Show simple item record

dc.contributor.authorRodríguez Soalleiro, Roque
dc.contributor.authorEimil Fraga, Cristina
dc.contributor.authorGómez García, Esteban
dc.contributor.authorGarcía Villabrille, Juan Daniel
dc.contributor.authorRojo Alboreca, Alberto
dc.contributor.authorMuñoz, Fernando
dc.contributor.authorOliveira Rodríguez, Nerea de
dc.contributor.authorSixto, Hortensia
dc.contributor.authorPérez Cruzado, César
dc.date.accessioned2018-11-26T13:54:41Z
dc.date.available2018-11-26T13:54:41Z
dc.date.issued2018-11-05
dc.identifier.citationRodríguez-Soalleiro R., Eimil-Fraga C., Gómez-García E., García-Villabrille J.D., Rojo-Alboreca A., Muñoz F., Oliveira N., Sixto H., Pérez-Cruzado C. 2018. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. Forest Ecosystems 5: 35
dc.identifier.issn2197-5620
dc.identifier.urihttp://hdl.handle.net/10347/17842
dc.description.abstractBackground: Coupling biomass models with nutrient concentrations can provide sound estimations of carbon and nutrient contents, enabling the improvement of carbon and nutrient balance in forest ecosystems. Although nutrient concentrations are often assumed to be constant for some species and specific tree components, at least in mature stands, the concentrations usually vary with age, site index and even with tree density.The main objective of this study was to evaluate the sources of variation in nutrient concentrations in biomass compartments usually removed during harvesting operations, covering a range of species and management conditions: semi-natural forest, conventional forest plantations and short rotation forestry (SRF). Five species (Betula pubescens, Quercus robur, Eucalyptus globulus, Eucalyptus nitens and Populus spp.) and 14 genotypes were considered. A total of 430 trees were sampled in 61 plots to obtain 6 biomass components: leaves, twigs, thin branches, thick branches, bark and wood. Aboveground leafless biomass was pooled together for poplar. The concentrations of C, N, K, P, Ca, Mg, S, Fe, Mn, Cu, Zn and B were measured and the total biomass of each sampled tree and plot were determined. The data were analysed using boosted regression trees and conventional techniques. Results: The main sources of variation in nutrient concentrations were biomass component >> genotype (species) ≈ age > tree diameter. The concentrations of Ca, Mg and K were most strongly affected by genotype and age. The concentrations of P, K, Ca, Mg, S and Cu in the wood component decreased with age, whereas C concentrations increased, with a trend to reach 50% in the older trees. In the SRF, interamerican poplar and P. trichocarpa genotypes were comparatively more efficient in terms of Ca and K nutrient assimilation index (NAI) (+ 65 – 85%) than eucalypts, mainly because leafless biomass can be removed. In the conventional eucalypt plantations (rotation 15 years), debarking the wood at logging (savings of 225% of Ca and 254% of Mg for E. globulus) or the use of selected genotypes (savings of 45% of P and 35% of Ca) will provide wood at a relatively lower nutrient cost. Considering all the E. globulus genotypes together, the management for pulp with removal of debarked wood shows NAI values well above (× 1.7 – × 3.9) the ones found for poplar or eucalypt SRF and also higher (× 1.6 – × 4.0) than the ones found for oak and birch managed in medium or long rotations. The annual rates of nutrient removal were low in the native broadleaved species but the rates of available soil nutrients removed were high as compared to poplar or eucalypts. Management of native broadleaved species should consider nutrient stability through selection of the biomass compartments removed. Conclusions: The nutrient assimilation index is higher in poplar grown under short rotation forestry management than in the other systems considered. Nutrient management of fast growing eucalyptus plantations could be improved by selecting efficient genotypes and limiting removal of wood. The values of the nutrient assimilation index are lower in the natural stands of native broadleaved species than in the other systems considered
dc.description.sponsorshipMINECO, proyectos RTA2014–00007-C03, AGL2010–22308-C02–01 y AGL2007–66739-C02–01/FOR
dc.language.isoeng
dc.publisherSpringerOpen
dc.rights© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectNutrient removal
dc.subjectBiomass crops
dc.subjectPoplar genotypes
dc.subjectEucalyptus
dc.subjectOak
dc.subjectBirch
dc.subjectPlantation sustainability
dc.titleExploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry
dc.typeinfo:eu-repo/semantics/article
dc.identifier.DOI10.1186/s40663-018-0154-y
dc.relation.publisherversionhttps://doi.org/10.1186/s40663-018-0154-y
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.contributor.affiliationUniversidade de Santiago de Compostela. Departamento de Enxeñaría Agroforestal
dc.description.peerreviewedSI


Files in this item

application/pdf
Name: 2018_Rodriguez-Soalleiro_et_al_Exploring_the_factors_affecting_carbon_and_nutrient_concentrations_in_tree_biomass_ Forest_Ecosystems.pdf
Size: 1.821 Mb
Format: PDF


Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made
Except where otherwise noted, this item's license is described as  © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made





xmlui.mirage2.page-structure.recolectoresxmlui.mirage2.page-structure.enlaces_de_interes
Universidade de Santiago de Compostela | Teléfonos: +34 881 811 000 e +34 982 820 000 | Contact Us | Send Feedback