exchange (e.g. an electroweak quark scattering) at finite angle 6.
We denote the ¢-channel scattering in what follows as the hard scattering.
In the absence of a QCD medium, the classical eikonalized current that
describes the quark current that scatters before (bef) or after (aft) the hard
scattering at z] = 0 reads as Ty = Ther o) t Tugi o) Where Ji . ) and
J Mft,(O) are

jbef (z) = gutO(zf — 27)5(2~ — u"2H)6®) (x — uz™) QY. .(5-31a)
T 74,(0) (x) = gu'O(zt — mg)é(x* — ffx*)é(?)(a: —urt)Q aft(5.31b)

a

In the last expression we have used the definition of the 4-velocity for each
parton in the light-cone (LC) coordinates u” = p*/p*™ = (1,u”,u) and
QL. f(aft) denotes the color charge of the incoming (outgoing) parton. Color
current conservation implies that Q7. F= Q4 e An overline ~ is used here-
after to denote the related quantities of the outgoing parton. In momentum
space, the total current ‘7(*6) can be written as

. p
JE = —Q} — Q4 . 5.32
(0.0 =9 < p-k4ie T pk+4ie aft) (5:32)

By taking the square of the total color current, one gets the gluon spectrum
[18]

kJr

dN  o,C 1 1 KR
i <§ > (5.33)

Bk w2 K2 KZRK2
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where k = k—xp is the transverse momenta of the gluon with respect to the
incoming quark (similar definition follows for the outgoing quark denoted
by K = k—xp). In order to obtain the expression (5.33) we simply consider
that the scalar product of two color charges is given by Q;(Q); = CF for the
color singlet configuration. A generalization for any color configuration is
straightforward [18, 43].
In addition to the soft and collinear divergences, the gluon spectrum (5.33)
is suppressed at large angles. This is due to the destructive interferences
between both emitters and it is the physical origin of the angular ordering
in parton cascades [18]. For a more complete discussion about the coherence
phenomena in jet physics in vacuum see Refs. [18, 31, 43].
We are interested in calculating the gluon emission off a parton created in
the remote past, which suffers a hard scattering at xar = 0 and subsequently
passes through a dense QCD medium of finite size. For simplicity we con-
sider that the medium is formed immediately after the hard scattering. The
QCD medium is described by a background gauge field A" which is a so-
lution of the two dimensional Poisson equation —d,A = p®(x™x), where
p®(x ™, x) is the static distribution of medium color charges.
From the continuity equation [D,,J#] = 0, one finds that the classical
quark currents (5.31) behave different when a QCD medium is present. The
eikonalized current (5.31b) of the outgoing parton gets color rotated due to
the multiple soft scatterings with the background field A _, and its solution
is given by [15, 41, 42]

T (@) = U@, 00T o) (@), (5.34)

a,

where 2/?*(2,0) is a Wilson line in the adjoint representation and its general
definition is

ot

Uz, y ", [r]) = Peexp [z’g /+ d="T- A, (zYr(zT)) |, (5.35)
y

where P¢ denotes path ordering along ¢ and the trajectory of the probe

along the transverse path is denoted by r = uz™.

In the case of the classical current of the incoming parton (5.31a), this

one does not get color rotated even when a QCD medium is present since

the latter is formed after the hard scattering. As we shall see below, the

gluon radiation off the incoming parton will be simply a classical broadening

process. In addition, we notice that the conservation of color charge is still

satisfied Q"f = Qf*, i.e. the presence of the medium does not change the

values of the color charges of the projectile as one expects.

We require to solve Eq.(5.28) for the total gauge field A* = o~ A 4+ a*

where a* is a small perturbation around the background field Ame . In the

82



light-cone gauge the linearized version of Eq.(5.28) are [41, 15]

O_a” + dia’ = — 4~ (5.36a)

Oa™ — 2ig[ A, .. 0-a~| — 2ig[d’, 0;A,, ]
+iglA . 0_a” +0id'] =T, (5.36b)
(O = 2ig(T - A,,,)0-)a' = Ti = 0'(5-). (5.36¢)

In the last equations, the total current J# = jbiﬁ(o) + j(th: where jbif,(o)
and jcf}t are given by Egs.(5.31a) and (5.34), respectively. Due to the
gauge choice only the transverse components o’ contribute to the gluon
emission amplitude, so we will concentrate only on its equation of motion.
In principal one can also find the component a~ either by solving directly
Eq.(5.36b) or use the constraint Eq.(5.36a) provided a known solution for
a’. See Refs.[41, 42], where this procedure was done in the CGC context.
The solution of Eq.(5.36¢) is given by [15, 42]

di (", @, k) = / d'y Gap(z, ) Fi (), (5.37)

where the modified current reads

Zi i (I
J=J -0 <a__> (5.38)
and Gy, is the retarded Green function of the differential equation
(O—2igT- A__,0%) G(z,y) = W (z —y). (5.39)

The background field does not depend on &~ which implies that the Green

function G(z,y) is invariant under translations along this direction. It is

convenient to introduce here a Fourier transform of the Green function G
+o0 . N

Gtz yt ylkt) = / dr~e VTR0 Gx,y) (5.40)

— 00

which obeys the Schrodinger-like equation

L 0? _ .
(Za +opr T Amed> Gla®, z;y", ylk™) =id(a" —y")o(x — y)(5.41)

and its solution is written as a path integral along the transverse plane[15]

zt

G (@t mytylkt) = / Dlr] exp [z% / LA | Uyt [r]) (5.42)
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This propagator takes into account the non eikonal corrections to the emit-
ted gluon due to the momentum broadening acquired due to the multiple
soft scatterings with the medium. Finally, by taking the solution of the ra-
diation field o’ (5.37) and replacing it into Eq.(5.29), we get the total gluon
emission amplitude

fot, ,\(E) = Pm P dby el et —ka) ik Ty~
X Gap (&5, @y " ylkt) T() - en (5.43)

We can separate and interpret at the level of the amplitude what contribu-
tion comes from the parton before or after the hard scattering since the total
current has two components (see figure 5.2). In the following we describe
both contributions.

Depending on the longitudinal position 4™ where the gluon is emitted, the
scattering amplitude of the outgoing parton can be split in two pieces: when
yT € [0, L] the emission occurs inside the medium (in), and when y* > L™
the emission takes place outside the medium (out) (see figure 5.2). This is
easily achieved by separating the integral over y* as

o0 JLAF 00
/ dyt = </ —i—/ >dy+.
0 0 Lt

Then one replaces the color current (5.34) into Eq.(5.43) and after a bit of
algebra, the scattering amplitude associated to the outgoing quark current
reads as M aft(k) =M ;. (k ) + MS i (k k), where [15, 35, 36]

L+

C)an‘n(];) _ k% d2$6i(k_L+—k:.m) /0 dy+eik+a_y+ € - (i(’)y n k+ﬁ)
X gab (L"’ T y+’y — ﬁy+|kz+) ubc(y—l—,O)qut, (5.448.)
a P €\ i(k-@ ou
MS (k) = =2 7 LT g (L, 0)Q0™. (5.44b)

It must be understood in Eq.(5.44a) that after performing the transverse
derivatives 0, one sets y = uy ™. The emission amplitude inside the medium
M, can be understood as a two-step process. Initially the highly energetic
parton gets color precessed from 0 until y*, which is taken into account
by the product Up.(y",0)Q%. Afterwards, the gluon is emitted at y* and
it gets broadened until the edge of the medium at L*. The physical in-
formation regarding the broadening of the gluon is encoded in the retarded
propagator G. In the case of M,,; the projectile suffers completely the color
rotation along the total length of the medium and the gluon is emitted by
bremsstrahlung outside of the medium.
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Figure 5.4: Different components of the gluon spectrum when a QCD
medium is present: (a) the “in-in” component, (b) the “in-out” compo-
nent, (c) the “out-out” component, (d) the “bef-bef’ component, (e) the
“bef-in” component and (f) the “bef-out” component. The dashed line rep-
resents the cut which divides the amplitude on the right and its complex
conjugate on the left. See the text for further details.

As we shall see in the following, the square of amplitude associated to the
outgoing parton given by the last expression will give us the BDMPS-Z
spectrum [19, 23, 24, 32, 44, 45, 46].

The gluon radiation off the incoming parton happens completely before of
the hard scattering, i.e. the longitudinal position y* € [—oc,0]. The emis-
sion amplitude in this case is found after replacing Eq.(5.31a) into Eq.(5.43),
so finally the contribution from the incoming parton reads

. — 0 . —
()l\,bef(k) _ g A2z ez(lc x*—kz-w)/ dy+€zk+u yt

k+ rt=00 —00

X

ex: (10, + kT u) G (2, 2,y T,y = uy+\k+)Qé".(5.45)

As we pointed out previously, there is no color precession in the classi-
cal current describing the incoming parton due to the absence of a QCD
medium before the hard scattering. So M. takes into account the emis-
sion by bremsstrahlung of the gluon and its subsequent classical broadening
considered in the propagator G.

We conclude here by recalling that the total scattering amplitude is the sum
of the contributions M, = Mg + My s, where M, and M,,.; are given
by Egs. (5.44) and (5.45), respectively.

The contributions to the gluon spectrum can be separated in different com-
ponents according to the longitudinal position where the gluon is emitted
in the amplitude and the complex conjugate with respect to the hard scat-
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tering, i.e. if the gluon emission happens before (bef) or after the hard
scattering. When the emission takes place after the hard scattering, the
gluon can be produced either inside (in) or outside (out) the QCD medium.
Therefore, we have six different possibilities (see figure 5.2.2 for a sketch in
terms of Feynman diagrams): the direct emissions of the incoming parton
(“bef-bef”) and the outgoing one (“in-in”,“in-out” and “out-out”) and the
interferences between both emitters (“bef-in” and “bef-out”). So the gluon
spectrum is written as follows

dNtot +
—5 Z , (5.46)
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where the different contributions k*dN;/d®k are given by

ot Woesbep 2O g / Prir 21020 L EP it ) e ) it )
' {G(LY, 7, 0,1k G (LY, v, 0,U|k+
« p-D <g( 75 Y, ‘ )g( Y ‘ )> (5473.)
p2 p/2 N2 -1 ’
ot WNin—in s CF 1 /L+ dy* / dyﬁL/szd2 1g—ik-(z=2') pikta (yT —y')
d3k 27

X (18 +/<:+ ) ( 10y +k+

+ _ + 1.+ NGt (T1+ — /|t
L G2yt y =yt U (y YOGHLT 2y Y = ay Ik )>}5.47b)

2-1
dNj, a,Cr 1 L
4 in—out  _ sVF L - 2_ i(kta—yT—k-2)
k Bh 2 T Re{ze / dy™ /d ze'l
= . (i + Lt z,yt, :——i—k-i-uTLJr’Jr
o B0y + k) (G(LY, 2yt y = ay T KU (LT, y™)) 7 (5.470)
R? N2 -1
dNoyt— as Cp 1
+ out—out s VE
k iy = 5 = (5.47d)
dNpes—; o, Cp 1 L 42K e T L (k) i
+ ef—in svYF 4 . + 2., 32, 127 ,—ikTu"yT il-(K'+kTa) —ik-(r—z)
k BE 2 k+Re{2/O dy /(277)2d rdzdle e e
X
le
LY v, 0, kDU (yt,0)GT (LT, z,yt,y = ayt |kt
o LG 0 UR)UT (T 0)GH (LT 2,y "y = myTIkT)) | (5.47)
N2 -1
dNpes_ as C A (k- ke A’k iTor il (K ket
+ ef—out s VF iLt(k——k-a 2., 1271 —ikr il-(K' +kTu
Mr—— = 27 Re{e ( >/Wdrdle et )
' Lt r,0,1/kT)UT(LT,0
st noueunenon) a0
r*k N—-1

Eqgs.(5.47) are valid for a given configuration of the classical gauge fields and
therefore, it is necessary to average over the proper ensemble of the medium
field configurations. Different techniques have been developed to carry out
such averages. In this work we consider that the medium averages are given
by a Gaussian white noise in the harmonic oscillator approximation which
we describe in the following.

A necessary ingredient to calculate observables in high-energy AA collisions
is related to the distribution of the color charges in the target. Since this
information is not known from first principles, it is usually assumed that
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the background field A, _, is distributed along the medium as a Gaussian
white noise, i.e.

(Aea(@®, @) Apea(2'.q)) = 8Pn(a™)d(at —2"*)5) (g — 4')V?(q)(5.48)

where V(q) is the medium interaction potential and n(z™) is the volume
density of scattering centers. In this work we consider that for a static
medium V(q) is a color screened Coloumb potential [19, 23, 24, 25, 32, 44,
4T7].
In the gaussian white noise approximation Eq.(5.48) and for the present
calculation, we require to evaluate the correlators (Gi') and (GG'). The two
point function (GU') is related with the quark-gluon dipole in the medium
and it is given by
1
N2 -1
e @y e (o 2 (@) vt gy ) (5.49)

(TrG(at, @yt ylk ) Ul (@, y ) = T [260) 907

where Z(2") = x —ux™t and y(y") = y —uy™. The multiple soft scattering
of the gluon with the medium is taken into account by evaluating the path
integral /C [16, 24, 32|,

Kt sy ylk) = [ Dlrjesp [ [ ae (it - %n(&)a(r))] (5:50)
Y

which describes the Brownian motion of the gluon in the transverse plane
from r(yT) = y to r(z*) = x. The correlator (GG') is related to the
medium average involving the gluon from y* to 2™ reads

e ik (z— z')
[ [t MGz el )G k) =
e_ik.(m_y)s(x+7 y+7 T — y) . (551)

where the S(z™,y ",z — y) is formally the scattering S-matrix for a dipole
which is defined as

+ o+ (e
Sty ,w—y)=exp|—3
2 J,+

Both the medium averages (5.50) and (5.51) depend on the dipole cross
section o(r), whose general expression reads

den(€) o(@ — y>] . (552)

o(r) = / (d—qQV(q) [1—cos(r-q)]. (5.53)

2)
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Following the procedure usually found in the literature, we make use of the
“harmonic oscillator approximation”, where the product n(§)o(r) ~ %QTQ
[22]. This approximation is valid in the limit of multiple soft scatterings.
Here ¢ is the medium transport coefficient, which probes the accumulated
transverse momentum squared per unit length. The harmonic oscillator
approximation allows to calculate exactly the path integral (5.50) in a static
and homogeneous medium which is given by

A
Koselat @y ylk) = = expi AB(@? +y%) —2idz-y] . (5.50)
e

where

ETQ
- 2sin(Q(zt —yt))

B =cos(Qz" —yT)).  (5.55)

In these expressions the parameter ) = (1;)\/%. In addition, the S-

matrix for a dipole (5.52) in the harmonic oscillator approximation takes a
simple form

Sosc(er, zt, r) = exp [—i(jr2(y+ - ach)] . (5.56)

Now we calculate the different components of the gluon spectrum (5.47) by
evaluating the medium averages within the harmonic oscillator approxima-
tion as it was described above. After a lengthy calculation, the contributions
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of the gluon spectrum can be finally written as

ANpef—pef

+
¥ d3k

k+ dNin—in

as Cp A2k’ iK' —r)b
— Re{/de(%Q)TSOSC(LJF,O,b) ., (5.57a)

d3k

+
K d3k

ki+ dNout—out

dNin—out

asCp 1 T L
272 (T2 Re{/o dy /0 dy /d be
Sosc(Lt, 4", 0)p - Oy Kose(y'", b,y y\k+)|y0}, (5.57b)
as CF 1 JLAF , 7znb

—Re dy ol
w2 kT {/0 / K2
rc-ayicgscw*,b,y+,yrk+)lyzo},

OéSCF 1

(5.57c¢)

d3k

Et dNbef—in

(5.57d)

bd2l —ZK',b ikl ik*én-l

d3k

Sosc(L+ay+7 b) (5576)

kl . abICOSC(y+7 b7 07 ”k+)
k/2 ?

B OésCFRe /dzkl 2bd2l kl'keikﬂze—m-beikmn-z
2 (27)2 k" k2

ICOSC(L+,b,O,l\/<:+)}. (5.57f)

Before the analysis regarding the formation time, we consider the limit when
there is no QCD medium. In this limit § — 0 the different components of
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the medium-induced gluon spectrum (5.57) reduce to

ANpe r— a;Cp 1
+ ef—bef s L
k B = 2 2 (5.58a)
dNip—; asCr 1 R?
+ in—in s L _ 3 +
k —BE 2 5 1 — cos <—2k+L )] , (5.58b)
ANin—ou a,Cp 1 R?
]C+Wt = -2 o ? 1 COS <2]{;—+L+>] s (558C)
ANyt as Cp 1
+ out—out sV L
k B = 2 a2 (5.58d)
ANpe r—; asCr KR R?
+ ef—in s VF +
k W = 2 71'2 [-/\‘,2 ’%2 [COS<2k+L ) — 1] s (5588)
dANpe r— asCr K- K R?
+ ef—out s VIF 3 +
k W = =2 7T2 [4',2 [2',2 COS <2k+L ) (558f)
After summing together the those expressions one finds
6
dN, dN;
+ tot y + )
k d3k - Zk d3k
G—0 i=1 G—0
asCp [ 1 1 K- K
- (F R 2W> 5

which reduces as expected to the vacuum gluon spectrum, i.e. Eq. (5.33).
The physical meaning of the gluon spectrum (5.57) can be better understood
by considering formation time arguments. The coherent limit corresponds to
the case when the emitted gluon remains coherent while crossing the QCD
medium, i.e. 74 > L. Hence, the emitted gluon is not able to acquire
Brownian motion while passing through the QCD medium. In this case,
one enters to the fully complete LPM regime where the medium acts as a
unique scattering center and therefore the effective momentum transfer is
~ Qs = GL*, which is constant. As a consequence, in this limit dN;,_;,
and dN;,_ .+ are suppressed. Therefore, the total spectrum is given by the
sum of three components

dNtot dNbef—bef dNbef—out dNout—out
kTt = T gt T O et O (5,60
d3k d3k + A3k + A3k ( )
’Td>>L+
In this limit, the dipole S and the path integral K become [32]
+ Qir?
LHIEOS(L ,0,r)|Qs:m8t_ = e 1, (5.61a)

lim ,Cosc(LJra € Oa y‘kJr)

Lt—0

2.2
Qsy

= 0@ (x—y)e 7 . (5.61D)

Qs=const.
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Next we make explicit use of the above expressions to simplify the non-
vanishing components of the gluon spectrum in this limit. The final result
can be written as

pr @oes vy _ 0O e/ 10g<_§> _P<0’_i2>
& Q2 A2 :
g — log <_g_22>] 7 (5.62a)
L+ de;;tl;out _ 04;# % (5.62b)
Lt dN;?;;m _ 204; g}F :2.; < - 6_,8/@2), (5.62c)

If we consider the case when the hard scattering does not affect the trajectory
of the projectile, i.e. in the high-energy limit where dx ~ 0, then kK ~ kK = k,
so Egs.(5.62) coincide with the well known result obtained by Kovchegov
and Mueller, see Eqgs. 59-61 of Ref. [48]. The high-energy limit of the gluon
production in the dilute-dense regime has also been studied in the past by
different authors [42, 48, 49, 50, 51, 52].
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Chapter 6

Conclusions

In the end, let us refresh our knowledge and see what we have just under-
stood in this thesis.

e The study of the spectrum of two-photon radiation off a quark in
a medium is presented in this thesis. In the Moliére limit, we find
similar features as in the case of one-photon radiation off a quark in a
medium, namely the appearance of Gaussian distribution of the total
momentum transfer from the medium. In the two-photon case, this
is quite surprising since the corresponding vacuum spectrum is just a
superposition of two independent emissions.

e The above conclusions hold, strictly speaking, only for the ladder emis-
sion diagram, depicted in figure 3.4. For the two-photon case, there
appears Feynman diagrams with much more complicated emission se-
quences, in addition to the diagrams including interference with vac-
uum emissions.

e The medium-induced gluon radiation spectrum off a ¢¢ antenna at
first order in opacity expansion is generalized to the massive case. In
this calculation, performed in the high-energy limit, both the forma-
tion time effect and the dead-cone effect for massive quarks and the
interference between emissions off the quark and the antiquark are in-
cluded. The results and techniques presented here can also be applied
to tagged heavy-quark jets.

e We find that the anti-angular ordering obtained in the massless case
is modified by the dead-cone effect. The decoherence phenomenon
extends to the massive case. The interference between two emitters
included in the antenna opens more phase space for soft gluon radia-
tion at relatively large opening angles for some specific choices of the
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parameters. More collimated antenna loses less energy and the size
of the mass effect on the energy loss for the antenna of large opening
angles is similar to the one resulting from independent emitters. The
average energy loss outside of a given emission angle is studied, and
we find that there is no typical k-broadening in the antenna in either
the massless or the massive cases for small antenna opening angles
and small energies of the emitted gluon, which is just the anti-angular
ordering regime. The antenna spectrum is found to be dominated by
the contribution from independent emitters for large antenna opening
angles and large energies of the emitted gluon.

The breakdown of the traditional relation between radiative energy
loss and k-broadening that we obtain in our formalism is very sug-
gestive of an interpretation of the recent experimental findings on re-
constructed jets in nuclear collisions at the LHC. Indeed, the data
indicate that the main observed effect is the emission of soft particles
at large angles, while there is no strong modification of the fragmen-
tation function or the dijet azimuthal asymmetry. At the same time,
a large energy loss is observed in the energy imbalance between two
back-to-back jets. These two features are difficult to reconcile in a
traditional formalism as the relation between energy loss and broad-
ening is a rather general one. However, they qualitatively admit a
natural interpretation in terms of the partial decoherence, which is
found when more than one emitter is considered, as done here, and
where the vacuum-like soft radiation is found. Although several issues
need to be clarified before interpreting these data in terms of an un-
derlying physical mechanism, e.g. the sample of jets studied retains
some bias as demonstrated by the suppression in Rop measured by
ATLAS, the findings presented in this thesis are very encouraging for
a full description of the data in terms of a medium-modified parton
shower.

The interference pattern between initial and final radiation in a color
deconfined medium is presented in this thesis. We derive an ana-
lytic expression for the medium-induced gluon spectrum off an asymp-
totic parton created in the remote past which suffers a hard collision
and subsequently crosses a color deconfined medium. The medium-
induced gluon spectrum has three contributions: the independent
gluon emissions associated to the incoming and the outgoing partons,
and the interference terms between both emitters. The angular dis-
tribution of gluon emission is affected by the presence of these inter-
ferences between the emitters when one compares with the radiation
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pattern in vacuum.

e The setup studied here shows in a transparent manner how the inter-
ferences affect the angular distribution of the gluon radiation under
the presence of a color deconfined medium. Note that, the same as the
previous studies in vacuum and in the medium, the results presented
here for the t-channel exchange of a color singlet object hold in the
soft limit for arbitrary color representations. In this way, they are
applicable to medium-induced soft gluon production for any ¢-channel
hard scattering. The possible phenomenological consequences of our
findings can be considered at the level of the inclusive spectra of pro-
duced gluons, and the opening of more phase space for large angle soft
emissions, which is evident in the soft limit, should lead to an increase
of soft hadron multiplicities.

My doctorate studies are the first steps towards jet calculus in a color decon-
fined medium, and they may give an improved guidance to the construction
of the building blocks for the Monte Carlo simulators.
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