Plasmonic response of graphene nanostructures
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10347/14810
Files in this item
Metadata
Title: | Plasmonic response of graphene nanostructures |
Author: | Silveiro Flores, Iván |
Advisor: | Universidade de Santiago de Compostela. Facultade de Física. Departamento de Física Aplicada García de Abajo, Francisco Javier Thongrattanasiri, Sukosin |
Subject: | Graphene | carbon atoms | localized surface plasmons (LSPs) | surface plasmon polaritons (SPPs) | |
Date of Issue: | 2016-06-27 |
Abstract: | Graphene is a planar monolayer of carbon atoms tightly packed into a 2D honeycomb lattice. Since the first experimental isolation in 2004, graphene has attracted an enormous interest due to its extraordinary optoelectronic properties for nanophotonics. The unique band structure of graphene consists of a lower or valence band and an upper or conduction band, which at low energies resemble the shape of two inverted cones touching at one point (the so-called Dirac point) that marks the Fermi level in the neutral state. In this state, the valence band is completely filled with electrons, while the conduction band is empty. Interestingly, when extra electrons are added to graphene (doping), they start filling unoccupied states in the conduction band up to a certain level that corresponds to the new Fermi level EF=ħvF(n)½, where n is the electronic density per unit area, and vFc/300 their velocity. The collective oscillations of these extra electrons are known as Dirac plasmons, and they are subdivided into two different subgroups: surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs). In the second chapter of this thesis, we classically study Dirac plasmons assuming an inhomogeneous distribution of n in different graphene nanostructures (ribbons and disks), and also a periodic distribution in extended graphene layers. When the characteristic length of the nanostructure is of the order of the Fermi wavelength, classical electromagnetism is no longer valid, and a quantum-mechanical approach is necessary. In the third chapter of this thesis, we provide extensive quantum calculations of the response of LSPs sustained on narrow nanoribbons.The fourth chapter of this thesis is devoted to the study of the strong nonlinear plasmonic response of doped graphene. Finally, in the fifth chapter, we show the outstanding potential of graphene LSPs to resolve the chemical identity of molecules. |
URI: | http://hdl.handle.net/10347/14810 |
Rights: | Esta obra atópase baixo unha licenza internacional Creative Commons BY-NC-ND 4.0. Calquera forma de reprodución, distribución, comunicación pública ou transformación desta obra non incluída na licenza Creative Commons BY-NC-ND 4.0 só pode ser realizada coa autorización expresa dos titulares, salvo excepción prevista pola lei. Pode acceder Vde. ao texto completo da licenza nesta ligazón: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.gl |
Collections
-
- Área de Ciencias [892]
Except where otherwise noted, this item's license is described as Esta obra atópase baixo unha licenza internacional Creative Commons BY-NC-ND 4.0. Calquera forma de reprodución, distribución, comunicación pública ou transformación desta obra non incluída na licenza Creative Commons BY-NC-ND 4.0 só pode ser realizada coa autorización expresa dos titulares, salvo excepción prevista pola lei. Pode acceder Vde. ao texto completo da licenza nesta ligazón: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.gl