Recent Submissions

  • Variable selection in Functional Additive Regression Models 

    Febrero Bande, Manuel; González Manteiga, Wenceslao; Oviedo de la Fuente, Manuel (Springer, 2017)
    This paper considers the problem of variable selection when some of the variables have a functional nature and can be mixed with other type of variables (scalar, multivariate, directional, etc). Our proposal begins with a ...
  • El consumo de cocaína desde la perspectiva psicológica 

    López Durán, Ana; Becoña Iglesias, Elisardo (Consejo General de la Psicología de España, 2009)
    El consumo de cocaína está cobrando una creciente importancia en España en los últimos años. A pesar de los importantes esfuerzos que se vienen realizando desde el campo farmacológico en investigación sobre el tratamiento ...
  • The DDG-classifier in the functional setting 

    Cuesta Albertos, Juan A.; Febrero Bande, Manuel; Oviedo de la Fuente, Manuel (Springer, 2017)
    The maximum depth classifier was the first attempt to use data depths instead of multivariate raw data in classification problems. Recently, the DD-classifier has addressed some of the serious limitations of this classifier ...
  • Assignment Problems in Wildfire Suppression: Models for Optimization of Aerial Resource Logistics 

    Rodríguez Veiga, Jorge; Gómez Costa, Iván; Ginzo Villamayor, María José; Casas Méndez, Balbina; Sáiz Díaz, José Luis (Oxford University Press, 2018)
    Wildfire containment activities involve a combination of important decisions that affect the evolution of the fire and effective resource deployment. When aerial resources (in particular aircraft and helicopters) are used, ...
  • A New Approach for Sparse Matrix Classification Based on Deep Learning Techniques 

    Pichel Campos, Juan Carlos; Pateiro López, Beatriz (IEEE, 2018)
    In this paper, a new methodology to select the best storage format for sparse matrices based on deep learning techniques is introduced. We focus on the selection of the proper format for the sparse matrix-vector multiplication ...

View more






Harvesters:Interesting links:
Universidade de Santiago de Compostela | Teléfonos: +34 881 811 000 e +34 982 820 000 | Contact Us | Send Feedback