Show simple item record

dc.contributor.authorMartínez Portela, Paulino
dc.contributor.authorViñas Díaz, Ana María
dc.contributor.authorSánchez Piñón, Laura Elena
dc.contributor.authorDíaz, Noelia
dc.contributor.authorRibas, Laia
dc.contributor.authorPiferrer, Francesc
dc.date.accessioned2021-05-04T13:59:03Z
dc.date.available2021-05-04T13:59:03Z
dc.date.issued2014
dc.identifier.citationMartínez P, Viñas AM, Sánchez L, Díaz N, Ribas L and Piferrer F (2014) Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Front. Genet. 5:340. doi: 10.3389/fgene.2014.00340
dc.identifier.urihttp://hdl.handle.net/10347/26115
dc.description.abstractControlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of the European aquaculture, and salmonids and tilapia, representing the fish for which there are well established breeding programs
dc.description.sponsorshipThis research work was supported by the Spanish Government (Consolider Ingenio Aquagenomics: CSD2007-00002 project) and Spanish Ministerio de Ciencia e Innovación (AGL2009-13273 and AGL2010-15939) projects to Paulino Martínez and Francesc Piferrer
dc.language.isoeng
dc.publisherFrontiers
dc.rightsCopyright © 2014 Martínez, Viñas, Sánchez, Díaz, Ribas and Piferrer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSex determination
dc.subjectFish
dc.subjectGenetic architecture
dc.subjectSex ratio
dc.subjectAquaculture
dc.titleGenetic architecture of sex determination in fish: applications to sex ratio control in aquaculture
dc.typeinfo:eu-repo/semantics/article
dc.identifier.DOI10.3389/fgene.2014.00340
dc.relation.publisherversionhttps://doi.org/10.3389/fgene.2014.00340
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.contributor.affiliationUniversidade de Santiago de Compostela. Departamento de Zooloxía, Xenética e Antropoloxía Física
dc.description.peerreviewedSI


Files in this item

application/pdf
Name: 2014_fgene_martinez_genetic.pdf
Size: 1.091 Mb
Format: PDF


Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright © 2014 Martínez, Viñas, Sánchez, Díaz, Ribas and Piferrer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms
Except where otherwise noted, this item's license is described as  Copyright © 2014 Martínez, Viñas, Sánchez, Díaz, Ribas and Piferrer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms





Harvesters:Useful links:
Universidade de Santiago de Compostela | Teléfonos: +34 881 811 000 e +34 982 820 000 | Contact Us | Send Feedback