dc.contributor.author | Vaquero Otal, Lorenzo |
dc.contributor.author | Brea Sánchez, Víctor Manuel |
dc.contributor.author | Mucientes Molina, Manuel Felipe |
dc.date.accessioned | 2022-11-29T08:11:26Z |
dc.date.available | 2022-11-29T08:11:26Z |
dc.date.issued | 2023 |
dc.identifier.citation | Pattern Recognition 135 (2023) 109141 |
dc.identifier.uri | http://hdl.handle.net/10347/29480 |
dc.description.abstract | Maintaining the identity of multiple objects in real-time video is a challenging task, as it is not always feasible to run a detector on every frame. Thus, motion estimation systems are often employed, which either do not scale well with the number of targets or produce features with limited semantic information. To solve the aforementioned problems and allow the tracking of dozens of arbitrary objects in real-time, we propose SiamMOTION. SiamMOTION includes a novel proposal engine that produces quality features through an attention mechanism and a region-of-interest extractor fed by an inertia module and powered by a feature pyramid network. Finally, the extracted tensors enter a comparison head that efficiently matches pairs of exemplars and search areas, generating quality predictions via a pairwise depthwise region proposal network and a multi-object penalization module. SiamMOTION has been validated on five public benchmarks, achieving leading performance against current state-of-the-art trackers. Code available at: https://www.github.com/lorenzovaquero/SiamMOTION |
dc.description.sponsorship | This research was partially funded by the Spanish Ministerio de Ciencia e Innovación [grant numbers PID2020-112623GB-I00, RTI2018-097088-B-C32], and the Galician Consellería de Cultura, Educación e Universidade [grant numbers ED431C 2018/29, ED431C 2021/048, ED431G 2019/04]. These grants are co-funded by the European Regional Development Fund (ERDF). Lorenzo Vaquero is supported by the Spanish Ministerio de Universidades under the FPU national plan (FPU18/03174). We also gratefully acknowledge the support of NVIDIA Corporation for hardware donations used for this research |
dc.language.iso | eng |
dc.publisher | Elsevier |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112623GB-I00/ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/ RTI2018-097088-B-C32/ES/SENSORES CMOS DE VISION, GESTION DE ENERGIA Y SEGUIMIENTO DE OBJETOS SOBRE GPUS EMPOTRADAS |
dc.rights | © 2023 The Authors. Published by Elsevier B.V. This work is licenced under a CC Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0) |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject | Multiple visual object tracking |
dc.subject | Siamese CNN |
dc.subject | Motion estimation |
dc.title | Real-time siamese multiple object tracker with enhanced proposals |
dc.type | info:eu-repo/semantics/article |
dc.identifier.DOI | 10.1016/j.patcog.2022.109141 |
dc.relation.publisherversion | https://doi.org/10.1016/j.patcog.2022.109141 |
dc.type.version | info:eu-repo/semantics/publishedVersion |
dc.identifier.e-issn | 0031-3203 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.contributor.affiliation | Universidade de Santiago de Compostela. Centro de Investigación en Tecnoloxías da Información |
dc.contributor.affiliation | Universidade de Santiago de Compostela. Departamento de Electrónica e Computación |
dc.description.peerreviewed | SI |