Mostrar o rexistro simple do ítem

dc.contributor.authorSabín Fernández, Juan Daniel
dc.contributor.authorAlatorre Meda, Manuel
dc.contributor.authorMiñones Conde, José
dc.contributor.authorDomínguez Arca, Vicente
dc.contributor.authorPrieto, Gerardo
dc.date.accessioned2022-03-21T09:55:26Z
dc.date.available2022-03-21T09:55:26Z
dc.date.issued2022
dc.identifier.citationColloids and Surfaces B: Biointerfaces 210 (2022) 112219. https://doi.org/10.1016/j.colsurfb.2021.112219
dc.identifier.urihttp://hdl.handle.net/10347/27689
dc.description.abstractPolyethylenimine (PEI) has been demonstrated as an efficient DNA delivery vehicle both in vitro and in vivo. There is a consensus that PEI-DNA complexes enter the cells by endocytosis and escape from endosomes by the so-called “proton sponge” effect. However, little is known on how and where the polyplexes are de-complexed for DNA transcription and replication to occur inside the cell nucleus. To better understand this issue, we (i) tracked the cell internalization of PEI upon transfection to human epithelial cells and (ii) studied the interaction of PEI with phospholipidic layers mimicking nuclear membranes. Both the biological and physicochemical experiments provided evidence of a strong binding affinity between PEI and the lipidic bilayer. Firstly, confocal microscopy revealed that PEI alone could not penetrate the cell nucleus; instead, it arranged throughout the cytoplasm and formed a sort of aureole surrounding the nuclei periphery. Secondly, surface tension measurements, fluorescence dye leakage assays, and differential scanning calorimetry demonstrated that a combination of hydrophobic and electrostatic interactions between PEI and the phospholipidic monolayers/bilayers led to the formation of stable defects along the model membranes, allowing the intercalation of PEI through the monolayer/bilayer structure. Results are also supported by molecular dynamics simulation of the pore formation in PEI-lipidic bilayers. As discussed throughout the text, these results might shed light on a the mechanism in which the interaction between PEI and the nucleus membrane might play an active role on the DNA release: on the one hand, the PEI-membrane interaction is anticipated to facilitate the DNA disassembly from the polyplex by establishing a competition with DNA for the PEI binding and on the other hand, the forming defects are expected to serve as channels for the entrance of de-complexed DNA into the cell nucleus. A better understanding of the mechanism of transfection of cationic polymers opens paths to development of more efficiency vectors to improve gene therapy treatment and the new generation of DNA vaccines
dc.description.sponsorshipThis work was supported by the Spanish "Ministerio de Ciencia, Innovación y Universidades" (Project PID2019–109517RB-I00)
dc.language.isoeng
dc.publisherElsevier
dc.rights© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectPolyethylenimine
dc.subjectPore formation
dc.subjectMimicking nuclear membranes
dc.subjectDNA vectors
dc.subjectMolecular dynamics simulations
dc.titleNew insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines
dc.typejournal article
dc.identifier.doi10.1016/j.colsurfb.2021.112219
dc.relation.publisherversionhttps://doi.org/10.1016/j.colsurfb.2021.112219
dc.type.hasVersionVoR
dc.identifier.essn0927-7765
dc.rights.accessRightsopen access
dc.contributor.affiliationUniversidade de Santiago de Compostela. Departamento de Física Aplicada
dc.contributor.affiliationUniversidade de Santiago de Compostela. Departamento de Química Física
dc.description.peerreviewedSI
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109517RB-I00/ES/NUEVOS NANOTRANSPORTADORES BIOMIMETICOS YPLATAFORMAS IN VITRO PARA LA VALIDACION EXITOSA DE LA TERAGNOSTICA PARA LA ATEROSCLEROSIS


Ficheiros no ítem

application/pdf
Nome: Artigo de investigación
Tamaño: 6.528 Mb
Formato: PDF


Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
A licenza do ítem descríbese como
 © 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).





Recolectores:Enlaces de interese:
Universidade de Santiago de Compostela | Teléfonos: +34 881 811 000 e +34 982 820 000 | Contacto | Suxestións