Show simple item record

dc.contributor.authorVaquero Otal, Lorenzo
dc.contributor.authorBrea Sánchez, Víctor Manuel
dc.contributor.authorMucientes Molina, Manuel Felipe
dc.date.accessioned2022-11-29T08:11:26Z
dc.date.available2022-11-29T08:11:26Z
dc.date.issued2023
dc.identifier.citationPattern Recognition 135 (2023) 109141
dc.identifier.urihttp://hdl.handle.net/10347/29480
dc.description.abstractMaintaining the identity of multiple objects in real-time video is a challenging task, as it is not always feasible to run a detector on every frame. Thus, motion estimation systems are often employed, which either do not scale well with the number of targets or produce features with limited semantic information. To solve the aforementioned problems and allow the tracking of dozens of arbitrary objects in real-time, we propose SiamMOTION. SiamMOTION includes a novel proposal engine that produces quality features through an attention mechanism and a region-of-interest extractor fed by an inertia module and powered by a feature pyramid network. Finally, the extracted tensors enter a comparison head that efficiently matches pairs of exemplars and search areas, generating quality predictions via a pairwise depthwise region proposal network and a multi-object penalization module. SiamMOTION has been validated on five public benchmarks, achieving leading performance against current state-of-the-art trackers. Code available at: https://www.github.com/lorenzovaquero/SiamMOTION
dc.description.sponsorshipThis research was partially funded by the Spanish Ministerio de Ciencia e Innovación [grant numbers PID2020-112623GB-I00, RTI2018-097088-B-C32], and the Galician Consellería de Cultura, Educación e Universidade [grant numbers ED431C 2018/29, ED431C 2021/048, ED431G 2019/04]. These grants are co-funded by the European Regional Development Fund (ERDF). Lorenzo Vaquero is supported by the Spanish Ministerio de Universidades under the FPU national plan (FPU18/03174). We also gratefully acknowledge the support of NVIDIA Corporation for hardware donations used for this research
dc.language.isoeng
dc.publisherElsevier
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112623GB-I00/ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/ RTI2018-097088-B-C32/ES/SENSORES CMOS DE VISION, GESTION DE ENERGIA Y SEGUIMIENTO DE OBJETOS SOBRE GPUS EMPOTRADAS
dc.rights© 2023 The Authors. Published by Elsevier B.V. This work is licenced under a CC Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMultiple visual object tracking
dc.subjectSiamese CNN
dc.subjectMotion estimation
dc.titleReal-time siamese multiple object tracker with enhanced proposals
dc.typeinfo:eu-repo/semantics/article
dc.identifier.DOI10.1016/j.patcog.2022.109141
dc.relation.publisherversionhttps://doi.org/10.1016/j.patcog.2022.109141
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.e-issn0031-3203
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.contributor.affiliationUniversidade de Santiago de Compostela. Centro de Investigación en Tecnoloxías da Información
dc.contributor.affiliationUniversidade de Santiago de Compostela. Departamento de Electrónica e Computación
dc.description.peerreviewedSI


Files in this item

application/pdf
Name: Artigo de investigación
Size: 2.383 Mb
Format: PDF


Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. Published by Elsevier B.V. This work is licenced under a CC Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0)
Except where otherwise noted, this item's license is described as  © 2023 The Authors. Published by Elsevier B.V. This work is licenced under a CC Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0)





Harvesters:Useful links:
Universidade de Santiago de Compostela | Teléfonos: +34 881 811 000 e +34 982 820 000 | Contact Us | Send Feedback