Curvas Planas
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10347/26334
Files in this item
Metadata
Title: | Curvas Planas |
Author: | Gónzalez Maestro, Adrián |
Advisor: | Hervella Torrón, Luis Mª |
Affiliation: | Universidade de Santiago de Compostela. Facultade de Matemáticas |
Date of Issue: | 2019-07 |
Abstract: | [GL] O obxectivo deste traballo é abordar algúns dos teoremas clásicos máis importantes
no referente ao ámbito das curvas planas, prestando especial atención ás curvas planas
convexas. Para elo será preciso expor unha serie de nocións e resultados previos a modo
de introducción á teoría de curvas planas. En consecuencia, o traballo pode verse como
a unión de dous bloques distintos. O primeiro estaría conformado polos capítulos un e
dous, onde ofrecemos unha formación básica en teoría local e global de curvas planas, e
o segundo polos capítulos tres, catro e cinco, onde usamos os coñecementos adquiridos
no bloque anterior para levar a cabo a resolución de tres grandes teoremas. En concreto
probaremos o teorema dos catro vértices, a desigualdade isoperimétrica e a fórmula de
Cauchy-Crofton. Os dous primeiros pertencen ao ámbito de xeometría diferencial e están
intimamente ligados á noción de convexidade, mentres que a fórmula de Cauchy-Crofton
pertence ao ámbito da xeometría integral. En xeral, a exposición de ditos teoremas será
acompañada pola súa historia e algunhas das súas aplicacións. Ademáis, en todos os casos
intentaremos expor as súas demostracións do xeito máis xeométrico posible. [EN] The objective of this work is to deal with some of the most important classic theorems related to the realm of plane curves, with special attention to plane convex curves. In order the achieve that, we will have to show some previous notions and results as a introduction to the plane curves theory. Due to that, this work can be seen as the union of two different blocks. The first one would be made up by chapters one and two, where we offer a basic training on local and global plane curves theory, and the second by chapters three, four and five, where we use the knowledge acquired on the previous block in order to solve three important theorems. Specifically, we will prove the four vertex theorem, the isoperimetric inequality and the Cauchy-Crofton formula. The first two belong to the realm of differential geometry and they are very related to the concept of convexity, while the Cauchy-Crofton formula belongs to the realm of integral geometry. In general, the exposure of those theorems will be accompanied by their history and some of their applications. Futhermore, in all cases we will try to show their proofs in the most geometric way possible. |
Description: | Traballo Fin de Grao en Matemáticas. Curso 2018-2019 |
URI: | http://hdl.handle.net/10347/26334 |
Rights: | Atribución-NoComercial-CompartirIgual 4.0 Internacional |
Collections
-
- Grao en Matemáticas [111]
The following license files are associated with this item: