Learning in real robots from environment interaction
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10347/17702
Files in this item
Metadata
Title: | Learning in real robots from environment interaction |
Author: | Quintía Vidal, Pablo Iglesias Rodríguez, Roberto Rodríguez González, Miguel Ángel Vázquez Regueiro, Carlos Valdés Villarrubia, Fernando |
Affiliation: | Universidade de Santiago de Compostela. Centro de Investigación en Tecnoloxías da Información Universidade de Santiago de Compostela. Departamento de Electrónica e Computación |
Subject: | Continuous robot learning | Robot adaptation | Learning from environment interaction | Reinforcement learning | |
Date of Issue: | 2012 |
Publisher: | Universitat d'Alacant |
Citation: | Quintía Vidal, P., Iglesias Rodríguez, R., Rodríguez González, M., Vázquez Regueiro, C., & Valdés Villarrubia, F. (2012). Learning in real robots from environment interaction. Journal of Physical Agents, 6(1), 43-51. doi:https://doi.org/10.14198/JoPha.2012.6.1.06 |
Abstract: | This article describes a proposal to achieve fast robot learning from its interaction with the environment. Our proposal will be suitable for continuous learning procedures as it tries to limit the instability that appears every time the robot encounters a new situation it had not seen before. On the other hand, the user will not have to establish a degree of exploration (usual in reinforcement learning) and that would prevent continual learning procedures. Our proposal will use an ensemble of learners able to combine dynamic programming and reinforcement learning to predict when a robot will make a mistake. This information will be used to dynamically evolve a set of control policies that determine the robot actions |
Publisher version: | https://doi.org/10.14198/JoPha.2012.6.1.06 |
URI: | http://hdl.handle.net/10347/17702 |
DOI: | 0.14198/JoPha.2012.6.1.06 |
ISSN: | 1888-0258 |
Rights: | This document is under a Creative Commons Attribution license 4.0 International (CC BY 4.0) Atribución 4.0 Internacional |
Collections
-
- CiTIUS-Artigos [177]
- EC-Artigos [146]
The following license files are associated with this item: